Investigating the Use of Eye Fixation Data for Emotion Classification in VR
Main Article Content
Abstract
Eye-tracking technology has become popular recently and widely used in research on emotion recognition since its usability. In this paper, we presented a preliminary investigation on a novelty approach for detecting emotions using eye-tracking data in virtual reality (VR) to classify 4-quadrant of emotions according to russell’scircumplex model of affects. A presentation of 3600 videos is used as the experiment stimuli to evoke the emotions of the user in VR. An add-on eye-tracker within the VR headset is used for the recording and collecting device of eye-tracking data. Fixation data is extracted and chosen as the eye feature used in this investigation. The machine learning classifier is support vector machine (SVM) with radial basis function (RBF) kernel. The best classification accuracy achieved is 69.23%. The findings showed that emotion classification using fixation data has promising results in the prediction accuracy from a four-class random classification.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.