Few-shot Learning: Towards localization and classification of objects
Main Article Content
Abstract
When we have dataset with large number of labelled examples it is easy to perform object
detection task but, rare object detection from a few examples is a new problem. Metalearning
has been shown to be a promising strategy in the past. However, fine-tuning
strategies have received little attention. We discovered that fine-tuning the last layer of
detector is a critical task in few-shot object detection. On current benchmarks, such a basic
strategy outperforms meta-learning approaches by about 4 to 16 points and sometimes the
accuracy is doubled when compared to existing methodologies. However, current
benchmarks are frequently unreliable because of the significant variance in the few samples.
To generate consistent comparisons, we change the evaluation processes by choosing various
sets of training examples. The model has been evaluated on three datasets: COCO, LVIS, and
PASCAL VOC. Our fine-tuning approach amalgamated with the Ranking based loss function
which can be used for both classification and localization is state-of-the-art.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.