Deep Learning based forecast using RNN for stock price prediction
Main Article Content
Abstract
Predicting the profit of a firm, predicting the expenditures and cost of an organization and predicting the demand of any product and service have always been playing a significant role in current global business scenario. For forecasting conventional techniques are being adopted. At the same time, accuracy is very important for forecasting. Thanks to the progress of technology, scientific techniques are replacing the conventional forecasting methods. Due to the phase of Industry 4.0, automation, artificial intelligence and machine learning have become areas of thrust and focus in the world. In this article, deep learning based recurring neural network technique that employs and recognizes sequential data is applied for prediction the stock price. Thanks to technological revolution, stock market analysis has become very easy and that too predicting stock price has become an important agenda for investors. Most of the stock and securities platforms have started using technological and scientific means and methods of price prediction and price analysis. Off late, machine learning algorithms have been evolved and customized for stock market analysis. Thus, this article has also applied deep learning technique for stock price prediction. The paper presents a well-organized approach that aids investors and organizations to gain profit.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.