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Abstract 

 

Van der Pol (VDP) oscillator is an essential topic in applied dynamics to describe complex 
dynamical behaviors, chaotic motions, etc. In this study, a novel method is proposed towards 
the analytical solution of the VDP equation-as a quintessential example of nonlinear ordinary 
differential equations. The presented technique takes advantage of generic trial functions and 
their derivatives substituted into the target differential equation. Next, an optimization 
algorithm is tailored to minimize residual mean. Initial/boundary conditions, on the other hand, 
are dealt with as the second objective of the optimization problem. The proposed method was 
compared to two conventional analytical methods. The judgment on their accuracy was made 
based on the Runge-Kutta numerical method. Accordingly, it was observed that the solutions 
of the proposed method were in tight agreement with the numerical method. Furthermore, it 
was observed that the newly developed method circumvented the computational burden 
encountered when using the rival techniques. The obtained results champion outperformance 
of this method compared with the rival analytical methods in terms of accuracy, simplicity, and 
robustness.  
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1. Introduction 
An ordinary differential equation (ODE) is a relationship between an independent variable and a 
dependent variable and the derivatives of the dependent variable. On the other hand, the whole real-life 
phenomena, to be modeled mathematically through differential equations (DEs), comprise indigenous 
nonlinear behaviors, which greatly obfuscate ascertaining the exact solutions. Meanwhile, not all DEs 
have accurate analytical solutions, or it may be challenging to find them. Therefore, the best scientists 
can aim to search for approximate solutions that share almost the same accurate results as do the exact 
methods. In this regard, a great deal of research has been conducted to analyze approximate analytical 
solutions to DEs (Vahidi-Moghaddam et al, 2021; Vahidi-Moghaddam et al, 2020) 
Van der Pol equation was presented to model complex dynamic systems utilizing a second-order 
differential equation with nonlinear damping (Kimiaeifar et al, 2010). It was primarily proposed to 
model an electrical circuit with a triode valve and was later expanded for a broader range of applications 
(Zhuravlev, 2020). Due to the importance of VDP equations, a large number of works have been 
proposed attempting to solve these equations using numerical (Rasedee et al, 2021; Yin et al, 2020) or 
analytical (Ganji et al, 2010; Kimiaeifar et al, 2009; Usta & Sarıkaya, 2019) methods. To assess the 
lock-in phenomenon of a turbo-machinery blade, (Hoskoti et al, 2020) have used a spring-mounted 
airfoil along with a VDP oscillator.  
(He, 1999) has proposed an analytical method to approximate nonlinear problems, called the variational 
iteration method (VIM). Unlike perturbation methods (PMs), VIM does not need small perturbations 
and linearization; that is why VIM has found use in a diverse range of applications (Daeichi & 
Ahmadian, 2015). Moreover, according to the results obtained, VIM shares a higher convergence rate 
compared to ADM. 
Akbari and Ganji have recently developed an analytical technique, called Akbari-Ganji’s method 

