
Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1683-1694

 Research Article

1683

Test Case Quality Factors

Samera Obaid Barraood
1
, Haslina Mohd

2
, Fauziah Baharom

3

1,2,3

Universiti Utara Malaysia, Malaysia
1
Hadhramout University, Mukalla, Yemen

samera_obaid@ahsgs.uum.edu.m
1
, sammorahobaid@gmail.com

1
, haslina@uum.edu.my

2
, fauziah@uum.edu.my

3

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021; Published

online: 05 April 2021

Abstract: The guarantee of software quality is very important. Thus, before a software is released to the end users, the flaws in

the software should be detected by using high quality test cases. Currently, gauging the quality of test cases is carried out

without any particular model and the criteria for good test cases is still unclear. Therefore, this study studies the literature using

Systematic Literature Review (SLR) technique to identify the criteria of good test cases. The SLR considered papers between

2010 and 2018 in IEEE Xplore, ACM Digital Library, and Science Direct databases. Through the searching, it was found 310

papers are related. After filtering using exclusion and insertion criteria, 14 papers were considered for analysis. As a result, the

test managed to identify 30 quality factors from the selected articles. These quality factors were additionally inspected, arranged

and finished to be incorporated as the quality factors of test cases evaluation metrics.

Keywords: Test case, test case evaluation metrics, software testing, Systematic Literature Review (SLR)

1. Introduction

The most important phase for detecting software defects in producing high-quality software is software

testing phase [1]. It could determine the risk reduction. The effective and successful software testing has been

a worth explored issue because it really affects the success of a project. In fact, Lai [2] found that the success

of a software is always under 40%. The effectiveness of the testing relates to the quality of the test cases,

which depends on the amount of errors being revealed [3], [4]. This implies that the testing should reveal as

many errors as possible during the testing so that the requirements are not jeopardized and meeting the

acceptable level of quality [5]–[7]. Various reasons have been identified leading to software failures,

including misled understanding (among team members) upon different contexts, immature experience in

designing test case, and immature understanding [8]–[10]. Those identified factors are clearly possible

because designing good test cases is a complex art. There is no simple formula in generating test cases [11].

However, testers could focus on two things in improving the quality of software testing and productivity;

identifying the most effective quality metrics and measuring the test case quality [2]. Both the quality and

testing metrics are important [12]. In fact, various applications have used the test case quality metrics,

especially in evaluating existing test suites in ensuring sufficient number of testing are performed [13].

In accordance, this study gathers previous works reported in papers published in IEEE Xplore, ACM

Digital Library, and Science Direct for identifying appropriate and usable testing metrics in measuring and

evaluating test cases quality. For this, Systematic Literature Review (SLR) has been executed. Altogether,

310 papers have been discovered meeting the purpose of this study. The procedure and details of the SLR

protocol this study has gone through are discussed at length in the fourth section.

The structure of this paper is recognized as follows: Section 2 explains the background of test cases. It is

followed with a review on related works in section 3. After that, section 4 describes the procedure for this

study. Then, section 5 displays the results, and the last one summarized this paper.

2. Background of Test Case

Generally, testing a software is costly. Hence, it aims to gather maximum number of flaws [5]–[7], [14]. It

has to be extensive, covering all possible ways the system can be used [15]. Accordingly, deciding on the

adequate number of testing really matters. [16] recommends to continue testing covering both functional and

non-functional aspects until all critical dangers are solved.

Among the major risks that are difficult to handle include incomplete analysis on the requirement, evolved

technology and context of use, swiftly changed requirements, and imperfect and inflexible management of

mailto:samera_obaid@ahsgs.uum.edu.m1
mailto:haslina@uum.edu.my2

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1684

resources allocation. In conjunction to that, [2] recommends that designers and developers should plan for

early detection and prevention from flaws. It could help reducing the possibilities of flaws in the developed

software. In such situations, the test cases have to be well understood. Also, it has to be effectively designed

[17].

2.1. A Test Case

A test case, which consists of expected results based on the inputs (including actions, where applicable),

and a set of preconditions, is constructed in determining whether or not the specified part of the test item has

been correctly implemented [18], [19]. It is a very significant asset in software testing and in the software

development generally. It impacts best when it is able to detect flaws very confidently, especially flaws that

are hardly found. On top of that, the test cases are better, in situations where they could come out with more

reliable results, improved performance, and lowered cost in terms of scheduling reliability, testability, and

productivity [2], [6], [20], [21].

