
 

 Turkish Journal of Computer and Mathematics Education                               Vol.12 No.3 (2021), 1657-1669 

                                                                                                                                                          Research Article                                              

 

1657 

 

Unit Commitment with Renewable Energy Using Multi-agent Immune System 

Incorporating Evolutionary Priority List for Operation Cost Minimization 
 

M. N. C. Othman
1
, I. Z. Abidin

2
, T. K. A. Rahman

3  

 

1
Institute for Power Engineering, Universiti Tenaga Nasional, Malaysia. 

2
Institute for Power Engineering, Universiti Tenaga Nasional, Malaysia. 

3
School of Science and Technology, Asia e-University (AeU), Kuala Lumpur, Malaysia. 

m_nazree@yahoo.com
1
, izham@uniten.edu.my

2
, titik.khawa@aeu.edu.my

3 

 

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021; 

Published online: 05 April 2021 

Abstract: Renewable energy (RE) integration into the power grid is steadily growing that effectively reducing the electricity 

generation cost, however, leads to additional consequences. Unit commitment (UC) problem often cited in discussing these 

issues. This paper proposes an approach to look at these issues by utilizing the Multi-agent Immune incorporating 

Evolutionary Priority List (MAI-EPL) technique for solving the UC problem with the consideration of RE resources, as an 

effort to reduce the operation cost without affecting the existing power system reliability. The employed test systems consider 

10 thermal generating units with additional solar and wind resources in a 24-hours scheduling period. The results show that 

the MAI-EPL technique is capable of producing a satisfactory outcome to the UC problem with RE consideration. 

Keywords: unit commitment; renewable energy; multi-agent immune system. 

 

1. Introduction 

 
In recent years, renewable energy (RE) is having significant growth. The integration of RE into the power 

grid is happening, where, its main reason is to reduce the electricity generation cost [1], [2]. This addition will 

for sure lead to new circumstances and challenges especially issues related to the process of deciding the best 

configuration of available resources to supply electrical energy or known as unit commitment (UC) [1], [3]. 

Aside from the usual UC constraints and considerations, which is often regarded as an NP-hard problem [4], [5], 

the foremost concern for this integration is the existing grid system reliability [2], [6], [7]. The presence of wind 

generation, for example, will introduce another uncertainty due to wind forecast error [8]. The similar response 

also develops due to the inclusion of solar energy. The power system is expected to be capable of compensating 

the random phenomenon of solar irradiance availability [9]. 
 

The current solutions to the UC problem need to be updated so it will comply with the RE consideration. It is 

vital in the field of UC optimization to acquire a commitment schedule with optimal qualities, especially the test 

system operational cost and solution consistency without jeopardizing the grid system reliability. This paper 

proposes the Multi-agent Immune incorporating Evolutionary Priority List (MAI-EPL) technique as an approach 

to resolve the UC problem with RE consideration. In sect. 2 of this paper, the UC with RE problem formulation 

is further deliberated. The detail explanation of the MAI-EPL algorithm is in sect. 3 and the execution process is 

available in sect. 4. In sects. 5 and 6, the simulation results and conclusion were discussed respectively. The 

analysis uses 10 generating units with solar and wind energy test system and considers common constraints 

correlated to the UC problem. 

 

2. Unit Commitment with Renewable Resources 

 
UC usually referred to a selection process to get the best configuration of available power resources to supply 

electricity so that the operational cost is minimum [3]. It starts with the selection of the unit on-off status, 

succeeded by the determination of the economic dispatch (UC-ED) [3], [10]. The unit on-off Status,   

denoted by N-by-H matrix as (1) [3]: 

 

 
 

Every unit  can be on-line or off-line at any particular hour, t [1], [3]: 
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For each unit on-off status, its associated UC-ED,  represented by (3): 
 

 
 

The aim of solving the UC problem is to achieve minimum total operational cost (TC) [10]. 
 

 
 

 is the start-up cost function that can be further addressed as (5). 

 

 
 

Where, , the fuel cost function is shown as (6):  

 

 
 

, , and   are the fuel cost coefficients.  