(AGM), to solve nonlinear partial/ordinary DEs (Akbari et al, 2015). Since its debut in 2014, AGM has 
been used to solve a large variety of nonlinear DEs. Akbari et al. have investigated the application of 
AGM on three nonlinear ODEs (NODEs) of VDP, Rayleigh, and Duffing (Akbari et al, 2014). (Meresht 
& Ganji, 2018) have scrutinized analytical solutions to nonlinear hypocycloid motion equation with 
AGM aid. Akbari et al. investigated the nonlinear vibration of an arched beam used in bridge 
constructions (Akbari et al, 2017).  
Consequently, it can be claimed that the results offered by AGM are reportedly in excellent agreement 
with those obtained by numerical methods, and, virtually in all the cases, it was even more accurate than 
the formerly developed analytical methods.  
According to the taxonomy presented by (Chaquet & Carmona, 2019), the methods for solving DEs are 
classified into four main groups: analytical, numerical, heuristic, and hybrid approaches. The previous 
methods reviewed in the literature may all be categorized among the analytical techniques.  
With the advent of artificial intelligence, the computational tasks, which once seemed formidable and 
time-consuming, could be accomplished more easily, accurately, and often faster than using 
deterministic paradigms. In this regard, many research endeavors have been geared towards inventing 
powerful computational tools such as bio-inspired evolutionary optimization algorithms (Simon, 2013). 
Optimization algorithms are being used in multifaceted areas of engineering applications (Mir 
Mohammad Sadeghi et al, 2019; MirMohammadSadeghi et al, 2018; Nikzadfar et al, 2019). Recently, 
scientists have been increasingly paying attention to solving linear/nonlinear, partial/ordinary 
differential equations through optimization algorithms (Panda & Pani, 2018, Pan 2019; Zhang et al, 
2020). Some of the latest works that have analyzed the solution of DEs with intelligent optimization 
algorithms include (Cao et al, 2000; Karr & Wilson, 2003; Tsoulos & Lagaris, 2006). (Chaquet & 
Carmona, 2012) have proposed a novel approach for solving different kinds of DEs based on Evolution 
Strategies (ESs), in which candidate solutions were partial sums of Fourier series. They illustrated that 
the proposed method performed satisfactorily by reporting experimental results with acceptable values 
of error. (Nemati et al, 2014) took advantage of the Imperialist Competitive Algorithm (ICA) to cope 
with initial value (IV) and boundary value (BV) problems. Using numerical proofs, they have 
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demonstrated that the proposed method was a promising tool for solving a wide range of DEs. (Kamali 
et al, 2015) have successfully recruited a modified version of Ant Colony Programming (ACP) 
algorithm to solve various ODEs and PDEs. (Fateh et al, 2017) have developed a differential evolution-
based technique to solve BV problems. Implementation of the proposed method on some benchmark 
problems revealed that this method has a wide range of applicability with a fast convergence rate.  
Particle Swarm Optimization (PSO) algorithm is among swarm-based, intelligent, metaheuristic 
optimization algorithms known well for its simplicity yet efficacious performance (Eberhart & Kennedy, 
1995). 
(Nemati et al, 2015) have used Learning Automata Particle Swarm Optimization (LA-PSO) algorithm 
for solving IV and BV differential equations. The given numerical results validated the high accuracy 
and efficiency of the suggested technique. (Babaei, 2013) has presented a general methodology to 
achieve approximate analytical solutions of a wide range of DEs by using the PSO algorithm. He took 
advantage of Fourier series expansion as trail answers for each of the examples. Conducted comparisons 
between the answers of the proposed method and those of the exact method indicated that the presented 
method offered solutions with satisfactory accuracy.  
(Bangian-Tabrizi & Jaluria, 2018) proposed a method based on optimization techniques to solve a two-
dimensional heat source's inverse natural convection problem on a vertical flat plate. PSO algorithm 
was applied to find the best pair of vertical locations. It was revealed that the hired technique resulted 
in satisfactory solutions for both source strength and location. 
The method presented in this study, namely intelligent Akbari-Ganji’s Method (IAGM), takes advantage 
of the analytical trial functions that are to be tuned by intelligent, meta-heuristic optimization algorithms. 
In it, a generic function must be selected as a preliminary, trial answer to the DE that is to be solved. 
Thereafter, the chosen trial function along with its derivatives are embedded into the DE of interest. The 
initial/boundary conditions, on the other hand, are dealt with as a second objective of the optimization 
problem - this is contrary to most of the similar previous works in which a penalty function is used to 
do so. Next, a weighted sum decomposition multi-objective version of the PSO algorithm is recruited to 
minimize the residual mean of the DE and to search for the best coefficients of the chosen trial function 
by doing so. That is, the DE of interest is now converted to an optimization problem.  
The rest of the article is organized as follows. Section 2 presents brief explanation of the PSO algorithm. 
In section 3, the presented method is described. Section 4 explains Van der Pol oscillator as a nonlinear 
ODE to be solved. The obtained results are given in Section 5. 
 