2.2. A Test Case Design

The quality of test cases is paramount in software testing. It substantially determines the wellness of the

tests, the flaws discovered and the ultimate achievements. They eventually leading to the discovery of flaws,

especially in the coding [2], [10]. This implies that it has to be well-designed, and comprehensive for the

desired software being tested [17]. There are common tests being carried out in varying software [11]. On top

of the common ones, writing test cases from scratch is very important. However, it is very difficult. In

designing test cases, it is notable for ensuring that testing could achieve a certain level of thoroughness [22].

Hence, software testers must have sufficient skills to write good test cases [21], [23], [24], which really

requires them to have a transparent knowledge on the system being tested [25]. According to Paruch et al.

[24], the testers should be creative, curious, structured, able to understand the big picture, friendly and

providing constructive feedback. Regarding the reasons for the difficulties in writing test cases, [11] believes

it includes:

 According to some styles of testing, test cases generating by people, for example, domain or risk-based

testing.

 There are different ways for good test cases. But not found test case that will be good in all of them.

 Test cases help to discover information. Different test types are more effective for different information

classes.

Besides, [10] found that a deep understanding and avoiding test case construction is necessary for

producing good test cases. Meanwhile, [23] discovered that the difficulties also come from unclear

requirements. This has to be avoided, because the better the test cases, the more flaws are discovered, and it

eventually results in higher quality [9], [13].

2.3. A Test Case Quality

The failure of software development around the world, which consequences in tremendous losses in

monetary and time has increased the awareness on software quality. It creates a major research area and

should be unavoidable [26]. As a result, a universal standard has been stipulated regarding the software

quality. Specifically, ISO/IEC 9126 and ISO/IEC 25010 define quality as ―the extent to which the system

satisfies the stated and implied needs of its various users‖ [27]–[29]. In testing, a test case quality is the

attribute for fault level in testing phase [14].

As there are standards for software quality, the tasks in measuring it are daunting [30]. The difficulties in

software testing vary depending on the size and complexity of the software being tested [31].

For every software testing, the software tester must regard the quality of the test cases as a very important

goal [9], [32], [33]. They have to be carefully generated. In generating them, the tester has to carefully select

[34] and prioritize [13], [35] so that the software is free of failure when in operation [36], [37]. In such

situation, it could increase software productivity [38] and reliability [26], [33], [39].

Test Case Quality Factors

1685

There are many criteria for the quality of test cases. One of them lies on the breadth coverage of the

functionalities in the system being tested [40]. Then, [14] added that various dimensions have to be

considered in ensuring the quality of test cases. Among the common dimensions include code defect density,

failure rate, cumulative failure profile, coverage factor, fault days number, fault density, modular test

coverage, minimal unit test case determination, and requirement specification change request. Additionally,

user satisfaction is also a quality attribute [41].

The standards (ISO/IEC 9126 and ISO/IEC 25010) can be used to validate the test cases, as to ensure they

are acceptable [42]. Some quality characteristics can be referred to in ISO-IEC 25010:2011. However, [43]

found that applying them is quite challenging for some testers due to some operational complications. This

implies that there is a need for quality factors/metrics that can be easily referred to by beginner testers in

producing high-quality test cases. As a response to that, this study takes the challenge, aims at identifying

good quality factors/metrics for test cases.

3. Related Work

A metric is a function assigned to a value of an attribute [44]. Meanwhile, software metric refers to the

way of measuring software, including its development process [45] that utilizes a metric. Further, the IEEE

1061-1998 defines a software quality metric as ―A function whose inputs are software data and whose output

is a single numerical value that can be interpreted as the degree to which software possesses a given attribute

that affects its quality‖ [46]. [2] Emphasizes that effective quality metrics of a test case is paramount in

uplifting the quality and productivity of a software. Various researchers have investigated the related

perspectives of quality and quality metrics. One of the common example is the work by [47]. They

concentrated on examining test case quality features generated by using test-first method. They used for

comparison of software development approaches the quality of test cases. They gauged the produced code

quality by test-first and test-last approaches and examined the variance of the quality of test cases in these two

approaches. Total number of failing assertions, mutation score, and code coverage were used as three quality

indicators in measuring the designed test cases. Moreover, the interface was also enforced. It allowed for the

execution of test cases of a participant on the other participants code.

Regarding that, [2] has proposed a measurement model for the quality of test cases called Iterative and

Incremental Development (IID). The model comprises thirteen features. They are classified into

manageability, qualified documentation, reusability quality characteristics and maintainability indicators.

[30] proposed for a quality of test cases a multi-dimensional measuring. For them, not just the detected

flaws number is important but also other features such as source code and usage profiles.

