An Efficient ensemble of Brain Tumour Segmentation and Classification using Machine Learning and Deep Learning based Inception Networks
Main Article Content
Abstract
In recent times, Brain Tumor (BT) has become a common phenomenon affecting almost all age group of people. Identification of this deadly disease using computer tomography, magnetic resonance imaging are very popular now-a-days. Developing a Computer Aided Design (CAD) tool for diagnosis and classification of BT has become vital. This paper focuses on designing a tool for diagnosis and classification of BT using Deep Learning (DL) models, which involves a series of steps via acquiring (CT) image, pre-processing, segmenting and classifying to identify the type of tumor using SIFT with DL based Inception network model. The proposed model uses fuzzy C means algorithm for segmenting area of interest from the BT image acquired. Techniques like Gaussian Naïve Bayes (GNB) and logistic regression (LR) are used for classification processes. To ascertain all the techniques for its efficiency a benchmark dataset was used. The simulation outcome ensured that the performance of the proposed method with maximum sensitivity of 100%, specificity of 97.41% and accuracy of 97.96%.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.