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Abstract 

The effect of predator migration in the predator-prey system with disease in the prey population remains 

untouched. In this article, I have considered the individual-level migration of susceptible prey, infected prey, 

and predators between two different patches. I construct a couple of ODE models taking two different time 

scales. I consider that the individual migration of the species is faster than their demographic changes like 

birth, death, disease transmission, and interaction with predators. First I have study the model taking a large 

class of density-dependent migration rates. It has been proved that the fast equilibrium point is unique and 

asymptotically stable. Then I aggregate the model taking the advantage of two different time scales and 

construct a SIP model. The model has been investigated both analytically and numerically considering some 

particular type of density-dependent migrations. The theoretical study of the model includes evaluation of 

equilibrium points, local stability, and basic reproduction numbers in different situations. I found numerically 

the sensitivity of basic reproduction number with respect to migration ratios and the Switching of equilibrium 

points due to predator migration. 

Key words: S-I-P model, fast migration, heterogeneous patches, basic reproduction number. 

1.  Introduction 

Nature is naturally heterogeneous. Due to the heterogeneity of nature species needs migration. The effects of 

migration has been seen in many field ([1], [2], [3], [4]). In a region where two significantly different patches 

exist migration models better explore the system is there. These types of models comprise an important 

behavior of migration of species. There are several type of density-dependent migration like prey density-

dependent migration of predator ([5], [6], [7], [8], [9]), predator density-dependent migration of prey ([10], 

[11]). In prey density-dependent migration of predators, predators moved towards a patch with a large prey 

density and leave the patch when it is small. On the other hand, in predator density-dependent prey dispersal, 

predators have a repulsive effect on prey i.e., prey leaves faster a given patch when more predators are there at 

that time. 

In 2002 Charles et al. studied the effect of the migration behavior of susceptible hosts on the ability of the 

parasite to invade the system. But the existence of predators is natural as well as important to regulate the 

infection of parasitism in the prey population. Earlier researches are mainly focused on the effect of parasitism 

on the predator-prey system ([12], [13], [14], [15], [16]). In 2005 Roy and Chattopadhyay explore the 

conclusion of disease selective predation of predator in a predator-prey system with disease in prey population. 

In my treatise, I observe the impact of predator migration in an S-I-S system. 

Here I consider a fast migration of prey and predators between two significantly different patches. I have 

studied an S-I-P model considering prey density- dependent migration of predators as well as predator density-

dependent migration of both the susceptible and infected prey population. I study the situation when the 

infected remains in either patch losses their ability of migration by some parasitic infection. I observe the 

effect of predator migration on stability, population abundance, and the fitness of parasites in system. In all the 

cases I invent a huge impact of predator migration. In section 2, I have developed a slow-fast model and write 
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down the model without migration which was studied by Asrul et al. [17]. Then in section 3, I have proved the 

asymptotic stability of the unique fast equilibrium point and the aggregated model. In section 4, the model has 

been studied taking a particular type of density-dependent migration. Section 5 and 6 are devoted for numerical 

analysis and conclusion. 

2. Model Development 

 

       The following assumptions are made to formulate the model. 

1. The migration of susceptible and infected prey population depends on the density of predator 

population in the patches. 

2.  The migration of predator population depends on the density of susceptible and infected prey 

population. 

3.  Migration is faster than the host growth, disease transmission and predator prey interactions. 

4.  Prey growth is regulated logistically by a density of both susceptible and infected host. 

5.  Predators growth rate due to predation of prey population follows Holling type-II functional response. 

 

Schematic diagram of the migration 

                                           Patch-I                                                                              Patch-II 

 

 

 

 

 

Under this assumption the following mathematical model has been developed. 

𝑑𝑆1

𝑑𝜏
= [𝑓(𝑃2)𝑆2 − 𝑓̅(𝑃1)𝑆1] + 𝜖 [𝑟1(𝑆1 + 𝐼1) (1 −

𝑆1 + 𝐼1

𝐶1
) − 𝑑1𝑆1 + 𝛾1𝐼1 − 𝛽1𝑆1𝐼1 −

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
], 

𝑑𝑆2

𝑑𝜏
= [𝑓̅(𝑃1)𝑆1 − 𝑓(𝑃2)𝑆2] + 𝜖 [𝑟2(𝑆2 + 𝐼2) (1 −

𝑆2 + 𝐼2

𝐶2
) − 𝑑2𝑆2 + 𝛾2𝐼2 − 𝛽2𝑆2𝐼2 −

𝑎2𝑆2𝑃2

1 + 𝑏2𝑆2
], 

𝑑𝐼1

𝑑𝜏
= [𝑔(𝑃2)𝐼2 − �̅�(𝑃1)𝐼1] + 𝜖 [𝛽1𝑆1𝐼1 − 𝑑1𝐼1 − 𝛼1𝐼1 − 𝛾1𝐼1 −

𝑎1
′ 𝐼1𝑃1

1+𝑏1
, 𝐼1

],  

𝑑𝐼2

𝑑𝜏
= [�̅�(𝑃1)𝐼1 − 𝑔(𝑃2)𝐼2] + 𝜖 [𝛽2𝑆2𝐼2 − 𝑑2𝐼2 − 𝛼2𝐼2 − 𝛾2𝐼2 −

𝑎2
′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

],  

𝑑𝑃1

𝑑𝜏
= [ℎ(𝑆2, 𝐼2)𝑃2 − ℎ̅(𝑆1, 𝐼1)𝑃1] + 𝜖 [𝑒

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
+ 𝑒′

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

− 𝑚1𝑃1], 

𝑑𝑃2

𝑑𝜏
= [ℎ̅(𝑆1, 𝐼1)𝑃1 − ℎ(𝑆2, 𝐼2)𝑃2] + 𝜖 [𝑒

𝑎2𝑆2𝑃2

1 + 𝑏2𝑆2
+ 𝑒′

𝑎2
′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

− 𝑚2𝑃2], 

𝑆1 

𝐼1 

𝑃1 

𝑆2 

𝐼2 

𝑃2 

𝑓 ̅

𝑓 �̅� 

𝑔 ℎ̅ 

ℎ 

 

(2.1) 
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where 𝑆1, 𝐼1, 𝑃1 and 𝑆2, 𝐼2, 𝑃2 are susceptible, infected, predator population density in patch-I and patch-II 

respectively. 