Earlier, [44] came out with a set of ten questions regarding software engineering metrics. It is coupled

with a framework on the procedure to perform the evaluation. Meanwhile recently, [48] proposed a

metric-driven approach comprising 20 20 metrics in order to assess the inherent quality features of a dataset

before released to the Linked Open Data Cloud. Based on an SLR and the ISO/IEC 25012 standard, they

selected five inherent quality characteristics, which are syntactic accuracy, semantic accuracy, consistency,

uniqueness, and completeness.

Later, [12] underlined the reasons for and effects of using metrics in industrial agile development. They

extracted 102 metrics from previous works reported in the literature. In their study, they only considered on

the metrics used by agile teams. They found that the use of metrics may lead to behavior functional damage

due to negative effects that it had.

Although those metrics have been shared, researchers believe they are debatable. Hence, researchers keep

studying for appropriate metrics for ensuring the quality of test cases [49]–[52].

4. Research Methodology

This study decided to use Systematic Literature Review (SLR) as the research methodology. It is

appropriate as this study aims at knowing a problem, but not at making an attempt to address it [12].

Regarding that, this study particularly intends in order to distinguish the former research gaps, synthesize the

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1686

existing research topic knowledge, provide a continues research method which may provide sufficient details

when applied in a suitable way to be used by other researchers, and supply background information to start

exploring a new research topic [12]. For such purpose, this study adapted the guideline provided by [53].

Generally, the guideline acts as a basis for developing the protocol of the SLR. In the execution, this study

collected and reviewed works on test case quality between 2010 and 2018 and produced good test cases by

identifying their factors and metrics.

4.1. Research Questions

The core purpose of this study is to determine the factors that affect the quality of test cases. Particularly,

this study focuses on the metrics and measurements of the test cases in making high-quality testing. In

supports for that, the following research questions need to be answered:

RQ1: How much are the conducted research activities between 2010 and 2018 related to the quality of test

cases?

RQ2: What are the quality factors/metrics for producing a good test case?

RQ3: Is the effectiveness of test case affected by the quality factors/metrics?

4.2. Search and Selection Process

The search and selection process have been carried out to select the primary studies. It contains three steps

as detailed in Table 1.

Step 1: Selecting Source Repositories

Suitable databases were selected in this step. This study considered IEEE Xplore, ACM Digital Library,

and Science Direct only, which are the most appropriate for the field of study, software engineering. It was

decided based on the recommendation by [34] that IEEE and ACM cover almost all prominent conferences in

software engineering, while Science Direct covers nearly all important journals in software engineering. The

execution was begun with entering the reserved words related to the research questions. To obtain the most

relevant search results, this study switched the string with (OR, AND) operators suitable with the time span

between 2010 and 2018. Two stages of searching were used in this study. Firstly, with string (―test case‖ OR

―test case quality‖) AND (―metrics‖ OR ―factors‖ OR ―indicators‖), which resulted in 268 papers, as detailed

in Table 1. Having read the articles, this study discovered that some of the studies use the term ―effectiveness

of test cases‖ instead of the ―quality of test cases‖. Therefore, the second stage was performed with the string

"test case effectiveness" OR "the effectiveness of test case". It resulted in 42 papers, as detailed in Table 1.

Step 2: Reading Titles and Abstracts

In this step, according to inclusion and exclusion criteria (section C), 39 papers were extracted from the

first stage and 15 were selected from the second stage. The titles and abstracts of the included and excluded

papers had been read. In case the abstract is unclear, the content of the paper is scanned. Through this process,

54 papers were selected, as detailed in Table 1.

Step 3: Reading Full Text

The full paper of the selected abstract was then gathered. They were carefully read. Eventually,

considering the selection criteria, 14 of them were selected, as they meet the requirement for this study.

Table 1. Studies Distribution after Applying Inclusion/Exclusion Criteria

Data

Repositorie

s

First Stage Second Stage

Ste

p 1

Step

2

Step

3

Step

1

Step

2

Step

3

IEEE 52 12 4 11 5 1

ACM 201 23 8 3 3

Test Case Quality Factors

1687

Science

Direct

15 4 1 28 7 0

Total 268 39 13 42 15 1

 13 Relevant articles 1 Relevant article

4.3. Inclusion and Exclusion Criteria

Exclusion Criteria:

 Papers without contents on quality factors or metrics.

 Papers written not in English.

 Books and workshops.

 Papers with contents not related to testing.

Inclusion Criteria:

 Papers talking about good test cases.