 

2.1. Unit Commitment Common Constraints 

 
Before further deliberation of the RE effect, the conventional UC constraints are first to resemble. The 

constraints involve the generator capability limit, the power balance, the spinning reserve, the unit must-run 

constraints, and the generator minimum on-time and off-time [3], [10].  

1)  Generator Capability Limit: The generated power during on-time,  must fall between the maximum 

capacity,  and the minimum capacity, . 

 

 
 

2)  Power Balance Requirement: The electricity demand and the generated power are expected to be equal at 

every time interval [3]:  

 

 
 

3)  Spinning Reserve Requirement: The Spinning reserve,  is a pre-determined value that must meet the 

condition of (9) [5]: generated power during on-time,  must fall between the maximum capacity, 

 and the minimum capacity, . 

 

 
 

4)    Generator Capability Limit: Every power plant is expected to always on-line at a particular operation period 

[3].  
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5)  Generator Minimum On-time Requirement: It is a minimum time for every power plant should be on-line 

before they can be shut-down [3]:  

 

 
 

6)   Generator Minimum Off-time Requirement: It is a minimum time required by a power plant to be off-line 

before it can be restarted again [3]: 

 

 
 

2.2. Renewable Energy Requirements 

 

In addition to the UC conventional constraints, other uncertainties are expected due to wind forecast error [1] 

and the consideration of the random phenomenon occurrence of the solar irradiance availability [9]. Thus, the 

wind power function and the solar irradiance characteristic are weighed in the analysis. 

 
1)  The wind power requirement: The wind power function is presented by Eq. (13) below [8]; 

 

 
 

 is the wind power output; , is the forecasted wind speed at hour t; , , and  are the cut-in, cut-

out, and rated wind turbine speed respectively. 

 

2)  Solar irradiance: The solar irradiance modeling to describe the random phenomenon of the irradiance data is 

set out as (14) [9]:  

 

 
 

Where 

 

 
 

 is the solar irradiance in kW/m
2
;  is the beta distribution function of ;   and  are parameters of 

the Beta distribution function. 

 

To compensate for the possible uncertainties that might emerge, the forecasted RE capabilities are set to be 

less or equal to the amount of the spinning reserve of the test system [11]. This strategy will allow the system to 

respond immediately in the event of contingencies without affecting the system stability and security. 

 

3. MAI-EPL Optimization Technique 

 
MAI-EPL is a hybrid computational system that applies the simultaneous cooperation and competition (SCC) 

as its basis. The formulated learning mechanism employs the act of remembering (also known as immune 

memory) of the AIS algorithm [12], [13] together with the essence of the Multi-agent System (MAS) [14] 

characteristic. This essential configuration then enhanced with the application of the refined stochastic 

evolutionary-based algorithm assimilated using the Evolutionary Programming (EP) [10], [15] and the Priority 

List (PL) [16] techniques. 
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The MAI-EPL basic procedure consists of several steps starting with the initialization (production of agents), 

lattice creation, lattice duplication, and finally, the application of the SCC. These fundamental steps are 

illustrated in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. MAI-EPL basic procedure 

 

3.1. Initialization  

 
Initialization is a process to generate agents randomly and according to PL rules of priority [17]. In this 

analysis, an agent is an independent entity that observes and may learn using the collected knowledge to achieve 

the objective function [18]. Each agent comprises the unit on-off status  and its related UC-ED  that 

match the (1) and (3) respectively. The random agent is generated using (17) [10]; 

 

 
 

where, rand is a random number ranging from 0 to 1. The  value is generated within the minimum and 

maximum generator boundaries to effectively produce random solution with minimum effect on the 

computational time. Then, other sets of agents are generated using two rules of priority; Rule 1 and Rule 2. 
 

1)  Rule 1; Priority list considering minimum cost per mega-watt (MC): The MC cost function is decided using 

(18) [17]. The list by using Rule 1 is in Table II, where, the 10 generating units data are available in Table I [10]. 

Generator with the lowest cost per Mega-watt (MW) is the first to commit power. If the electricity demand is 

exceeding the capacity of the selected generator, another unit from the priority order will be turned on. The 

process resumes until electricity demand and system constraints are satisfied [10], [16]. 