Parameters description: 

 

𝑟1 - Reproduction rate of prey population in patch - I (/time), 

𝑟2 - Reproduction rate of prey population in patch - II (/time), 

𝐶1 - Carrying capacity of patch - I (individual), 

𝐶2 - Carrying capacity of patch - II (individual), 

𝑑1 - Natural death rate of prey population in patch - I (/time), 

𝑑2 - Natural death rate of prey population in patch - II (/time), 

𝛼1 - Death rate due to disease in patch - I (/time), 

𝛼2 - Death rate due to disease in patch - II (/time), 

𝛽1 - Disease transmission rate in patch - I (/individual/time), 

𝛽2 - Disease transmission rate in patch - II (/individual/time), 

𝛾1 - Recovery rate of infected prey population in patch - I (/time), 

𝛾2 - Recovery rate of infected prey population in patch - II (/time), 

𝑚1 - Mortality rate of predators population in patch - I (/time), 

𝑚2 - Mortality rate of predators population in patch - II (/time), 

𝑎1 - Capture rate of predators to the susceptible prey in patch - I (/individual/time), 

𝑎2 - Capture rate of predators to the susceptible prey in patch - II (/individual/time), 

𝑎1
′  - Capture rate of predators to the infected prey in patch - I (/individual/time), 

𝑎2
′  - Capture rate of predators to the infected prey in patch - II (/individual/time), 

𝑏1 - half saturation constant of predator population in patch - I when predating susceptible prey (/individual), 

𝑏2 - half saturation constant of predator population in patch - II when predating susceptible prey (/individual), 

𝑏1
′  - half saturation constant of predator population in patch - I when predating infected prey (/individual), 

𝑏2
′  - half saturation constant of predator population in patch - II when predating infected prey (/individual), 

𝑒 - conversion rate of susceptible prey to predator (unit-less), 

𝑒′ -conversion rate of infected prey to predator (unit-less), 

and 0 < 𝜖 ≪  1. 

 

Functions description: 

 

𝑓̅ - Migration rate of susceptible prey from patch-I to patch-II which is a monotonic increasing positive valued 

function for all 𝑃1 > 0, 

𝑓 - Migration rate of susceptible prey from patch-II to patch-I which is a monotonic increasing positive valued 

function for all 𝑃2 > 0, 

�̅� - Migration rate of infected prey from patch-I o patch-II which is a monotonic increasing positive valued 

function for all 𝑃1 > 0, 

𝑔 - Migration rate of infected prey from patch-II to patch-I which is a monotonic increasing positive valued 

function for all  𝑃2 > 0, 

ℎ̅  - Migration rate of predator from patch-I to patch-II which is a monotonic decreasing positive valued 

function for all  𝑆1 > 0 and 𝐼1 > 0, 

ℎ  - Migration rate of predator from patch-II to patch-I which is a monotonic decreasing positive valued 

function for all  𝑆2 > 0  and  𝐼2 > 0, 

I assume that 𝑓, 𝑓̅, 𝑔, �̅�, ℎ, ℎ̅ ∈ 𝐶1(𝑅+
2 ) . 
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If there is no migration then the system (2.1) becomes 

𝑑𝑆1

𝑑𝑡
= [𝑟1(𝑆1 + 𝐼1) (1 −

𝑆1 + 𝐼1

𝐶1
) − 𝑑1𝑆1 + 𝛾1𝐼1 − 𝛽1𝑆1𝐼1 −

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
], 

𝑑𝐼1

𝑑𝑡
= [𝛽1𝑆1𝐼1 − 𝑑1𝐼1 − 𝛼1𝐼1 − 𝛾1𝐼1 −

𝑎1
′ 𝐼1𝑃1

1+𝑏1
, 𝐼1

], 

𝑑𝑃1

𝑑𝑡
= [𝑒

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
+ 𝑒′

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

− 𝑚1𝑃1], 

The analysis of the model (2.2) has been done in [17]. 

3. Equilibrium analysis of the fast model and aggregation of the model 

As I see, the system (2.1) is mainly driven by the migration part; the demographic one is being only a small 

perturbation. I am now interested in the fast dynamics, and the corresponding fast model is obtained by 

neglecting the slow part i.e., taking 𝜖 = 0.  

𝑑𝑆1

𝑑𝜏
= [𝑓(𝑃2)𝑆2 − 𝑓̅(𝑃1)𝑆1],  

𝑑𝑆2

𝑑𝜏
= [𝑓̅(𝑃1)𝑆1 − 𝑓(𝑃2)𝑆2],  

𝑑𝐼1

𝑑𝜏
= [𝑔(𝑃2)𝐼2 − �̅�(𝑃1)𝐼1],   

𝑑𝐼2

𝑑𝜏
= [�̅�(𝑃1)𝐼1 − 𝑔(𝑃2)𝐼2],   

𝑑𝑃1

𝑑𝜏
= [ℎ(𝑆2, 𝐼2)𝑃2 − ℎ̅(𝑆1, 𝐼1)𝑃1],  

𝑑𝑃2

𝑑𝜏
= [ℎ̅(𝑆1, 𝐼1)𝑃1 − ℎ(𝑆2, 𝐼2)𝑃2],  

 

 

where the total susceptible population is denoted by 𝑆 = 𝑆1 + 𝑆2 , the total infected population is denoted 

by 𝐼 = 𝐼1 + 𝐼2 and total predator population is denoted by 𝑃 = 𝑃1 + 𝑃2. These are the constants of motion of 

the fast system (3.1). So the fast equilibrium points and their stability are determined by the following system 

of equations.  

𝑑𝑆1

𝑑𝜏
= [𝑓(𝑃 − 𝑃1)(𝑆 − 𝑆1) − 𝑓̅(𝑃1)𝑆1],    

𝑑𝐼1

𝑑𝜏
= [𝑔(𝑃 − 𝑃1)(𝐼 − 𝐼1) − �̅�(𝑃1)𝐼1],  

𝑑𝑃1

𝑑𝜏
= [ℎ(𝑆 − 𝑆1, 𝐼 − 𝐼1)(𝑃 − 𝑃1) − ℎ̅(𝑆1, 𝐼1)𝑃1],  

(2.2) 

(3.1) 

(3.2) 
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The fast equilibrium point is the solution of the following system of equations:  