 Papers presenting the factors or metrics of testing quality.

4.4. Data Extraction

This study extracted data by carefully and critically reading through the full papers. This data extraction

involved two phases. Firstly, standard information [53] was collected, which include the publication year,

author names, title, and summary of the study. Secondly, information that is directly related to the research

questions of this study was collected.

5. Results

This section provides the research questions answers together with the SLR results.

RQ1: How much are the conducted research activities between 2010 and 2018 related to the quality of test

cases? The answer for this question is depicted in Tables 1 and 2. The total number of papers that are related

to quality testing cases is 310. However, only 14 papers are deemed to be the most related as listed in Table 2.

Subsection 5.1 provides more details about the selected studies.

5.1. Overview of Studies

This section details the overview of the primary studies related to quality test cases. It was found that there

are 14 papers in IEEE Xplore, ACM Digital Library, and Science Direct databases between 2010 and 2018

reporting on quality test cases (as detailed in Table 1). Most of the studies (8) are published in the ACM

Digital Library, followed by IEEE Xplore (5), and Science Direct (1).

Further, Table 2 presents the details of the 14 papers. The most similar study is S3, which was conducted in

2017. However, the study only focuses on the test case selection techniques instead of the quality of test

cases. Thus, for the past eight years, this was the first study performed to identify the quality factors and

metrics in producing high-quality test cases as well as good testing.

The Table 2 further explains that most of the studies (28.57%) were conducted in 2017. The others were

mostly carried out in 2015 (21.40%) and 14.28% in 2010, 2014, and 2016, followed by one in 2011.

Pertaining to the emphasized issue (column five), it seems that there is no study focusing exactly on the

quality of test cases. Most of these studies generally either focus on the use of or proposing quality metrics for

specific purposes. Among the purposes include test case selection [S3], test case generation [S5, S9, and

S11], software maintenance [S7, S9], test case prioritization [S4, S6], productivity [S8], software reliability

[S1, S5], test case design mistakes analysis [S13], and diagnosability of a test suite [S14]. Additionally, the

table also portrays that almost all studies describe the quality of test cases in terms of structural design

(code-based), whilst only one provides the test case generation quality in the specification (black box) and

white box methods.

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1688

5.2. Test Case Quality Metrics

RQ2: What are the quality factors/metrics for producing a good test case? The answer to this question is

described in Table 3. This study discovers that between 2010 and 2018, the quality of test cases is important

in various domains and techniques particularly in software maintenance [S7, S9], software reliability [S1,

S5], reusability [S2], software productivity [S8], test case generation [S9, S10, and S11], test case selection

[S3], test suite diagnosability [S14]. And test case prioritization [S4, S6].

Referring to Table 3, it could be seen that 30 of quality metrics have been identified from the 14 primary

studies. The most used metric is Coverage [S3, S4, S6, S8, S9, S12 and S14], which has various types such as

branch, statement, condition, and method. Among all 14 studies, there is only one has used coverage metric

[S3], while others used only some of it [S4, S6, S8, S9, S12, and S14]. Coverage is considered as a good

indicator to be used as a proxy for evaluating the quality and the completeness of test suites [34]. However, S3

and S12 do not recommended other studies to merely use coverage because it is insufficient as it is not a good

quality measurement for testing suite’s effectiveness. For them, coverage has to be used together with other

metrics. Meanwhile, S9 and S14 used branch coverage metric for comparison with their proposed metrics. On

the other hand, S10 used mutations rather than coverage because the former not only know where to test but

also what to test for. In contrast, S13 tried to improve the quality of test cases by analyzing the mistakes of test

cases based on the knowledge of the test case writers instead of providing any quality metrics for usage. They

found that most of the test cases have a deficiency quality in the light of the absence of understanding in

regard to the relating knowledge, which is essential for test case design.

In general, all identified quality metrics from the selected primary studies are used for producing good test

cases. The metrics were identified either based on current release of the system, the previous release,

experience of the test team, diagnosability of the test cases, or similarity.

RQ3: Is the effectiveness of test case affected by the quality factors/metrics? Referring to S4 and S11, the test

case effectiveness refers to the test case ability to detect more flaws or determine the number of flaws

revealed. By revealing more failures, the chances of producing a more quality test cases will be higher. Thus,

the results show that the effectiveness of test cases is affected by the quality of test case metrics. However, the

coverage metric should not be used alone due to it is poor predictor of test case effectiveness [S3, S12].