 

 
 

2)  Rule 2; Priority list considering minimum cost and generation capability: Rule 2 is the priority order based 

on the value of the MC cost function and considering generator maximum power capacity [16], [17]. It is the 

extended version of the Rule 1 [17]. Generator with the highest power capacity are placed at the top priority. If 

two units have the same value, the unit with a lower cost per MW value will be at higher priority. 

The priority order using Rule 2 available in Table III. 
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TABLE 1. 10 Generating Units Test System Data 

 

 

Table 2. Priority order according to rule 1 

Unit 
MC 

($/MW) 

Priority 

order 
Unit 

MC 

($/MW) 

Priority 

order 

1 18.6 1 6 27.5 6 

2 19.5 2 7 33.5 7 

3 22.2 4 8 38.1 8 

4 22.0 3 9 39.5 9 

5 23.1 5 10 40.1 10 

 
Table 3. Priority Order According to Rule 2 

Unit  
MC 

($/MW) 

Priority 

order 
Unit  

MC 

($/MW) 

Priority 

order 

1 455 18.6 1 6 80 27.5 7 

2 455 19.5 2 7 85 33.5 6 

3 130 22.2 5 8 50 38.1 8 

4 130 22.0 4 9 50 39.5 9 

5 162 23.1 3 10 50 40.1 10 

 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

Pmax (MW) 455 455 130 130 162 

Pmin (MW) 150 150 20 20 25 

a ($/h) 1000 970 700 680 450 

b ($/MWh) 16.19 17.26 16.60 16.50 19.70 

c ($/MWh
2
) 0.00048 0.00031 0.002 0.00211 0.00398 

Hot Start Cost 

($) 
4500 5000 550 560 900 

Cold Start Cost 

($) 
9000 10000 1100 1120 1800 

Min Up (h) 8 8 5 5 6 

Min down (h) 8 8 5 5 6 

Cold Start 

hrs.(h) 
5 5 4 4 4 

Initial status 

(h) 
8 8 -5 -5 -6 

 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

Pmax (MW) 80 85 55 55 55 

Pmin (MW) 20 25 10 10 10 

a ($/h) 370 480 660 665 670 

b ($/MWh) 22.26 27.74 25.92 27.27 27.79 

c ($/MWh
2
) 0.00712 0.00079 0.00413 0.00222 0.00173 

Hot Start Cost 

($) 
170 260 30 30 30 

Cold Start Cost 

($) 
340 520 60 60 60 

Min Up (h) 3 3 1 1 1 

Min down (h) 3 3 1 1 1 

Cold Start 

hrs.(h) 
2 2 0 0 0 

Initial status 

(h) 
-3 -3 -1 -1 -1 



M. N. C. Othman, I. Z. Abidin, T. K. A. Rahman
 

 

1662 

 

3.2. Building the Lattice  

 
The next step is to build the lattice using the best agents from the initialization process. The lattice is required 

to be in the formation of two by two matrices, three by three, and so on [14], [18]. The lattice illustration is 

available in Fig. 2. Every circle represent an agent with the designated coordinate  as  

[14], [18]. 

Figure 2. Model of the lattice  

3.3. The Lattice duplication 

 
Based on the generated lattice, cream agents are selected, duplicated, and stored inline among them. The 

duplication number will be decided to deviate from 2 to 1000 depending on the requirement of the test system. 

This procedure yielded as an effort to initiate simultaneous optimization procedure based on the act of 

remembering from the Artificial Immune System (AIS) algorithm [12], [13]. Individual lattice will have 

different optimization path using the SCC procedure. At the end of the process, the solutions of each lattice will 

undergo the convergence confirmation. 
 