𝑓(𝑃 − 𝑃1)(𝑆 − 𝑆1) − 𝑓̅(𝑃1)𝑆1 = 0, 

𝑔(𝑃 − 𝑃1)(𝑆 − 𝑆1) − �̅�(𝑃1)𝑆1 = 0, 

ℎ(𝑆 − 𝑆1, 𝐼 − 𝐼1)(𝑃 − 𝑃1) − ℎ̅(𝑆1, 𝐼1)𝑃1 = 0, 

𝑆1 + 𝑆2 = 𝑆,   

𝐼1 + 𝐼2 = 𝐼,   

𝑃1 + 𝑃2 = 𝑃, 

 

which gives 𝑆1 = 𝜂(𝑃1)𝑆, 𝐼1 = 𝜇(𝑃1)𝐼 and 𝑃1 = 𝜉(𝑆1, 𝐼1)𝑃 where 𝑃1 is the solution of the equation    

𝑃1 = 𝜙(�̅�(𝑃1), �̃�(𝑃1)) ………………….(3.4) 

where �̅�(𝑥) = 𝜂(𝑥)𝑆, �̃�(𝑥) = 𝜇(𝑥)𝐼, 𝜙(𝑥, 𝑦) = 𝜉(𝑥, 𝑦)𝑃 and 

 𝜂(𝑥) =
𝑓(𝑃−𝑥)

𝑓̅(𝑥)+𝑓(𝑃−𝑥)
 , 𝜇(𝑥) =

𝑔(𝑃−𝑥)

�̅�(𝑥)+𝑔(𝑃−𝑥)
, 𝜉(𝑥, 𝑦) =

ℎ(𝑆−𝑥,   𝐼−𝑦)

ℎ̅(𝑥,   𝑦)+ℎ(𝑆−𝑥,   𝐼−𝑦)
 . Then  

�̅�′(𝑥) = −
𝑓̅(𝑥)𝑓′(𝑃 − 𝑥) + 𝑓(𝑃 − 𝑥)𝑓̅′(𝑥)

[𝑓̅(𝑥) + 𝑓(𝑃 − 𝑥)]2
𝑆, 

�̃�′(𝑥) = −
�̅�(𝑥)𝑔′(𝑃 − 𝑥) + 𝑔(𝑃 − 𝑥)�̅�′(𝑥)

[�̅�(𝑥) + 𝑔(𝑃 − 𝑥)]2
𝐼, 

𝜙𝑥(𝑥, 𝑦) = −
ℎ̅(𝑥, 𝑦)ℎ𝑥(𝑆 − 𝑥, 𝐼 − 𝑦) + ℎ(𝑆 − 𝑥, 𝐼 − 𝑦)ℎ̅𝑥(𝑥, 𝑦)

[ℎ̅(𝑥, 𝑦) + ℎ(𝑆 − 𝑥, 𝐼 − 𝑦)]2
𝑃, 

𝜙𝑦(𝑥, 𝑦) = −
ℎ̅(𝑥, 𝑦)ℎ𝑦(𝑆 − 𝑥, 𝐼 − 𝑦) + ℎ(𝑆 − 𝑥, 𝐼 − 𝑦)ℎ̅𝑦(𝑥, 𝑦)

[ℎ̅(𝑥, 𝑦) + ℎ(𝑆 − 𝑥, 𝐼 − 𝑦)]2
𝑃, 

Based on the assumption on the functions  𝑓,  �̅�, 𝑔, �̅�, ℎ,  ℎ̅  it is clear that the function �̅� and �̃� are decreasing 

for all 𝑥 > 0 and the function 𝜙 is increasing for all  𝑥 > 0, 𝑦 > 0 . So the composite 

function  𝜙 (�̅�(𝑃1), �̃�(𝑃1)) is decreasing and positive valued. Therefore if there exist a feasible solution of the 

equation (3.4) then it is unique. Let (𝑆1
∗, 𝐼1

∗, 𝑃1
∗) be the fast equilibrium point. Then the characteristic equation 

of the system (3.2) is 

|

−𝑝1 − 𝜆 0 −𝑝2

0 −𝑝3 −𝑝4

𝑝5 𝑝6 −𝑝7 − 𝜆
| = 0 ⇒  𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 = 0 

where  𝐴1 = 𝑝1 + 𝑝3 + 𝑝7, 

 𝐴2 = 𝑝1𝑝7 + 𝑝3𝑝7 + 𝑝1𝑝3 + 𝑝4𝑝6 + 𝑝2𝑝5 , 

 (3.3) 
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 𝐴3 = 𝑝1𝑝3𝑝7 + 𝑝1𝑝4𝑝6 + 𝑝2𝑝3𝑝5 

and  𝑝1 = 𝑓(𝑃 − 𝑃1
∗) + 𝑓̅(𝑃1

∗) , 

𝑝2 = (𝑆 − 𝑆1
∗)𝑓′(𝑃 − 𝑃1

∗) + 𝑆1
∗𝑓̅′(𝑃1

∗) , 

𝑝3 = 𝑔(𝑃 − 𝑃1
∗) + �̅�(𝑃1

∗) , 

𝑝4 = (𝐼 − 𝐼1
∗)𝑔′(𝑃 − 𝑃1

∗) + 𝐼1
∗�̅�′(𝑃1

∗) , 

𝑝5 = (𝑃 − 𝑃1
∗)ℎ𝑆(𝑆 − 𝑆1

∗, 𝐼 − 𝐼1
∗) + ℎ̅𝑆(𝑆1

∗, 𝐼1
∗) , 

𝑝6 = (𝑃 − 𝑃1
∗)ℎ𝐼(𝑆 − 𝑆1

∗, 𝐼 − 𝐼1
∗) + ℎ̅𝐼(𝑆1

∗, 𝐼1
∗) , 

𝑝7 =
𝑃

𝑃1
∗ ℎ(𝑆 − 𝑆1

∗, 𝐼 − 𝐼1
∗) . 

where all 𝑝 's are positive. Thus I have 𝐴1 > 0 and  𝐴1𝐴2 > 𝐴3 . Therefore the fast equilibrium is always 

asymptotically stable. 

Now, I can obtain the global model at slow time scale 𝑡 = 𝜖𝜏 in terms of the aggregated variables  𝑆, 𝐼 and  𝑃.  