Table 1. Details of the Selected Studies

Study Reference Year Study

Type

Study Focus Apply on

S1 [26] 2015 Software reliability

S2 [54] 2010 Reusability of test cases

S3 [34] 2017 SLR Test case selection Regression testing

S4 [13] 2015 Test case quality for

prioritization

Five open source

systems (java projects)

S5 [33] 2015 Online

survey

Software reliability

S6 [35] 2017 Empirical

study

Test case prioritization five open source

systems (java projects)

S7 [36] 2017 Predicting software

maintenance.

Object-oriented

software

Test Case Quality Factors

1689

S8 [38] 2014 a

controlled

experiment

TDD (Test Driven

Development) on

productivity, internal, and

external code quality.

Professional java

developers

S9 [32] 2016 Empirical

study

Automatic test case

generation

110 Open source

projects from

SourceFroge

S10 [55] 2010 Test case generation Object oriented

classes

S11 [9] 2016 Empirical

study

Impact of computer science

programs on the quality of

test cases generation.

Black-box and

white-box techniques

S12 [4] 2014 fault detection

effectiveness

Five systems (large

java programs)

S13 [10] 2011 Empirical

study

Analysis of test case

mistakes in test design

phase

500 test cases by

novice testers

S14 [56] 2017 Diagnosability of a test

suite for spectrum-based

fault localization

approaches

Table 2. Test Case Quality Metrics used in the Primary Studies

N

o

Metric Description Studies

1. Test Team Experience Skills and experience of test team on software

testing.

S1, S11

2. Quality of Document Test

Cases (QDT)

Test case documentation is included a general

information of a test case such as the name of the

pattern, scope and expected results.

S1

3. Fault Density Derived measure defined as faults per KLOC

(Thousand Line of Code).

S5

4. Code Defect Density It measures the defects relative to the software

size expressed as lines of code i.e., it measures

code quality per unit.

S5

5. Mean Time to Failure It is the time between failures S5

6. Test Case Understandability How easy to understand a test case regarding the

internal and external descriptions?

S2

7. Test Case Changeability Changeable structure and style of a test case

which allows changes to be ended easily,

consistently, and completely.

S2, S7

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1690

8. Test Case Independency The measurement of the degree of dependency

among one test case to other test cases.

S2

9. Universal It is considered from test fields and test

scenarios in which a test case can be executed.

S2

10. Test Cohesion The similarity of text among the methods of test. S9

11. Test Coupling (Coupling

Between Test Methods)

The high coupling methods have higher textual

similarity with the else methods in the test suite.

S9

12. Size of Test Case It refers to the line of codes in the test method or

the number of assertions in a test case.

S4, S6

13. Historical Fault Detection

It sees a test case to be effective in the current

release if the same test was also able to detect

faults in previous releases.

S4, S6

14. Code Change-Related Metrics

(Changed Method Coverage)

Refers to the number of unique methods calls

which are the test called and in the previous

version had been changed.

S4, S6

15. Method Coverage Refers to the inimitable methods number called

from the test case through the test execution.

S3, S4, S6

16. Similarity-Based Metric The test cases similarity is identified based on

their method calls sequences, pulled out from

execution traces.

S4, S6

17. Mutation Analysis It seeds mutations into programs; the mutation

which is non-detected refers to test suite

weakness.

S10, S12

18. Coverage-based Test Adequacy

Criteria

Refers to executed of the program when the test

case run.

S3, S6

19. Fault-based Test Adequacy

Criteria

Measures the quality of a test case by their

capability to detect known faults, as an estimate

for their ability for detecting unknown faults.

S3, S6

20. Statement Coverage The degree to which a software is being tested. S3, S12

21. Decision/Branch Coverage point to the decisions fraction in the program

that is running by its test suite.

S3, S12, S8,

S9, S14

22. Modified Condition Coverage For a set of test cases to be altered based on a

suitable condition.

S3, S12

23. Test Suite Size Refers to how many test cases within the test

suite.

S9, S12

24. McCabe’s Cyclomatic

Complexity

Refers to the difficulty of a program or module

to be tested and maintained.

S8

Test Case Quality Factors

1691

25. Fault detection capability The function call profile with the fault detection

capability with the goal to reduce cost is used as

an effective measure.

S3

26. Fault revealing capability Defect discovery capability is measured and

compared with retest-all for effective indicator.

S3

27. Failure frequency rate Most frequent failures with relationship to test

cases are used as effective measure.

S3

28. Fault detection rate Fault detection rate with the cost of analysis used

as effective measure.

S3

29. Defect Discovery Time Test case execution profile with defect

discovery time used as effective measure.