3.4. Simultaneous Cooperation and Competition 

 
The Simultaneous Cooperation and Competition (SCC) is a learning mechanism that applies an effective 

simultaneous learning procedure instead of the conventional single directional learning process at a time. The 

SCC process starts with the Parent Pool creation of every duplicated lattice, which is the selection of an agent 

and its four neighbors. An agent,   can only have four neighbors,  as represented by (19) [15], 

[18]: 

 

 
Where, 

 

 
 

 

 
 

The cooperation process then applied toward the Parent Pool simultaneously on every lattice. The 

cooperation process is the interaction among agent and the four neighbors so that the valuable information of 

individual agent will be shared to the whole lattice. By using a similar principle, the knowledge within the lattice, 

later on, will be diffused to the other lattices through the simultaneous cooperation. This cooperation process 

then being refined with the assimilation of the mutation procedure of the EP algorithm. Avery members of the 

Parent pool will go through the mutation process to produce the Offspring pool using the following formula [15], 

[19]: 

 

 
 

Where, 

1,1 1,2 1, Lsize . .

 . 

2, Lsize 2,1 2,2 . . 

. 

Lsize,2 
Lsize, 

Lsize . . 

. 

. . 

. 

. . 

. 

. . 

. 

. . 

. 

Lsize,1 
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and, 

 
 

 
 

 is the offspring of each agent after the mutation process, is the mutation factor, and is the Gaussian 

random variable.  and  are the initial random variable and the -th element of Gaussian random variable 

respectively [10], [19].  describes the decision variable of individual generating unit.  
 

The Offspring pool and the Parent pool are later combined before arranged according to their fitness. Then, 

the competition procedure is applied to formulate a better succeeding agent. It is performed toward every agent, 

 at the selected lattice point, . If the fittest agent,  meet (25), it can fill the particular 

lattice point, , and the other agents omitted for further processing.  

 

 
 

All the process will end if the stopping criterion is satisfied, which usually happens whenever every total 

operational cost (TC) value of agents in the lattices are equal.  

 

4. Solving UC Problem with RE using MAIEP-PL Technique 

 

The procedure of the proposed MAI-EPL technique to solve the UC with RE problem is explained in the 

following steps, and the corresponding flowchart is provided in Fig. 3. 

 

Step 1: Initialization (random). 

 
Optimization procedures start with the initialization. An initial population that contains a set of on-off 

generators combination and UC-ED will be generated randomly within the minimum and maximum power limits 

of (7). The Initial population size is in the form of N-by-H matrix, where N is the total number of generating unit 

and H is the total number of time intervals. Then, the generated real power will be tested to comply other test 

system requirements as in (7) – (14). If all test system requirements have been met, the on-off units combination 

and its UC-ED will be kept in the Random pool. The process will back to earlier step if any specified test system 

requirements being violated. Then, another set of the on-off units combination and its UC-ED will be generated 

until the Random pool is equal to P. 

 

Step 2: Initialization using PL operator. 

 

 
Figure 3. Flowchart of the MAI-EPL to solve the UC with RE 
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The PL pool is created using the PL Rules 1 and 2. The PL pool contains the on-off generating units 

combination and its UC-ED that selected from the best result of the PL Rules 1 and 2. The selected PL pool 

solution also has to undergo all the test system requirements of (7) – (14).  

Step 3: Random and PL pools combination. 
The Random and PL pools are merged. The total operating cost then calculated using (4) – (6) and ranked 

accordingly. 

Step 4: Create Best pool. 

The solutions with top fitness (minimum total operation cost) of the combined pools were selected to form the 

Best pool.  

Step 5: Build the lattice. 

The Best pool members then arranged in the   lattice-like environment to form the lattice.  

Step 6: Duplicate the lattice: 

The lattice then duplicated depends on the requirement of the analysis ranging from 2 to 100 for this study. 

Step 7: Produce Parent pool. 

An agent and its neighbors of every lattice later selected to form the Parent pool, which altogether consists of 

five members. 

Step 8: Produce Offspring pool. 

Every member of the Parent pool then will go through the mutation process to produce the Offspring pool. Its 

size is equal to the Parents pool and formulated using (20). 

Step 9: Parent and Offspring pools combination. 

The Parent and Offspring pools then merged. Its' fitness are calculated using (4) – (6). 

Step 10: Apply the competition process.  

Every member of the combined Parent pool and Offspring pool are ranked using the calculated fitness. The best 

agent with minimum TC value is selected and being compared with the first elected agent (from step 7). Then, 

the best of it will occupy the lattice location (from step 7). 

Step 11: The SCC application. 