𝑑𝑆

𝑑𝑡
= [𝑟1(𝑆1 + 𝐼1) (1 −

𝑆1+𝐼1

𝐶1
) + 𝑟2(𝑆2 + 𝐼2) (1 −

𝑆2+𝐼2

𝐶2
) − 𝑑1𝑆1 − 𝑑2𝑆2 + 𝛾1𝐼1 + 𝛾2𝐼2 − 𝛽1𝑆1𝐼1 − 𝛽2𝑆2𝐼2 −

𝑎1𝑆1𝑃1

1+𝑏1𝑆1
−

𝑎2𝑆2𝑃2

1+𝑏2𝑆2
], 

𝑑𝐼

𝑑𝑡
= [𝛽1𝑆1𝐼1 + 𝛽2𝑆2𝐼2 − 𝑑1𝐼1 − 𝑑2𝐼2 − 𝛼1𝐼1 − 𝛼2𝐼2 − 𝛾1𝐼1 − 𝛾2𝐼2 −

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

−
𝑎2

′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

],  

𝑑𝑃

𝑑𝑡
= [𝑒

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
+ 𝑒′

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

+ 𝑒
𝑎2𝑆2𝑃2

1 + 𝑏2𝑆2
+ 𝑒′

𝑎2
′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

− 𝑚1𝑃1 − 𝑚2𝑃2], 

where 𝑆1, 𝑆2, 𝐼1, 𝐼2, 𝑃1, 𝑃2  are replaced by the fast equilibrium point. 

 

4. Study of the model taking particular type of density-dependent migration 

Let 𝑓(𝑃2) = 𝑓𝑝𝑃2 + 𝑓0  and 𝑓̅(𝑃1) = 𝑓�̅�𝑃1 + 𝑓0̅  be a particular type of density-dependent migration rate of 

susceptible prey population from patch-II to patch-I and patch-I to patch-II respectively where  𝑓𝑝,  𝑓0  ,  �̅�𝑝,  �̅�0  

are positive. Let the predator density-dependent migration of infected prey from patch-II to patch-I and patch-I 

to patch-II are of the form 𝑔(𝑃2) = 𝑔𝑝𝑃2 + 𝑔0  and �̅�(𝑃1) = �̅�𝑝𝑃1 + �̅�0 respectively where  𝑔𝑝,  𝑔0  ,  �̅�𝑝,  �̅�0 

are positive. I also assume that the density-dependent migration rate of predators from patch-II to patch-I and 

patch-I to patch-II are ℎ(𝑆2, 𝐼2) =
1

ℎ𝑠𝑆2+ℎ𝑖𝐼2+ℎ0
and ℎ̅(𝑆1, 𝐼1) =

1

ℎ̅𝑠𝑆1+ℎ̅𝑖𝐼1+ℎ̅0
respectively where 

  ℎ𝑠, ℎ𝑖 ,  ℎ0  ,  ℎ̅𝑠,  ℎ̅𝑖 ,  ℎ̅0 are positive. It is clear that all the functions 𝑓, 𝑓̅, 𝑔, �̅�, ℎ, ℎ̅  satisfy the conditions 

described in the section of model formulation. So our model (2.1) with the above stated density-dependent 

migration rates becomes 

𝑑𝑆1

𝑑𝜏
= [(𝑓𝑝𝑃2 + 𝑓0)𝑆2 − (𝑓�̅�𝑃1 + 𝑓0̅)𝑆1] + 𝜖 [𝑟1(𝑆1 + 𝐼1) (1 −

𝑆1 + 𝐼1

𝐶1
) − 𝑑1𝑆1 + 𝛾1𝐼1 − 𝛽1𝑆1𝐼1 −

𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
], 

(3.5) 
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𝑑𝑆2

𝑑𝜏
= [(𝑓�̅�𝑃1 + 𝑓0̅)𝑆1 − (𝑓𝑝𝑃2 + 𝑓0)𝑆2] + 𝜖 [𝑟2(𝑆2 + 𝐼2) (1 −

𝑆2 + 𝐼2

𝐶2
) − 𝑑2𝑆2 + 𝛾2𝐼2 − 𝛽2𝑆2𝐼2 −

𝑎2𝑆2𝑃2

1 + 𝑏2𝑆2
], 

𝑑𝐼1

𝑑𝜏
= [(𝑔𝑝𝑃2 + 𝑔0)𝐼2 − (�̅�𝑝𝑃1 + �̅�0)𝐼1] + 𝜖 [𝛽1𝑆1𝐼1 − 𝑑1𝐼1 − 𝛼1𝐼1 − 𝛾1𝐼1 −

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

],     (4.1)  

𝑑𝐼2

𝑑𝜏
= [(�̅�𝑝𝑃1 + �̅�0)𝐼1 − (𝑔𝑝𝑃2 + 𝑔0)𝐼2] + 𝜖 [𝛽2𝑆2𝐼2 − 𝑑2𝐼2 − 𝛼2𝐼2 − 𝛾2𝐼2 −

𝑎2
′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

],  

𝑑𝑃1

𝑑𝜏
= [

1

ℎ𝑠𝑆2 + ℎ𝑖𝐼2 + ℎ0
𝑃2 −

1

ℎ̅𝑠𝑆1 + ℎ̅𝑖𝐼1 + ℎ̅0

𝑃1] + 𝜖 [𝑒
𝑎1𝑆1𝑃1

1 + 𝑏1𝑆1
+ 𝑒′

𝑎1
′ 𝐼1𝑃1

1 + 𝑏1
, 𝐼1

− 𝑚1𝑃1], 

𝑑𝑃2

𝑑𝜏
= [

1

ℎ̅𝑠𝑆1 + ℎ̅𝑖𝐼1 + ℎ̅0

𝑃1 −
1

ℎ𝑠𝑆2 + ℎ𝑖𝐼2 + ℎ0
𝑃2] + 𝜖 [𝑒

𝑎2𝑆2𝑃2

1 + 𝑏2𝑆2
+ 𝑒′

𝑎2
′ 𝐼2𝑃2

1 + 𝑏2
, 𝐼2

− 𝑚2𝑃2], 

The aggregated system looks like (3.5) where 𝑆1, 𝑆2, 𝐼1, 𝐼2, 𝑃1, 𝑃2 are replaced by the fast equilibrium point 

(𝑆1
∗, 𝑆2

∗, 𝐼1
∗, 𝐼2

∗, 𝑃1
∗, 𝑃2

∗, )  given below. 

