

dddsdasffff

Turkish Journal of Computer and Mathematics Education

 Research Article

 A Novel Approach to Store an Image in QR Code

1Nuchu Yeswanth Surya Srikar, 2Narisetty Srinivasa Rao, 3Pothana Vamsi Naidu

1 Software Engineer, Reputation.com, Hyderabad, India, suryanucchu@gmail.com
2,3 Assistant Professor, Department of CSE, Lakireddy Bali Reddy College of Engineering (Autonomous),
Mylavaram, Krishna District, Andhra Pradesh – 521230

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: Quick Response Code is a machine-readable, two-dimensional barcode consisting of an array of black
and white squares which can be scan quickly by any smartphone. It allows encoding over 4000 pulse characters in
a two-dimensional barcode. It is used to store a small amount of information like web URL, item data, phone
numbers and multimedia data. Due to restricted size in it, QR codes are presently limited in the extent to store the
data. But the data in image format uses more space, if you want to store image data in QR code you must enlarge
the storage capacity of QR code. In this paper, we propose a very simple form of lossy data compression, in which
runs of data is dividing into blocks of equals size. The entire block is stored as a character rather than as the
original run with generic HashMap which makes more robust and provides all sorts of security. Finally, our
results are compared with other techniques to differentiate the optimality, efficiency of the new technique for
producing optimal QR codes.
Keywords: Quick Response Code, Image Compression, Security, Encryption, Decryption

1. Introduction
QR Code [1] is a machine-generated and readable code generally used to store URL or other information. It is a

2D barcode which consists sequence of black squares over a white background arranged in a grid format. The
barcode or Quick Response code is an important interface between real life and the virtual world nowadays [2].

Figure (a)

There are five different types of QR Codes
I. QR Code Model 1&2

II. Micro QR Code
III. iQR Code
IV. SQRC
V. Frame QR.

In this, we are using QR Code Model 1&2 as our data store.
Typical QR Code can store up to 3 KB of data. It is made up of rows and columns which form a sequence of small
squares where each square is called a module [3]. Maximum there can be 177 rows and 177 rows that are 31,329
modules. Image is a 2D array of pixels where each pixel ranges from 0 – 225.

Figure (b)

There are three types of images.
I. Binary Images [2]

II. Grey-scale Images [3]
III. Color Images [4]
In this, we are using Gray-scale Image for explaining the flow and color images for testing.

Vol.12 No.2 (2021), 3425-3434

34253442

3442-3450

1Nuchu Yeswanth Surya Srikar, 2Narisetty SrinivasaRao, 3Pothana Vamsi Naidu

2. DATA ENCODING AND DECODING
Encoding
We can enhance the capacity of the QR Code by using compression techniques [5]. In this, we are introducing a
new lossy compression [6] algorithm named SN-6 for compressing an image to store in QR Code. Figure(c)
describes the flow to keep a shot in the QR Code.

Figure (c)

Extract pixels from Image:
Image is formed by a sequence of pixels [7] arranged in a two-dimensional array. Each pixel is ranged from 0-255
for monochrome image and color image; it is the combination of RGB each will go from 0-255. Figure (d)
describes the above.

Figure (d)

Convert pixels to base 2:
After extracting all the pixels from the image and storing them in a byte array, we need to convert all the pixel
values into base 2. Figure (e) describes the above.

Figure (e)

Encode and Compress:
After converting the byte array to bit array, pass it as an input to SN-6.
SN-6 Compression:
The value of pixel will increase exponentially from right to left. So, if we remove the last few bites, it won’t

3426
3443

A Novel Approach to Store an Image in QR Code

dddsdasffff

impact the overall pixel value at a greater extent. For example,
Two hundred forty-nine can be represented as 11111001. If we remove the last four digits, then the value of the
pixel will be 240. Here the overall impact factor is every less. Figure (f) describes the above.

Figure (f)

Divide the pixel into two parts, append the first part to a stream and XOR the second half.
Now divide the runs of data into blocks of equal size and replace each block with the corresponding value from
Hash Map table. Figure (g) describes the above.

