A New Method To Feature Selection In Rough Fuzzy Set Theory Based On Degree Of Separation
Main Article Content
Abstract
Rough set theory (RST) is an important tool to find feature subset selection. One of the most important and challenging issues in RST is to find reducts and core. Most of the problems in many areas, including machine learning, involve high dimensional descriptions of input features. Therefore, it is not surprising to mention that several studies have been conducted on the dimensionality reduction. Feature selection refers to the problem of selecting those input features that are mostly predictive of a given result. RST can be used as a tool to discover data dependency and reduce the number of attributes contained in a data set via the data alone that require no extra information. There have been several studies in the area of finding reducts with minimal cardinal. In this paper, we have proposed the hybrid information system, in which their attributes consist of crisp and fuzzy variables. Fuzzy variables appear as linguistic variables. We first define the degree of separation between fuzzy numbers and then choose a threshold-level (γ) to clarify the objects based on attributes. Considering the threshold-level, we use discernibility matrices to find reducts and core. Experimental results show that the proposed algorithm can improve the feature selection.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.