S3

30. DDU (Density- Diversity-

Uniqueness)

It gives an assessment of its efficiency by

pinpointing the root driver of defect given when

the fault is recognized.

S14

6. Conclusion

Towards building a high-quality software testing, thirty quality metrics have been identified from 14

primary studies through SLR. As stated by former studies, the test cases effectiveness in discovering flaws in

most applications are influenced significantly by software quality metrics. In addition, for different

applications the metrics may be able to create good test cases quality besides evaluating test case quality. In

future, the scope of the research will be expanded to include extra data repositories to obtain as many related

articles as possible. In addition, the plan will include the construction of standard for quality of test cases that

can be utilized in different applications.

7. Acknowledgement

The authors thank Universiti Utara Malaysia in funding this study under the PBIT grant, S/O code 12319,

and Research and Innovation Management Centre, Universiti Utara Malaysia, Kedah for the administration

of this study.

References

1. L. Rajamanickam, N. Azlia, B. Mat, S. Norbaya, and B. Daud, ―Software Testing : The Generation Tools,‖

Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 2, pp. 231–234, 2019.

2. S.-T. Lai, ―Test Case Quality Management Procedure for Enhancing the Efficiency of IID Continuous

Testing,‖ J. Softw., vol. 12, no. 10, pp. 794–806, 2017, doi: 10.17706/jsw.12.10.794-806.

3. N. Chauhan, Software Testing: Principles and Practices. Oxford university press, 2010.

4. L. Inozemtseva and R. Holmes, ―Coverage Is Not Strongly Correlated with Test Suite Effectiveness

Categories and Subject Descriptors,‖ in ICSE’14, 2014, pp. 435–445.

5. W. E. Lewis, Software Testing and Continuous Quality Improvement Third Edithion. Boca Raton London

New York: Taylor & Francis Group, LLC, 2009.

6. P. Liu and H. Miao, ―A New Approach to Generating High Quality Test Cases,‖ IEEE Comput. Soc., vol.

1, pp. 71–76, 2010, doi: 10.1109/ATS.2010.21.

7. S. M. K. Quadri and S. U. Farooq, ―Software Testing – Goals , Principles , and Limitations,‖ Int. J.

Comput. Appl., vol. 6, no. 9, pp. 7–10, 2010.

8. H. H. Khan and M. N. Malik, ―Software Standards and Software Failures : A Review With the Perspective

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1692

of Varying Situational Contexts,‖ pp. 17501–17513, 2017.

9. O. S. Gómez, B. Monte, and B. Monte, ―Impact of CS programs on the quality of test cases generation : An

empirical study Categories and Subject Descriptors,‖ in ICSE ’16 Companion, 2016.

10. S. Eldh, H. Hansson, and S. Punnekkat, ―Analysis of Mistakes as a Method to Improve Test Case

Design,‖ in Fourth IEEE International Conference on Software Testing, Verification and Validation

Analysis, 2011, pp. 70–79, doi: 10.1109/ICST.2011.52.

11. C. Kaner, ―What Is a Good Test Case ?,‖ in In Software Testing Analysis & Review Conference (STAR)

East., 2003, pp. 1–16.

12. E. Kupiainen, M. V Mäntylä, and J. Itkonen, ―Using metrics in Agile and Lean Software Development –

A systematic literature review of industrial studies,‖ Inf. Softw. Technol., vol. 62, pp. 143–163, 2015, doi:

10.1016/j.infsof.2015.02.005.

13. T. Bin Noor and H. Hemmati, ―A similarity-based approach for test case prioritization using historical

failure data,‖ in 26th International Symposium on Software Reliability Engineering (ISSRE), 2015, pp.

58–68.

14. S. Kumar and P. Ranjan, ―A phase wise approach for fault identification,‖ J. Inf. Optim. Sci. ISSN, 2017,

doi: 10.1080/02522667.2017.1380420.

15. Y. G. Kim, H. S. Hong, D.-H. Bae, and S. D. Cha, ―Test cases generation from UML state diagrams,‖

IEE Proceedings-Software, vol. 146, no. 4, pp. 187–192, 1999.

16. Y. Aziz, ―Exploring a keyword driven testing framework: a case study at Scania IT,‖ 2017.

17. G. J. Myers, The art of software testing. John Wiley & Sons, 2006.

18. C. Lin, K. Tang, and G. M. Kapfhammer, ―Test Suite Reduction Methods that Decrease Regression

Testing,‖ Inf. Softw. Technol., 2014, doi: 10.1016/j.infsof.2014.04.013.