Figure (g)

Before constructing the Hash Map, we need to fix the block size, which will act as a key in our Hash Map and
corresponding value can be any printable ASCII character. Here we consider only printable characters because at
the end we need to store them in a QR Code which can hold only printable characters.
Total ASCII printable characters [8] are 97, which is in between 26 < 97 < 27. So, the best possible size for a block
is six why because if the block is seven, then the max value will be 128 (1111111) which exceeds 97. Here we
can’t replace the above value (128) with any printable character.
Constructing Hash Map:
After finalizing the block size to 6, the minimum value for a block is 00000, which is 0, and the maximum value is
111111, which is 64. With 97 printable characters, we can form 64*97 Hash Maps where each HashMap contains
64 elements. Figure (h) describes one such Hash Map out of 64*97.

Figure (h)

To make SN-6 more secure, we are concatenating all the keys in order and form a stream of characters and sending
as input to any of the secured hashing algorithms to get 32-bit Hash Key. This key will change if we change the
order of keys in HashMap.
Total we have 64 keys in HashMap [9]. So, 64 keys can be arranged in 64! times. Based on this, we can generate
97*64*64! HashMap and will take exponential time to find the correct HashMap used.

 No of printable chars * no of keys * total number of arrangements in keys

3427
3444

1Nuchu Yeswanth Surya Srikar, 2Narisetty SrinivasaRao, 3Pothana Vamsi Naidu

Generate QR Code:
After replacing all the blocks with corresponding hash value and attaching the hash key at the end of the string, we
need to store the entire series into a QR Code. You can prefer any language to do this. I used the Python library
named “QR-code” to generate Figure (i).

Figure (i)

Decoding
In this process, we decode and decompress the QR Code using SN-6 decompression technique. We follow the
same methods as above but in the backwards direction, as shown in the Figure (j).

Figure (j)

Read data from QR Code:
Extract the data from the QR Code using any physical device or custom code. The size of the QR Code may vary
based on the data. Store them in a stream of characters, as shown in Figure (k).

Figure (k)

3428

3445

A Novel Approach to Store an Image in QR Code

dddsdasffff

Decode and Decompress:
Separate the last 32bit characters from the stream and compare it with the newly generated hash key formed by
concatenating all the keys from the Hash Map [11]. If both the hash keys are equal, then continue the process else
terminate the process saying incorrect Hash Map.
If a user were using a different Hash Map other than the one that we used in the encoding process, then the
decoding process will fail to say incorrect Hash Map. So, this increased the security to the next level.
If both the Hash keys are matched, then we replace each value in the stream with its corresponding key from the
Hash Map. Figure (l) describes the above process.

Figure (l)

After replacing all the values with its keys from the hash map, we need to divide the stream into equal parts of size
four as shown in the Figure (m)

Figure (m)

Now we can concatenate any random 4 bits, or we can use the XOR value that we calculated during the Encoding
process to a stream of bits. Divide the stream of bits into a byte array [12].

Figure (m)

Above figure(m) shows the process of generating the stream of bits by concatenating with XOR-value or any
random 4-bits. We need to generate a byte array from the above stream of bits.
Convert the stream of bits into pixels by dividing the stream into blocks. Figure(o) describes the above.

Figure (o)

3429
3446

1Nuchu Yeswanth Surya Srikar, 2Narisetty SrinivasaRao, 3Pothana Vamsi Naidu

Generate Image from a sequence of pixels:
After generating the byte array, we need to arrange the byte array into a two-dimensional array to form an image,
as shown in Figure (p).

Figure (p)

3. Results

(a)

1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1
1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0
1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

(b)

3430

3447

A Novel Approach to Store an Image in QR Code

dddsdasffff

 [0000;s';.q';.000ofjlidsjfidsfisjfjsofpasjfoasjfopdsofdaspo[s
Dfosadfp00000000000H8Y40000^^h%000056TtTsCG0000
00000000000000DtTtTtTs400000DtTtTtTtTX00fdol;agrnj
g0000001TtCtTtTp9c0000dfgfdg000005dTtTtTtTtG00000;'
.a';csd0000003TtTtTtTtOG0000dfgsfdgsdfg0000cTtTtTtKG
000000000000000000548H4ZC0000000000000H4H00000
00194H4H34000000000000002Hb42HKH4H4HJ00000b';;
m';m.j00005YOCKPtPKH5PdPI5LCG000N40000000Ardcf..]