2. Overview of PSO algorithm 
 
PSO algorithm is among the most well-known swarm-based, evolutionary optimization algorithms 
(Tomita, 2014). The reason behind its popularity lies mainly in its simple execution mechanism along 
with its efficient performance. The execution mechanism of PSO may be briefly explained as follows: 
firstly, random positions (candidate solutions) are allocated to every particle. Next, the cost (fitness) 
values of the allocated positions are evaluated. After that, the algorithm main loop begins in which 
positions and velocities of the particles are updated, and the new personal and global fittest are stored. 
The before mentioned loop is reiterated until a termination criterion is met. Finally, the latest global 
fittest is selected as the final answer to the problem. The position and velocity updating relations are 
given as below: 

1 1
i i i

t t tx x v    (1) 

   1   1, 1 2, 2     i i i i i i g i
t i t t t t t t tv w v c r p x c r p x            (2) 

 
Where 𝑥𝑡𝑖   and 𝑝𝑡𝑖  indicate, respectively, the position and the personal best record of the particle 𝑖 in the 
iteration 𝑡. 𝑝𝑡𝑔 denotes the global best record in the 𝑡𝑡ℎ iteration. 𝑟1 and 𝑟2 are two random numbers 
uniformly distributed in the range [0, 1]; 𝑤 is the inertia weight; and 𝑐1 and 𝑐2 are two constants called 
personal and global learning coefficients, respectively. In this study, 𝑐1 and 𝑐2 account, respectively, for 
controlling the bias toward exploitation and exploration during the execution of the algorithm. 
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3. Description of the presented IAGM Method 

Consider the general form of the nonhomogeneous differential equations that follow: 
 

      1, ,  ,  ,  ,  , m mF t y y y y G ty 
   (3) 

 
Where 𝑦(𝑚) indicates the m-order derivative of the dependent variable 𝑦. 𝐺(𝑡) is an excitation force and, 
hence, it just depends on the independent variable 𝑡. Subject to the initial/boundary conditions of: 

(1) ( 1) ( )
0 1 ( 1)(0) , (0) ,..., (0) , (0)m m

m my y y y y y y y

     (4) 

Based on the physics of the problem - whether it is excited or non-excited (homogeneous/ 
nonhomogeneous), vibrational or non-vibrational, and so forth - a trial function must be selected, as a 
raw answer, with the following general form of: 

 ˆ  | y t a  (5) 

The trial function �̂� is a function of both time vector (𝒕) and the vector of decision variables (𝒂). By 
substituting the selected trial function (Eq. 5) and its derivatives into (Eq. 3), one gets the objective 
(fitness) function of the minimization problem as follows 

( 1) ( ) 2 2 ( ) 2
01 1 1

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ[ [ ( , , , ,..., , ) ( )] ] [ ( (0) ) ( (0) ) ]...

n n nm m m

i mi i
min MSE F t y y y y y G t y y y y

n n n


  
     

a
 (6) 

The fitness value of any individual (candidate solution) implies how close the suggested candidate 
solution is to the exact solution of the DE. As can be inferred from Eq. 6, in search of the decision 
variables, i.e. the answer to the DE of interest, the recruited optimization algorithm attempts in 
minimizing two terms (objectives): 1) the residual between left- and right-hand sides of the DE and 2) 
the error related to the boundary/initial conditions. For the homogenous DEs, where a right-hand side 
does not exist, only the left-hand side of the DE should be minimized to zero. According to the 
performance index used in Eq. 6, i.e., the mean squared error, the formulated objectives are both of the 
same scales, so there is no need for any scale leveling factor (Hoseini et al, 2021). 
 
4. Experiments on Van der Pol equation 
 
In this section, to verify the effectiveness of IAGM, it will be recruited to solve the VDP oscillator as a 
quintessential example of nonlinear ODEs. Figure 1 illustrates a schematic of mechanical and electrical 
VDP oscillator generators. In addition, the offered solutions by IAGM will be. 
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Fig. 1. (a) One-dimensional, mechanical Van der Pol oscillator, (b) electrical circuit generating a forced Van 
der Pol oscillator (Tomita, 2014). 

Compared to those offered by formerly the conventional techniques, including VIM and AGM. 
Meanwhile, the accuracy of the mentioned methods will be judged, altogether, according to the answer 
obtained by the numerical Runge-Kutta (4, 5) method. 