𝑆1
∗ =

𝑓𝑝𝑃2
∗+𝑓0

𝑓�̅�𝑃1
∗+�̅�0+𝑓𝑝𝑃2

∗+𝑓0
𝑆 ,  

𝑆2
∗ =

𝑓�̅�𝑃1
∗+𝑓0̅

𝑓�̅�𝑃1
∗+�̅�0+𝑓𝑝𝑃2

∗+𝑓0
𝑆 ,  

𝐼1
∗ =

𝑔𝑝𝑃2
∗+𝑔0

�̅�𝑝𝑃1
∗+�̅�0+𝑔𝑝𝑃2

∗+𝑔0
𝐼 ,  

𝐼2
∗ =

�̅�𝑝𝑃1
∗+�̅�0

�̅�𝑝𝑃1
∗+�̅�0+𝑔𝑝𝑃2

∗+𝑔0
𝐼 ,  

𝑃2
∗ =

ℎ̅𝑠𝑆1+ℎ̅𝑖𝐼1+ℎ̅0

ℎ̅𝑠𝑆1+ℎ̅𝑖𝐼1+ℎ̅0+ℎ𝑠𝑆2+ℎ𝑖𝐼2+ℎ0
𝑃 ,  

𝑃2
∗ =

ℎ𝑠𝑆2+ℎ𝑖𝐼2+ℎ0

ℎ̅𝑠𝑆1+ℎ̅𝑖𝐼1+ℎ̅0+ℎ𝑠𝑆2+ℎ𝑖𝐼2+ℎ0
𝑃 ,  

 

If there is no infected prey then the system becomes  

𝑑𝑆1

𝑑𝜏
= [(𝑓𝑝𝑃2 + 𝑓0)𝑆2 − (𝑓�̅�𝑃1 + 𝑓0̅)𝑆1] + 𝜖 [𝑟1𝑆1 (1 −

𝑆1

𝐶1
) − 𝑑1𝑆1 −

𝑎1𝑆1𝑃1

1+𝑏1𝑆1
],  

𝑑𝑆2

𝑑𝜏
= [(𝑓�̅�𝑃1 + 𝑓0̅)𝑆1 − (𝑓𝑝𝑃2 + 𝑓0)𝑆2] + 𝜖 [𝑟2𝑆2 (1 −

𝑆2

𝐶2
) − 𝑑2𝑆2 −

𝑎2𝑆2𝑃2

1+𝑏2𝑆2
], 

𝑑𝑃1

𝑑𝜏
= [

1

ℎ𝑠𝑆2+ℎ0
𝑃2 −

1

ℎ̅𝑠𝑆1+ℎ̅0
𝑃1] + 𝜖 [𝑒

𝑎1𝑆1𝑃1

1+𝑏1𝑆1
− 𝑚1𝑃1],  

𝑑𝑃2

𝑑𝜏
= [

1

ℎ̅𝑠𝑆1+ℎ̅0
𝑃1 −

1

ℎ𝑠𝑆2+ℎ0
𝑃2] + 𝜖 [𝑒

𝑎2𝑆2𝑃2

1+𝑏2𝑆2
− 𝑚2𝑃2],  

The analysis of the model (4.3) has been done in [11] taking  𝑑1 = 𝑑2 = 0  and Holling type-I functional 

response 𝑏1 = 𝑏2 = 0  for predation rates. 

(4.2) 

(4.3) 
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4.1 Analysis of the model (4.1) in particular case 

If I consider the constant migration and the constant  𝑏1 = 𝑏2 = 0  then the aggregated system looks like 

𝑑𝑆

𝑑𝑡
= 𝑟𝑠𝑆 + 𝑟𝑖𝐼 − 𝑘𝑠𝑆2 − 𝑘𝑖𝐼2 − 𝑘𝑠𝑖𝑆𝐼 − 𝑑𝑠𝑆 + �̅�𝐼 − �̅�𝑆𝐼 − �̅�𝑆𝑃, 

𝑑𝐼

𝑑𝑡
= �̅�𝑆𝐼 − (𝑑𝑖 + �̅� + �̅�)𝐼 − �̅� ′𝐼𝑃,  

𝑑𝑃

𝑑𝑡
= 𝑒�̅�𝑆𝑃 + 𝑒′�̅� ′𝐼𝑃 − �̅�𝑃,  

where 𝑟𝑠 = 𝑟1𝜂1 + 𝑟2𝜂2  , 𝑟𝑖 = 𝑟1𝜇1 + 𝑟2𝜇2  , 𝑘𝑠 =
𝑟1

𝐶1
𝜂1

2 +
𝑟2

𝐶2
𝜂2

2  , 𝑘𝑖 =
𝑟1

𝐶1
𝜇1

2 +
𝑟2

𝐶2
𝜇2

2 , 𝑘𝑠𝑖 = 2
𝑟1

𝐶1
𝜂1𝜇1 +

2
𝑟2

𝐶2
𝜂2𝜇2  , �̅� = 𝛽1𝜂1𝜇1 + 𝛽2𝜂2𝜇2  , 𝑑𝑠 = 𝑑1𝜂1 + 𝑑2𝜂2  , 𝑑𝑖 = 𝑑1𝜇1 + 𝑑2𝜇2  ,  �̅� = 𝛾1𝜇1 + 𝛾2𝜇2  , �̅� = 𝛼1𝜇1 +

𝛼2𝜇2 , �̅� = 𝑎1𝜂1𝜉1 + 𝑎2𝜂2𝜉2 , �̅� ′ = 𝑎1
′𝜇1𝜉1 + 𝑎2

′𝜇2𝜉2 , �̅� = 𝑚1𝜉1 + 𝑚2𝜉2 and 𝜂1 =
𝑓0

𝑓0̅+𝑓0
 , 𝜂2 =

𝑓0̅

𝑓0̅+𝑓0
 , 𝜇1 =

𝑔0

�̅�0+𝑔0
 , 𝜇2 =

�̅�0

�̅�0+𝑔0
 , 𝜉1 =

ℎ̅0

ℎ̅0+ℎ0
 , 𝜉2 =

ℎ0

ℎ̅0+ℎ0
 . 

Equilibrium points of the model (4.4): 

1. The trivial equilibrium point  𝐸0 = (0,0,0) . 

2. The axial equilibrium point  𝐸1 = (𝑆̅, 0,0)  where  𝑆̅ =
𝑟𝑠−𝑑𝑠

𝑘𝑠
 . 

3. The planer equilibrium point  𝐸2
𝐼 = (�̃�, 𝐼, 0)   where  �̃� =

𝑑𝑖+�̅�+�̅�

𝛽
 and 𝐼 ̃ is the roots of the 

equation  𝑘𝑖𝐼2 + (𝑘𝑠𝑖�̃� + 𝑑𝑖 − 𝑟𝑖 + �̅�)𝐼 + (𝑘𝑠�̃�2 + 𝑑𝑠�̃� − 𝑟𝑠�̃�) = 0. 

