An Elementary Proof for Fermat’s Last Theorem using an Euler’s Equation

Main Article Content

P. N. Seetharaman

Abstract

Fermat’s  Last  Theorem  states  that  it  is  impossible  to  find  positive integers  A, B  and  C


satisfying the equation


An  + Bn  = Cn


where n is any integer > 2.


Taking  the  proofs  of  Fermat  for  the  index  n =  4,  and  Euler  for  n =  3,  it  is  sufficient  to


prove the theorem for n = p, any prime > 3 [1].


We hypothesize that all rs and t are non-zero integers in the equation


rp  + sp  = tp


and establish contradiction.


Just for supporting the proof in the above equation, we have another equation


x3  + y3  = z3


Without loss of generality, we assert that both x and y as non-zero integers; z3  a non-zero integer; z  and z2  irrational.


We create transformed equations to the above two equations through parameters, into which we have incorporated an Euler’s equation. Solving the transformed equations we prove the theorem.

Article Details

Section
Articles