SafeOne Machine Learning model to predict industrial incidents in Chemical and Gas Industries
Main Article Content
Abstract
Understanding activity incidents is one of the necessary measures in workplace safety strategy. Analyzing the trends of the activity incident information helps to spot the potential pain points and helps to scale back the loss. Optimizing the Machine Learning algorithms may be a comparatively new trend to suit the prediction model and algorithms within the right place to support human helpful factors. This research aims to make a prediction model spot the activity incidents in chemical and gas industries. This paper describes the design and approach of building and implementing the prediction model to predict the reason behind the incident which may be used as a key index for achieving industrial safety specific to chemical and gas industries. The implementation of the grading algorithmic program including the prediction model ought to bring unbiased information to get a logical conclusion. The prediction model has been trained against incident information that has 25700 chemical industrial incidents with accident descriptions for the last decade. Inspection information and incident logs ought to be chomped high of the trained dataset to verify and validate the implementation. The result of the implementation provides insight towards the understanding of the patterns, classifications, associated conjointly contributes to an increased understanding of quantitative and qualitative analytics. Innovative cloud-based technology discloses the gate to method the continual in-streaming information, method it, and output the required end in a period. The first technology stack utilized in this design is Apache Kafka, Apache Spark, KSQL, Data frames, and AWS Lambda functions. Lambda functions are accustomed implement the grading algorithmic program and prediction algorithmic program to put in writing out the results back to AWS S3 buckets. Proof of conception implementation of the prediction model helps the industries to examine through the incidents and can layout the bottom platform for the assorted protective implementations that continuously advantage the workplace's name, growth, and have less attrition in human resources.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.