4. Another planer equilibrium point  𝐸2
𝐼𝐼 = (𝑆′, 0, 𝑃′) where 𝑆′ =

�̅�

𝑒�̅�
 and 𝑃′ =

𝑟𝑠−𝑑𝑠

�̅�
−

𝑘𝑠

�̅�
𝑆′. 

5. The interior equilibrium  𝐸∗(𝑆∗, 𝐼∗, 𝑃∗)  is the solution of 

   𝑟𝑠𝑆 + 𝑟𝑖𝐼 − 𝑘𝑠𝑆2 − 𝑘𝑖𝐼2 − 𝑘𝑠𝑖𝑆𝐼 − 𝑑𝑠𝑆 + �̅�𝐼 − �̅�𝑆𝐼 − �̅�𝑆𝑃 = 0, 

    �̅�𝑆 − (𝑑𝑖 + �̅� + �̅�) − �̅� ′𝑃 = 0, 

                   𝑒�̅�𝑆 + 𝑒′�̅� ′𝐼 − �̅� = 0. 

 

4.2 Basic reproduction number 

The concept of basic reproduction number is fundamental to study the epidemic of infectious diseases. The 

basic reproductive number is the average number of secondary infections produced when one infected 

individual is introduced into a host virgin population. The basic reproductive number measures the fitness of 

the parasite in an ecological system. There are two basic reproductions number first one in absence of predator 

denoted by �̅�0 and the second one in presence of predator denoted by 𝑅0. The effect of prey migration on basic 

reproduction ratio in absence of predator has been analyzed by Charles et al. (2002). Here I have found both 

the basic reproduction numbers using the next-generation matrix method.  

(4.4) 

(4.5) 
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ℱ = [
0

�̅�𝑆𝐼
0

] , 𝒱 = [
−𝑟𝑠𝑆 − 𝑟𝑖𝐼 + 𝑘𝑠𝑆2 + 𝑘𝑖𝐼2 + 𝑘𝑠𝑖𝑆𝐼 + 𝑑𝑠𝑆 − �̅�𝐼 + �̅�𝑆𝐼 + �̅�𝑆𝑃

(𝑑𝑖 + �̅� + �̅�)𝐼 + �̅� ′𝐼𝑃

−𝑒�̅�𝑆𝑃 − 𝑒′�̅� ′𝐼𝑃 + �̅�𝑃

] 

Basic reproduction number in absence of predator: 

Here the new infection matrix 𝐹(𝐸1) = [
𝜕ℱ𝑖(𝐸1)

𝜕𝑋𝑗
] and the transfer matrix 𝑉(𝐸1) = [

𝜕𝒱𝑖(𝐸1)

𝜕𝑋𝑗
] at the equilibrium 

point  𝐸1 = (𝑆̅, 0,0)  where  𝑆̅ =
𝑟𝑠−𝑑𝑠

𝑘𝑠
. 

Therefore,                         𝐹(𝐸1) = [
0 0 0
0 �̅�𝑆̅ 0
0 0 0

]   and  𝑉(𝐸1) = [
�̅� �̅� �̅�
0 𝐷 0
0 0 �̅�

] 

where  �̅� = −𝑟𝑠 + 2𝑘𝑠𝑆̅ + 𝑑𝑠 , �̅� = −𝑟𝑖 + 𝑘𝑠𝑖𝑆̅ + �̅�𝑆̅ − �̅� , �̅� = �̅�𝑆̅ , �̅� = 𝑑𝑖 + �̅� + �̅� , �̅� = −𝑒�̅�𝑆̅  + �̅� .  

So, the next generation matrix is  𝐹𝑉−1 =
1

|𝑉|
[
0 0 0
0 �̅�𝑆̅�̅��̅� 0
0 0 0

] 

Thus the eigenvalues of  𝐹𝑉−1  are {0,
�̅�𝑆̅

�̅�
, 0}. 

The basic reproduction number is the largest eigenvalue of  𝐹𝑉−1 ([18], [19]) which is 

�̅�0 = 𝜚(𝐹𝑉−1) =
�̅�𝑆̅

𝑑𝑖+�̅�+�̅�
 . ……………………… (4.6) 

Basic reproduction number in presence of predator: 

In this article, I am interested to explore the influence of predator migration on basic reproduction number. So 

I have to calculate the basic reproduction number at the equilibrium point  𝐸2
𝐼𝐼 = (𝑆′, 0, 𝑃′)  where 𝑆′ =

�̅�

𝑒�̅�
  

and 𝑃′ =
𝑟𝑠−𝑑𝑠

�̅�
−

𝑘𝑠

�̅�
𝑆′. 

I evaluate the new infection matrix 𝐹( 𝐸2
𝐼𝐼) = [

𝜕ℱ𝑖( 𝐸2
𝐼𝐼)

𝜕𝑋𝑗
] and the transfer matrix 𝑉( 𝐸2

𝐼𝐼) = [
𝜕𝒱𝑖( 𝐸2

𝐼𝐼)

𝜕𝑋𝑗
] at the 

disease-free equilibrium point  𝐸2
𝐼𝐼 = (𝑆′, 0, 𝑃′) . 

Therefore,                         𝐹(𝐸1) = [
0 0 0
0 �̅�𝑆′ 0
0 0 0

]   and  𝑉(𝐸1) = [
𝐴 𝐵 𝐶
0 𝐷 0
𝐸 𝐹 𝐺

] 

where   𝐴 = −𝑟𝑠 + 2𝑘𝑠𝑆′ + �̅�𝑃′ + 𝑑𝑠  , 𝐵 = −𝑟𝑖 + 𝑘𝑠𝑖𝑆′ + �̅�𝑆′ − �̅� , 𝐶 = �̅�𝑆′  , 𝐷 = 𝑑𝑖 + �̅� + �̅� + �̅�′𝑃′  , 

𝐸 = −𝑒�̅�𝑃′ 
,  𝐹 = −𝑒′�̅�′𝑃′ 

, 𝐺 = −𝑒�̅�𝑆′ + �̅�  .  

So, the next generation matrix is  𝐹𝑉−1 =
1

|𝑉|
[
0 0 0
0 �̅�𝑆̅(𝐴𝐺 − 𝐸𝐶) 0
0 0 0

] 

Thus the eigenvalues of  𝐹𝑉−1  are {0,
�̅�𝑆′

𝐷
, 0}. 