Steps 7 to 10 are repeated toward all agents of the lattice simultaneously with other duplicated lattices. 

Step 12: Convergence test: 

 
The processes stop if the solutions have converged. Otherwise, steps 7 to 11 will be repeated. The solutions 

are considered converged if all agents‟ TC value in all lattice is same. 

 

5. Results and Discussion 

 
The proposed MAI-EPL is developed and executed using MATLAB programming language on a computer 

with Intel i7 processor of 3.40 GHz CPU speed and 3 GB RAM. The MAI-EPL technique has been applied to 

the 10 units test system with the addition of the forecasted wind and solar resources [11]. The units' 

specifications are available in Table I, while, the 24-hour forecasted loading demand is in Table IV. The 

spinning reserve rated at 10% of the forecasted electricity demand. The forecasted wind and solar data are 

tabulated in Table V [11]. Table VI shows the modified wind and solar data based on the forecasted data of 

Table V for comparison purpose. The solar farm estimated to be capable of providing a total of 40MW electrical 

energy with 16% photovoltaic panel efficiency and a total 25.5 MW of wind capacity [11].  
 

The simulations outcomes are available in two sections. The first section discusses the proposed technique 

parameters determination. Then, a comparison of the proposed MAI-EPL technique for solving UC Problem and 

UC problem with the addition of RE resources were reviewed in the next section. 
 

Table 4. 24-hour forecasted loading demand 

Hours 
Demands 

(MW) 
Hours 

Demands 

(MW) 
Hours 

Demands 

(MW) 

1 700 9 1300 17 1000 

2 750 10 1400 18 1100 

3 850 11 1450 19 1200 

4 950 12 1500 20 1400 

5 1000 13 1400 21 1300 

6 1100 14 1300 22 1100 

7 1150 15 1200 23 900 

8 1200 16 1050 24 800 
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Table 5.  24-Hour Forecasted Solar and Wind Power 

Hours 
Solar 

 (MW) 

Wind  

(MW) 
Hours 

Solar 

(MW) 

Wind 

(MW) 

1 0 10.54 13 36.78 25.5 

2 0 22.27 14 31.59 24.82 

3 0 25.5 15 9.70 20.74 

4 0 25.5 16 12.92 14.62 

5 0 25.5 17 0 25.5 

6 0 25.5 18 0 19.04 

7 0.09 25.5 19 0 25.5 

8 17.46 25.5 20 0 18.02 

9 31.45 25.5 21 0 25.5 

10 36.01 25.5 22 0 21.42 

11 38.06 25.5 23 0 0 

12 35.93 25.5 24 0 2.55 

 

Table 6. Modified 24-Hour Forecasted Solar and Wind Power 

Hours 
Solar  

(MW) 

Wind  

(MW) 
Hours 

Solar  

(MW) 

Wind 

(MW) 

1 0 10 13 36 25 

2 0 22 14 31 24 

3 0 25 15 9 20 

4 0 25 16 12 14 

5 0 25 17 0 25 

6 0 25 18 0 19 

7 0 25 19 0 25 

8 17 25 20 0 18 

9 31 25 21 0 25 

10 36 25 22 0 21 

11 38 25 23 0 0 

12 35 25 24 0 2 

 

5.1. Parameters determination 

 

Most of the evolutionary algorithm (EA) techniques require optimum population members to produce good 

optimization results, as an unfit number would commence to premature convergence [10], [16] – [18]. Since the 

MAI-EPL is a hybrid technique based on the EA, having the right sample size is crucial. The search for the right 

population size starts with a review of other available approaches. Other techniques use 9 up to 36 population 

members and successfully providing reliable performance in term of linear systems approximation and function 

optimizations using specified test system [1], [20], [21]. For MAI-EPL technique, agent and duplication numbers 

are the parameters that will define the population size. Thus, 9 and 16 agents number will be considered. It is 

then being matched with the different duplication values ranging from 2 to 10. The results of this analysis are 

available in Table VII. The performance of the MAI-EPL for solving the UC and the UC with the integration of 

RE problems are also presented in Table VII.  