(c)

(d)

Figure(q) - (a) color image (b) before and (c) after compression (d) QR Code

(a)

3431
3448

1Nuchu Yeswanth Surya Srikar, 2Narisetty SrinivasaRao, 3Pothana Vamsi Naidu

1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0

(b)

[G0000001DMU9Y9Y9TG80WUhkxkxkxkwOc0Qxkxkxkxkxk
uC0022Bkxkxkxkxkxk2C0GwkxkxkxkxkxkwD03bgxkgg9kwg
gkxf500QxbuYAc8cOYAkZG01hgCpCpCpCpBUv8m07kQpC
pCpCpCoQW200UulCpCpCpCpAc0401hdCpCpCpCpCk7rcip
BpCpClCotGW08fxpBISpCbBpBQM00dApCoRpBovpCpCS0
2SpCpCouYSpCpCjG07pCpCpClCpCpAkZOBE7dCpCpCpCpC
UN0G011ipCgRkepCaa5W002JhCpAXulCam0001ApCpCpB
SW00000DwpCouG00000000DeXuO0000000008kxo…]

(c)

(d)

34323448

A Novel Approach to Store an Image in QR Code

dddsdasffff

Figure(r) - (a) color image (b) before and (c) after compression (d) QR Code
IV. COMPARISON
This section presents the performance analysis results comparing with RLE [10] algorithm by applying these
techniques on various test images.
Test case – 1:

Figure(s)

Test case - 2

Figure (t)

V. CONCLUSION
In this paper, we have designed and developed a method that enhances the capacity of the QR code. We have
developed and implemented a software code that compresses an image file which is to be stored in into the QR
code in a more secure way. Doing so, we were able to expand the capacity of the QR code and store data
securely.

REFERENCES

[1] M. S. Ahamed and H. Asiful Mustafa, "A Secure QR Code System for Sharing Personal Confidential
Information," 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic
Engineering (IC4ME2), Rajshahi, Bangladesh, 2019, pp. 1-4x.
[2] Y. Wang, C. Sun, P. Kuan, C. Lu and H. Wang, "Secured graphic QR code with infrared watermark," 2018
IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 2018, pp. 690-693.
[3] L. F. Freitas, A. R. Nogueira and M. E. V. Melgar, "Data Validation System Using QR Code and
Meaningless Reversible Degradation," 2019 International Conference on Applied Electronics (AE), Pilsen,
Czech Republic, 2019, pp. 1-4.
[4] Stricker, Markus Andreas, and Markus Orengo. "Similarity of color images." Storage and retrieval for image
and video databases III. Vol. 2420. International Society for Optics and Photonics, 1995.
[5] Rabbani, Majid, and Paul W. Jones. Digital image compression techniques. Vol. 7. SPIE press, 1991.
[6] Al-Shaykh, Osama K., and Russell M. Mersereau. "Lossy compression of noisy images." IEEE Transactions
on Image Processing 7.12 (1998): 1641-1652.
[7] Piella, Gemma. "A general framework for multiresolution image fusion: from pixels to regions." Information
fusion 4.4 (2003): 259-280.
[8] Moore, Keith. MIME (multipurpose internet mail extensions) part three: Message header extensions for Non-
ASCII text. RFC 2047, November, 1996.
[9] Lamatz, Nico. "LamatzSolver-v0. 1: A grounded extension finder based on the Java-Collection-
Framework." System Descriptions of the First International Competition on Computational Models of
Argumentation (ICCMA’15) (2015): 29-32.
[10] Abdmouleh, Med Karim, Atef Masmoudi, and Med Salim Bouhlel. "A new method which combines
arithmetic coding with RLE for lossless image compression." (2012).
[11] Srinivasa Rao Narisetty, Shaik Farzana, Potnuri Maheswari, “L-Semi-Supervised Clustering for Network
Intrusion Detection” International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 –

34333449

1Nuchu Yeswanth Surya Srikar, 2Narisetty SrinivasaRao, 3Pothana Vamsi Naidu

8958, Volume-8, Issue-3S, February 2019
[12] N. Srinivasa Rao, J. Pavan Kumar Reddy, “An Application for Secured Deduplication of Multimedia Data
in Cloud” Jour of Adv Research in Dynamical & Control Systems, Vol. 12, Issue-02, 2020

3435
3450