The basic reproduction number is the largest eigenvalue of  𝐹𝑉−1 ([18], [19]) which is 

𝑅0 = 𝜚(𝐹𝑉−1) =
�̅�𝑆′

𝑑𝑖+�̅�+�̅�+�̅�′𝑃′ . ……………………….. (4.7) 
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Similarly Local basic reproduction number of patch-I is  𝐿𝑅01 =
𝛽1𝑆1

′

𝑑1+𝛼1+𝛾1+𝑎1
′ 𝑃1

′  where 𝑆1
′ =

𝑚1

𝑒𝑎1
  and  𝑃1

′ =

𝑟1−𝑑1

𝑎1
−

𝑟1

𝐶1𝑎1
𝑆1

′.  

Also the local basic reproduction number of patch-II is  𝐿𝑅02 =
𝛽2𝑆2

′

𝑑2+𝛼2+𝛾2+𝑎2
′ 𝑃2

′  where 𝑆2
′ =

𝑚2

𝑒𝑎2
  and 𝑃2

′ =

𝑟2−𝑑2

𝑎2
−

𝑟2

𝐶2𝑎2
𝑆2

′ . 

4.3 Local stability of the equilibrium points 

1.  The trivial equilibrium point  𝐸0 = (0,0,0)  is stable if 𝑟𝑠 < 𝑑𝑠 that is reproduction rate of prey population is 

lesser than the death rate in the aggregated system and otherwise unstable. 

2. The axial equilibrium point  𝐸1 = (𝑆̅, 0,0) is stable if  𝐸0 is unstable and �̅�0 < 1 and �̅� > 𝑒�̅�𝑆̅ that means 

basic reproduction number in absence of predator is less than unity and mortality rate of predator in aggregated 

system is sufficiently small. Otherwise  𝐸1 is unstable. 

3. The planer equilibrium point 𝐸2
𝐼 = (�̃�, 𝐼, 0) is stable if �̅� > 𝑒�̅��̃� + 𝑒′�̅�′𝐼 and 𝑟𝑠 < 2𝑘𝑠�̃� + 𝑘𝑠𝑖𝐼 + �̅�𝐼 , 𝑟𝑖 <

2𝑘𝑖𝐼 + 𝑘𝑠𝑖�̃� + 𝑑𝑖 + �̅�  which implies predator mortality and prey reproduction in the aggregated system is 

sufficiently small. Otherwise 𝐸2
𝐼  is unstable. 

4.  The planer equilibrium point 𝐸2
𝐼𝐼 = (𝑆′, 0, 𝑃′) is stable if 𝑅0 < 1 and unstable otherwise. 

 

4.4 Effect of predator migration on basic reproduction number 

The basic reproduction number in presence of predator can be written as follows 

𝑅0 =
�̅�𝑆′

𝑑𝑖+�̅�+�̅�+�̅�′𝑃′ =
�̅��̅��̅�

𝑒(𝑑𝑖+�̅�+�̅�)�̅�2+�̅�′[𝑒(𝑟𝑠−𝑑𝑠)�̅�−𝑘𝑠�̅�]
=

𝐷1

𝑁1+𝑁2
 …………………. (4.8) 

where  𝐷1 = (𝛽1𝜂1𝜇1 + 𝛽2𝜂2𝜇2)(𝑚1𝜉1 + 𝑚2𝜉2)(𝑎1𝜂1𝜉1 + 𝑎2𝜂2𝜉2), 

𝑁1 = 𝑒[(𝑑1 + 𝛼1 + 𝛾1)𝜇1 + (𝑑2 + 𝛼2 + 𝛾2)𝜇2] (𝑎1𝜂1𝜉1 + 𝑎2𝜂2𝜉2)2, 

𝑁2 = (𝑎1
′ 𝜇1𝜉1 + 𝑎2

′ 𝜇2𝜉2)[𝑒{(𝑟1 − 𝑑1)𝜂1 + (𝑟2 − 𝑑2)𝜂2}(𝑎1𝜂1𝜉1 + 𝑎2𝜂2𝜉2) − (
𝑟1

𝐶1
𝜂1

2 +
𝑟2

𝐶2
𝜂2

2) (𝑚1𝜉1 +

𝑚2𝜉2)] ,  

If the predators migrate more to patch-I then we can take 𝜉 =
𝜉2

𝜉1
→ 0. In this case 

�̃�0 =
�̃�1

�̃�1+�̃�2
 ………………………….. (4.9) 

where  �̃�1 = (𝛽1𝜂1𝜇1 + 𝛽2𝜂2𝜇2)𝑚1𝑎1𝜂1, 

�̃�1 = 𝑒[(𝑑1 + 𝛼1 + 𝛾1)𝜇1 + (𝑑2 + 𝛼2 + 𝛾2)𝜇2]𝑎1
2𝜂1

2 , 

�̃�2 = 𝑎1
′ 𝜇1[𝑒{(𝑟1 − 𝑑1)𝜂1 + (𝑟2 − 𝑑2)𝜂2}𝑎1𝜂1 − (

𝑟1

𝐶1
𝜂1

2 +
𝑟2

𝐶2
𝜂2

2) 𝑚1] ,  
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Further if the infected prey migrate more to patch-I then we can take 𝜇 =
𝜇2

𝜇1
→ 0. In this case 

𝑅01 =
𝛽1𝑚1𝑎1𝜂1

2

𝑒(𝑑1+𝛼1+𝛾1)𝑎1
2𝜂1

2+𝑎1
′ [𝑒{(𝑟1−𝑑1)𝜂1+(𝑟2−𝑑2)𝜂2}𝑎1𝜂1−(

𝑟1
𝐶1

𝜂1
2+

𝑟2
𝐶2

𝜂2
2)𝑚1]

  ……. (4.10) 

Again if the infected prey migrate more to patch-II then we can take 
1

𝜇
=

𝜇1

𝜇2
→ 0. In this case 

𝑅01 =
𝛽2𝑚1𝜂2

𝑒(𝑑2+𝛼2+𝛾2)𝑎1
 .  …………. (4.11) 

5. Numerical Results 

In this section, I have numerically simulated the theoretical results of our model. The hypothetical parameter 

values are mainly taken from [1] and [17]. The values of the new parameters which appear due to inclusion of 

predator in the system are taken on the basis of biological feasibility. I have used MATLAB version R2016a 

for numerical simulation of the model. 