 

The MAI-EPL technique performs best at the agents‟ value of 9 and the duplication number of 3, in which 

out of 100 trials for each combination, resulted in the optimum total operational cost (TC) and minimum 

execution time. The best TC for the UC problem is $563937.70, by using 27 population members (9 agent value 

and 3 duplication number), while the best execution times is 0.57 seconds. The execution times vary, but the best, 

average, and worst TC values converged to the same lowest point when the population sizes are larger than 27. 

The similar pattern also happens with the UC with RE resources. Thus, 27 population members seem to be 

adequate to produce optimum results for the test systems. Comparable population size also being used by other 

techniques in the field of Evolutionary Algorithm (EA) [10], [17], [20].  

 

5.2. The performance of the MAI-EPL for solving the UC and the UC with the integration of RE 

resources  

 

The objective of solving the UC problem is to obtain a schedule of available generating units that produce 

minimum operational cost and comply with all test system requirement. Different test systems would require 

distinct combination so the result would be optimum. Before further analysis of the RE integration, the proposed 

MAI-EPL technique held probed on the conventional UC problem. The plot of the MAI-EPL search process for 

solving the UC problem starting from the best-selected lattices until convergence is available in Fig. 4. Each 
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lattice consists of 9 agents. Every lattice will then duplicated three times, producing 27 population members. 

This three-duplication number represents three different optimization path of the SCC learning process that 

occurs simultaneously at the same time for every agent. Example of this optimization plot is available in Fig. 5, 

where, the lattice with the best initial TC of $564199.80 converged to $563937.70. 

 

Based on Fig. 4, the $564199.80 is indeed the best value among selected 9 initial agents where most of the 

other agents revolve around TC of $564419.90. However, this gap certainly reduced for the next iteration, where 

all of the agents turn around almost at the same point, before the following procedure. This characteristic is the 

essential criteria of the MAI-EPL with the use of the SCC learning algorithm, where the accuracy of the result 

stays secured with a less necessary search process and reducing the computational burden. 

 

The outcome of integrating the additional RE resources to the existing test system is available in Fig. 6. The 

TC value reduced to $548799.32 from $563937.70, with a total saving of $15138.38. Contrarily, the execution 

times increased to 0.83 seconds from 0.57 seconds. The execution time extended due to the amplified complexity 

of the test system as more constraints and requirements to be satisfied with the addition of RE resources. 

However, the consistency of the solutions remains even with the consideration of RE resources. The MAI-EPL 

technique successfully produces 100% consistency out of 100 trials for both UC and UC with RE test systems 

without jeopardizing the system reliability. 

 

The effect of RE integration to the existing thermal system continues investigated with the use of modified 

RE resources of Table VI. The forecasted energy of the solar and wind resources from Table V are simplified 

and roundup to the lower value of the initial, resulting the supplied RE resources to be less than the previous 

analysis. 

 

Fig. 6 shows the results of the UC problem and UC with RE resources using the data of both Table V and 

Table VI. With the use of modified data in Table VI, the TC value increased to $549103.13 from the best TC of 

$548799.32, adding $303.81 extra cost of generation. This outcome verifies that even with a small change to the 

electricity supplies could lead to a price change of the test system. The best UC-ED configuration for the 10 

thermal generating units with RE resources test system is available in Table VIII. The dispatched power is in 

MW, where the units 1 to 10 represent the thermal resources and units 11 and 12 are the solar and wind power 

respectively. The proposed MAI-EPL produced the TC of $548799.32 and 0.83 seconds of execution time with 

100% accuracy out of 100 trials. This result is generated using 27 population members (9 agent value and 3 

duplication number).  

 

Table 7. The performance of the mai-epl for solving the uc and the uc with re resources integration 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Agents 
Duplication

s 

Pop. 

sizes 

Total costs ($) Executed times (s) 

Best Mean Worst Best Mean Worst 

UC 

9 

2 18 563937.70 563942.82 
563948.

63 
0.49 0.84 2.13 

3 27 

563937.70 

0.57 1.42 2.82 

5 45 1.46 6.29 9.16 

10 90 5.15 11.52 14.73 

16 

2 32 

563937.70 

0.71 2.17 4.84 

3 48 1.63 7.28 10.63 

5 80 4.75 10.34 14.16 

10 160 7.17 16.56 22.76 

UC 

with 

RE 

9 

2 18 548799.32 549825.87 
552307.