19. ISO/IEC/IEEE, ―ISO/IEC/IEEE International Standard - Software and systems engineering--Software

testing--Part 4: Test techniques,‖ ISO/IEC/IEEE 29119-4:2015. pp. 1–149, 2015, doi:

10.1109/IEEESTD.2015.7346375.

20. M. F. Granda, N. Condori-fernández, T. E. J. Vos, and O. Pastor, ―A Model-level Mutation Tool to

Support the Assessment of the Test Case Quality,‖ in 25TH INTERNATIONAL CONFERENCE ON

INFORMATION SYSTEMS DEVELOPMENT (ISD2016 POLAND), 2016, pp. 42–54.

21. P. M. Kamde, V. D. Nandavadekar, and R. G. Pawar, ―Value of test cases in software testing,‖ in

Management of Innovation and Technology, 2006 IEEE International Conference on, 2006, vol. 2, pp.

668–672, doi: 10.1109/ICMIT.2006.262303.

22. R. Romli, S. Sarker, M. Omar, and M. Mahmod, ―Automated Test Cases and Test Data Generation for

Dynamic Structural Testing in Automatic Programming Assessment Using MC/DC,‖ Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 10, no. 1, p. 120, Feb. 2020, doi: 10.18517/ijaseit.10.1.10166.

23. S. R. Jan, S. T. U. Shah, Z. U. Johar, Y. Shah, and F. Khan, ―An Innovative Approach to Investigate

Various Software Testing Techniques and Strategies,‖ Int. J. Sci. Res. Sci. Eng. Technol. (IJSRSET),

Print ISSN, pp. 1990–2395, 2016.

24. L. Paruch, V. Stray, and C. B. Blindheim, ―Characteristic traits of Software Testers,‖ in Evaluation and

Assessment in Software Engineering (EASE 2020), 2020, doi:

https://doi.org/10.1145/3383219.3383270.

25. W. M. McKeeman, ―Differential Testing for Software,‖ Digit. Tech. J., vol. 10, no. 1, pp. 100–107, 1998.

26. H. B. Yadav and D. K. Yadav, ―A fuzzy logic based approach for phase-wise software defects prediction

using software metrics,‖ Inf. Softw. Technol., 2015, doi: 10.1016/j.infsof.2015.03.001.

27. ISO-IEC 25010:2011, ISO-IEC 25010: 2011 Systems and Software Engineering-Systems and Software

Quality Requirements and Evaluation (SQuaRE)-System and Software Quality Models. ISO, 2011.

28. A. Hussain and E. O. C. Mkpojiogu, ―An application of ISO/IEC 25010 standard in the quality-in-use

assessment of an online health awareness system,‖ J. Teknol., vol. 77, no. 5, pp. 9–13, 2015.

29. ISO/IEC 9126-1, ―Information technology — Software product quality — Part 1: Quality model,‖ Iso/Iec

Test Case Quality Factors

1693

Fdis 9126-1, vol. 2000. ISO; IEC, pp. 1–26, 2000.

30. C. Pfaller, S. Wagner, T. Universit, and M. Wiemann, ―Multi-Dimensional Measures for Test Case

Quality,‖ in Software Testing Verification and Validation Workshop, 2008. ICSTW’08. IEEE

International Conference on, 2008, pp. 364–368.

31. Z. Nayyar, N. Rafique, N. Hashmi, N. Rashid, and S. Awan, ―Analyzing Test Case Quality with

Mutation Testing Approach,‖ in Science and Information Conference 2015, 2015, pp. 902–905.

32. F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, ―Automatic Test Case Generation :

What If Test Code Quality Matters ?,‖ in ISSTA’16, 2016, pp. 130–141.

33. H. Sharma, D. Gupta, and R. Singh, ―Ranking Based Software Quality Assessment Using Experts

Opinion,‖ in 2015 International Conference on Computational Intelligence and Communication

Networks, 2015, doi: 10.1109/CICN.2015.277.

34. R. Kazmi, D. N. A. Jawawi, and R. Mohamad, ―Effective Regression Test Case Selection : A

Systematic,‖ vol. 50, no. 2, 2017.

35. T. Bin Noor and H. Hemmati, ―Studying Test Case Failure Prediction for Test Case Prioritization,‖ in

PROMISE, 2017.

36. C. Karanikolas, G. Dimitroulakos, and K. Masselos, ―Early Evaluation of Implementation Alternatives

of Composite Data Structures Toward Maintainability,‖ Trans. Softw. Eng. Methodol., vol. 26, no. 2, p.