                                  Table-1                                                                                Table-2 

parameter values units  parameter values units 

𝑟1 0.18      /days 𝑟1 5.2       /days 

𝑟2 0.2       /days 𝑟2 5.5       /days 

𝑑1 0.15      /days 𝑑1 0.15      /days 

𝑑2 0.16      /days 𝑑2 0.16      /days 

𝐶1 180 number 𝐶1 880 number 

𝐶2 130 number 𝐶2 830 number 

𝛼1 0.1       /days         𝛼1 5.8 /days         

𝛼2 0.1       /days         𝛼2 5.8 /days         

𝛾1 0.5       /days         𝛾1 0.5       /days         

𝛾2 0.5       /days         𝛾2 0.5       /days         

𝛽1 0.4       /number/days 𝛽1 0.05       /number/days 

𝛽2 0.3       /number/days 𝛽2 0.05       /number/days 

𝑎1 0.08      /number/days 𝑎1 0.05      /number/days 

𝑎2 0.01      /number/days 𝑎2 0.05      /number/days 

𝑎1
′  0.1       /number/days 𝑎1

′  0.1       /number/days 

𝑎2
′  0.1       /number/days 𝑎2

′  0.1       /number/days 

𝑒 0.1       unit-less     𝑒 0.01       unit-less     

𝑒′ 0.1       unit-less     𝑒′ 0.01       unit-less     

𝑚1 0.02      /days         𝑚1 0.01      /days         

𝑚2 0.01      /days         𝑚2 0.01      /days         

𝑓0 10 /days 𝑓0 10 /days 

𝑓0̅ 4 /days  𝑓0̅ 4 /days  

𝑔0 4 /days  𝑔0 4 /days  

�̅�0 4 /days  �̅�0 4 /days  

ℎ0 4 /days  ℎ0 4 /days  

ℎ̅0 4 /days  ℎ̅0 4 /days  

 

5.1 Numerical sensitivity analysis 
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Definition: The normalized forward sensitivity index of a variable, 𝑚   that depends differentiably on a 

parameter 𝑛, is defined as Γn
m =

𝜕𝑚

𝜕𝑛
×

𝑛

𝑚
  

For 𝑅0 the analytical expression of the sensitivity becomes Γn
𝑅0 =

𝜕𝑅0

𝜕𝑛
×

𝑛

𝑅0
  where 𝑛 is a parameters involved 

in 𝑅0. I have computed the sensitivity of 𝑅0 with respect to the three parameters 𝜉 =
𝜉2

𝜉1
 related to predator 

migration, 𝜇 =
𝜇2

𝜇1
 related to infected prey migration and 𝜂 =

𝜂2

𝜂1
related to susceptible prey migration. It has 

been found that Γξ
𝑅0 = 0.7731, Γμ

𝑅0 = −0.2556 and Γη
𝑅0 = 0.5130with respect to the set of parameters given 

in Table-1. So I have found that the parameter is 𝜉 =
𝜉2

𝜉1
=

ℎ0

ℎ̅0
  is more sensitive than the other two. Thus we can 

say that predator migration is more sensitive than the migration of susceptible and infected prey to changing 

the basic reproduction number. 

5.2 Basic reproduction number versus migration 

In (4.8), I have expressed $R_0$ in terms of the migration rate of susceptible prey, infected prey, and predator 

species. I have found the limiting expression of basic reproduction number in (4.9) when the migration rate of 

predators from patch-II to patch-I is very larger than from patch-I to patch-II. In Figure-1(a) we can observe 

how the infection increases in the system and crosses the epidemic threshold value when  𝜉  increase. I have 

also found the limiting expression of basic reproduction number in (4.10) and (4.11) when the migration rate 

of infected prey from patch-II to patch-I is very larger than from patch-I to patch-II and the opposite 

respectively. In Figure-1(b) we can observe how the infection decrease in the system and become below the 

epidemic threshold value when 𝜇   increase. 

I observe numerically that the basic reproduction in absence of predator is 𝑅0 = 6.8449 which is much higher 

than the basic reproduction in presence of predator 𝑅0 = 0.6215. I calculate the local basic reproduction 

number for both patches. The local basic reproduction number for patch-I and patch-II are 𝐿𝑅01 = 0.6375 and 

𝐿𝑅02 = 1.9878  respectively. 

 Figure-1 : (a) Basic reproduction number is increasing when 𝝃 increase. (b) Basic reproduction number 

is decreasing when 𝝁 increase. Parameter values are taken from Table-1 
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My numerical investigation over the model (4.4) explores the switching of the equilibrium points due to 

migration of predator population when the infected prey lives in one of the patches losing their mobility due to 

infection. From Figure 2(a) we can observe that when 𝑔0 = 0 that is the infected prey does not migrate to 

patch-I in other words the infected prey remains in patch-II then 𝐸∗ switches to 𝐸2
𝐼𝐼  as ratio of migration rates 

of predators increases from 0 to 10. Again From Figure 2(b) we can observe that when �̅�0 = 0  that is the 

infected prey does not migrate to patch-II in other words the infected prey remains in patch-I then 𝐸∗ switches 

to 𝐸2
𝐼   as Ratio of migration rates of predators increases from 0 to 10. 

 

Figure-2 : Switching of equilibrium points when 𝝃 increase. Parameter values are taken from Table-2 

6. Conclusion 

In this article, I intend to explore the effect of the migration of predators on a two-patch predator-prey model 

with disease in the prey population. Here I consider the migration of susceptible prey, infected prey, and 

predator population between two different patches. An ODE models has been constructed taking two different 

time scales. I consider that the individual migration of the species is faster than their demographic changes like 

birth, death, disease transmission, and interaction with predators. The model has been studied taking a large 

class of density-dependent migration rates. I have proved that the fast equilibrium point is unique and 

asymptotically stable. Then I aggregate the model taking the advantage of two different time scales and 

construct a SIP model. The model has been investigated both analytically and numerically considering some 

particular type of density-dependent migrations. I investigate the effect of predator migration on stability, 

population abundance, and fitness of parasites in the system. In all the cases I invent a huge impact of predator 

migration. I observe that if the infected prey lives in one of the patches losing their mobility due to infection 

then for the fast migration of predators the stable endemic equilibrium 𝐸∗ can switch to 𝐸2
𝐼𝐼 or 𝐸2

𝐼   according to 

the infected prey lies in patch-II or in patch-I respectively. Thus if the infected prey lives in one of the patches 

due to the migration of the predator the system will be either disease-free or predator-free. I establish 

theoretically that the disease-free equilibrium is stable if 𝑅0 < 1 and otherwise unstable. I observe numerically 

that the predator migration is more sensitive than the migration of susceptible and infected prey to changing 

the basic reproduction number. 
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