63 
0.66 1.13 2.98 

3 27 

548799.32 

0.83 1.73 3.64 

5 45 1.52 7.14 11.31 

10 90 6.36 12.65 16.22 

16 

2 32 

548799.32 

0.97 2.83 5.13 

3 48 2.11 7.52 12.76 

5 80 5.32 11.76 15.24 

10 160 8.97 18.16 25.61 
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Table 8. The Performance Of The Mai-Epl For Solving The Uc And The Uc With Re Resources Integration 

          Units 

 

Hours 

 

1    2 3 4 5 6 7 8 9 10 11 12 
Total 

(MW) 

1 455 234.46 0 0 0 0 0 0 0 0 0 10.54 700 

2 455 272.73 0 0 0 0 0 0 0 0 0 22.27 750 

3 455 344.5 0 0 25 0 0 0 0 0 0 25.5 850 

4 455 444.5 0 0 25 0 0 0 0 0 0 25.5 950 

5 455 364.5 0 130 25 0 0 0 0 0 0 25.5 1000 

6 455 334.5 130 130 25 0 0 0 0 0 0 25.5 1100 

7 455 384.41 130 130 25 0 0 0 0 0 0.09 25.5 1150 

8 455 417.04 130 130 25 0 0 0 0 0 17.46 25.5 1200 

9 455 455 130 130 28.05 20 25 0 0 0 31.45 25.5 1300 

10 455 455 130 130 113.49 20 25 10 0 0 36.01 25.5 1400 

11 455 455 130 130 151.44 20 25 10 10 0 38.06 25.5 1450 

12 455 455 130 130 162 51.57 25 10 10 10 35.93 25.5 1500 

13 455 455 130 130 112.72 20 25 10 0 0 36.78 25.5 1400 

14 455 455 130 130 28.59 20 25 0 0 0 31.59 24.82 1300 

15 455 429.56 130 130 25 0 0 0 0 0 9.7 20.74 1200 

16 455 282.46 130 130 25 0 0 0 0 0 12.92 14.62 1050 

17 455 234.5 130 130 25 0 0 0 0 0 0 25.5 1000 

18 455 340.96 130 130 25 0 0 0 0 0 0 19.04 1100 

19 455 434.5 130 130 25 0 0 0 0 0 0 25.5 1200 

20 455 455 130 130 156.98 20 25 10 0 0 0 18.02 1400 

21 455 455 130 130 59.5 20 25 0 0 0 0 25.5 1300 

22 455 455 0 0 123.58 20 25 0 0 0 0 21.42 1100 

23 455 425 0 0 0 20 0 0 0 0 0 0 900 

24 455 342.45 0 0 0 0 0 0 0 0 0 2.55 800 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The plot of the MAI-EPL search process for solving the UC problem starting from the best-selected 

agents until convergence 

Figure 5. The plot of the search process of the duplicated agent until convergence 
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Figure 6. Comparison of the Total Cost (TC) values for the UC problem and the UC with RE resources using 

the data of both Table V and Table VI. 

 

6. Conclusion 

 

The integration of the RE resources into the conventional thermal system has increased the system 

complexity especially in the field of the Unit Commitment (UC) problem, however, allowing a better resolution 

in term of generation cost. This paper introduced a hybrid technique designated as the Multi-agent Immune 

incorporating Evolutionary Priority List (MAI-EPL) for solving the UC problem with the addition of RE 

resources as an effort to reduce the operational cost of the test system. Without jeopardizing the test system 

reliability, the proposed technique yielded favorable outcomes to the difficulties with the application of its 

primary element, the learning mechanism designated as the simultaneous cooperation and competition (SCC). 

 

The results show that the MAI-EPL technique is capable of minimizing the test system operational cost, 

while at the same time maintaining the system reliability, fast computational time, and producing 100% 

consistency and out of 100 trials. The integration of RE resources to the existing thermal power system possesses 

promising potential with the use of an appropriate approach, especially the MAI-EPL technique. 
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