44, 2017.

37. D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli, ―On The Relation of Test Smells to

Software Code Quality,‖ 2018.

38. H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, ―An experimental evaluation of test driven

development vs. test-last development with industry professionals,‖ Proc. 18th Int. Conf. Eval. Assess.

Softw. Eng. - EASE ’14, pp. 1–10, 2014, doi: 10.1145/2601248.2601267.

39. D. Latha and P. Premchand, ―Estimating Software Reliability Using Ant Colony Optimization

Technique with Salesman Problem for Software Process,‖ Int. J. Adv. Trends Comput. Sci. Eng., vol. 7,

pp. 20–29, Mar. 2018, doi: 10.30534/ijatcse/2018/04722018.

40. Y. D. Salman and N. L. Hashim, ―Automatic Test Case Generation from UML State Chart Diagram: A

Survey,‖ in Advanced Computer and Communication Engineering Technology, Switzerland: Springer

International Publishing, 2016, pp. 123–134.

41. B. Maqbool, F. U. Rehman, M. Abbas, and S. Rehman, ―Implementation of Software Testing Practices in

Pakistan’s Software Industry,‖ in ICMSS 2018, 2018, doi: 10.1145/3180374.3181340.

42. P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, ―A Proposed Test Case Generation Technique

Based on Activity Diagrams,‖ Int. J. Eng. Technol. IJET-IJENS, vol. 11, no. 03, pp. 37–57, 2011.

43. C. Lampasona, J. Heidrich, V. R. Basili, and A. Ocampo, ―Software quality modeling experiences at an

oil company,‖ Proc. ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas. - ESEM ’12, p. 243, 2012, doi:

10.1145/2372251.2372296.

44. C. Kaner and W. P. Bond, ―Software Engineering Metrics : What Do They Measure and How Do We

Know ?,‖ pp. 1–12, 2004.

45. A. Ahmad, T. Siddiqui, and N. A. Khan, ―A Detailed Phasewise Study on Software Metrics : A

Systematic Literature Review,‖ Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 3, no. 3, pp.

1696–1705, 2018.

46. Software Engineering StandardsCommittee, ―IEEE Standard for a Software Quality Metrics

Methodology, IEEE Std 1061-1998,‖ IEEE, USA, 1998.

47. A. Causevic, D. Sundmark, and S. Punnekkat, ―Test Case Quality in Test Driven Development : A Study

Design and a Pilot Experiment,‖ in the EASE 2012, 2012, pp. 223–227.

48. B. Behkamal, M. Kahani, E. Bagheri, and Z. Jeremic, ―A Metrics-Driven Approach for Quality

Assessment of Linked Open Data,‖ J. Theor. Appl. Electron. Commer. Res., vol. 9, no. 2, pp. 64–79,

2014, doi: 10.4067/S0718-18762014000200006.

Samera Obaid Barraood, Haslina Mohd, Fauziah Baharom

1694

49. K. Juhnke, M. Tichy, and F. Houdek, ―Quality Indicators for Automotive Test Case Specifications,‖ in

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18,

2018, pp. 96–100.

50. A. Adlemo, H. Tan, and V. Tarasov, ―Test case quality as perceived in Sweden,‖ in 5th International

Workshop on Requirements Engineering and Testing (RET’18), 2018, pp. 9–12, doi:

https://doi.org/10.1145/3195538.3195541.

51. K. Park, D. MG, and M. N, ―Statistical Analysis of Metrics for Software Quality Improvement,‖ arXiv

Prepr. arXiv1802.05865, 2018.

52. C. Jones, A Guide to Selecting Soſtware Measures and Metrics. Boca Raton London New York: Taylor

& Francis Group, LLC, 2017.

53. Barbara Kitchenham, Guidelines for performing Systematic Literature Reviews in Software Engineering,

Keele Univ. Durham, UK, 2007.

54. Z. Juan, C. Lizhi, T. Weiqing, and Y. Song, ―Test Case Reusability Metrics Model,‖ no. Icctd, pp.

294–298, 2010.

55. 55. G. Fraser and A. Zeller, ―Mutation-driven Generation of Unit Tests and Oracles,‖ in ISSTA’10,

2010, pp. 147–157.

56. A. Perez, Alexandre; Abreu, Rui; van Deursen, ―A Test-suite Diagnosability Metric for Spectrum-based

Fault Localization Approaches,‖ in the 39th International Conference on Software Engineering (ICSE),

2017, pp. 654–664, doi: 10.1109/ICSE.2017.66.