A 2nd-order, initial value, vibrational, homogenous, nonlinear ODE, Van der pol equation is among the 
most well-known DEs used to simulate non-conservative oscillators with nonlinear damping. This 
equation is of the general form that follows 

2
2 2

2
( ) (1 ( ) ( ) ( ) 0; [0,) 50]

d d
x t x t x t x t t

dt dt
       (7) 

With the constant coefficients of μ=0.15 and β=1.2, and initial conditions of 

(0) 0.2, (0) 0;x x   (8) 

The trial function used for the Van der pol equation is (Akbari et al, 2014): 

Substituting Eq. 9 into Eq. 7 and applying the boundary conditions given in Eq. 8, we can get the 
following objective function. 
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By minimizing the objective function given in Eq. 10, we will get the analytic solution to this DE as 
follows 

 0.0746300.20038620 cos 1.200134 0.062104( ) t
IAGMx t e t    (11) 

 
According to (Ledari et al, 2015), VIM, AGM, and Runge-Kutta (4, 5) methods were used for validation 
of IAGM. These methods were applied to Eq. 7, and the results are shown as follows 

0.07200( ) 0.20036097 cos(1.197838 0.060036)t
AGMx t e t    (12) 

0.07500 0.07500

0.22500 0.22500

0.22500

( ) 0.01277264 (1.197653 ) 0.2000518 (1.197653 )

0.0000220 (3.592961 ) 0.0000044 (3.592961 )

0.0000298 (1.197653 ) 0.0002414 (1.197653

t t
VIM

t t

t

x t sin t e cos t e

cos t e sin t e

cos t e sin

 

 



 

 

  0.22500) tt e 

 
(13) 

It is worth noting that VIM series had 2 terms, and Eq. 9 was used as a trial function for AGM. 
 

Start

Define PSO setting parameters
(Maximum iterations No., particles No., etc.)

Initialize particles  position
 (produce random solutions)

Evaluate the fitness of particles

Apply limits to the updated particles position 

Termination 
criterion is met ?

End

YES

t = t+1

NO

Objective function

Update the particles  velocity and position 

Search for the personal and global best

Evaluate the fitness of particles

Set problem initial/boundary conditions

Select a proper trial function

 

 𝑡

 

 𝑡

 

 𝑡
. . . 

   

. . .

 
Fig. 1. Flowchart of the IAGM algorithm. 

5. Results and Discussion 
 
In this section, the case study described previously will be solved using VIM, AGM, and IAGM; besides, 
the accuracy of the obtained results will be judged according to the numerical Runge-Kutta (4, 5) 
method. For the sake of conciseness, however, the authors have sufficed to depict only the plot of the 
final answers. As explained before, to use IAGM, a PSO algorithm is recruited with a population size 
of NPop=500 and a maximum number of iterations MaxIt=500 as the termination criterion. In addition, 
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the personal and global learning coefficients (c1,c2) are equal to 2, and the particles’ inertia weight (w) 

is equal to 0.72. The platform on which the subsequent computations were performed is an Intel^® 
Core^(TM2 )Duo CPU @ 2.50 GHz with 4.00 GB of RAM memory. Like AGM, IAGM needs a trial 
function as a preliminary, generic answer to the DE that is to be solved. The corresponding trial function 
is specified according to the physics of the DE. For elaborate discussion on correctly selecting a trial 
function for DEs of different categories, please refer to (Akbari et al, 2015).  
Figure 3 illustrates the analytic solutions offered by each method compared to those of the numerical 
method. As can be seen, the answer suggested by IAGM are in tight agreement with those of the 
numerical method. More specifically, IAGM offers better accuracy compared to all methods. 
Furthermore, in terms of simplicity, IAGM was shown to be among the most straightforward analytical 
methods presented up to now. Consequently, it can be posited that IAGM is a novel, powerful technique 
in solving nonlinear ODEs. Table 1 tabulates root-mean-square error (RMSE) of each case study 
suggested by each of the analytical methods. Accordingly, the bold numbers indicate the least error, and, 
tabulates the root-mean-square error (RMSE) of each case study suggested by each of the analytical 
methods hence, the superiority of the corresponding method with respect to the others. 

 
Fig. 2. Results for the case study: comparison of the answers relative to Runge-Kutta. 

 
Table 1. RMSE of case study solved by each analytical method. 

 RMSE 
Method IAGM AGM VIM 

Accuracy 1.1112e-04 1.3898e-03 2.1144e-04 

 

According to Figure 3, it can be seen that the developed IAGM method offers an acceptable accuracy 
compared to the numerical, AGM, and VIM methods. Table 1 lists the RMSE accuracies achieved by 
each of the methods in solving the VDP equation. Accordingly, IAGM has found a more accurate 
solution than AGM while using the same trial function as AGM. It is important to note that the accuracy 
of the IAGM can be further improved by fine-tuning the parameters of the optimization algorithm−e.g. 
increasing the population size, increasing the maximum iteration number, etc. This would be one of the 
main advantages of this method. Among other advantages of this method is that this method is more 
straightforward than the other analytical methods. 
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There are a considerable number of works for further expansion of the current topic in the future. IAGM 
can solve systems of differential equations and nonlinear partial differential equations as efficaciously 
as it solved VDP equation in the current study. Furthermore, solving DEs with IAGM can be thought as 
a simple, straightforward benchmark problem to judge on the efficiency of any newly developed 
optimization algorithms. In this regard, other meta-heuristic optimization algorithms (Bakhshinezhad et 
al, 2020; MirMohammad Sadeghi et al, 2019) may be employed to solve various types of DEs, and 
statistical analysis, e.g. Markov Chain Monte Carlo can be conducted to fairly judge on the performance 
of each. 

6. Conclusion 

In this paper, a novel technique was introduced to obtain an approximate, closed-form, analytical 
solution for the nonlinear Van der Pol equation. For the sake of validation, however, the results 
suggested suggested by IAGM were compared to those by the conventional analytical methods including 
VIM and AGM. Accordingly, it was observed that IAGM is more advantageous to rival methods in 
terms of solution accuracy. In other words, with regard to the numerical method of Runge-Kutta (4, 5), 
IAGM offered solutions with the least residual compared to the examined analytical methods. The error 
can be further decreased by increasing the number of terms in trial functions that have been selected. 
Equally important is that IAGM is the most user-friendly and straightforward method among the other 
existing analytical methods. Next, searching for the unknown coefficients of the trial function, an 
optimization algorithm (PSO in this study) minimizes the residual of the DE, and the boundary/initial 
conditions are considered the second objective to be minimized. Thus, the problem tended to be that of 
multi-objective type, and it was dealt with using a weighted-sum decomposition method. By doing so, 
the problem of solving DEs is transformed into a parameter identification one. Therefore, it can be 
expected that, in terms of accuracy, the answers offered by IAGM would be substantially superior to 
those by the other existing rival, deterministic methods. Consequently, according to the results obtained, 
it can be postulated that the developed IAGM technique is more advantageous in comparison with other 
formerly developed analytical methods. 

 Table 2. Nomenclature 

Definition Abbreviation 

Ant Colony Programming ACP 

Adomian’s decomposition method ADM 

Akbari-Ganji’s Method AGM 

Boundary Value Problem BVP 

Covariance Matrix Adaptation Evolution 
Strategy 

CMAES 

Differential Equation DE 

Evolution Strategy ES 

Genetic Programming and Automatic 
Differentiation GPAD 

Intelligent Akbari-Ganji’s Method IAGM 

Homotopy Perturbation Method HPM 

Imperialist Competitive Algorithm ICA 

Learning Automata Particle Swarm 
Optimization LA-PSO 

Markov Chain Monte Carlo MCMC 

Mean Squared Error MSE 

Near Ordinary Differential Equation NODE 

Ordinary Differential Equation ODE 

Partial Differential Equations PDE 
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Perturbation Method PM 

Particle Swarm Optimization PSO 

Systems of Differential Equations SDE 

Variation Iteration Method VIM 
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