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Abstract: Quick Response Code is a machine-readable, two-dimensional barcode consisting of an array of black 
and white squares which can be scan quickly by any smartphone. It allows encoding over 4000 pulse characters in 
a two-dimensional barcode. It is used to store a small amount of information like web URL, item data, phone 
numbers and multimedia data. Due to restricted size in it, QR codes are presently limited in the extent to store the 
data. But the data in image format uses more space, if you want to store image data in QR code you must enlarge 
the storage capacity of QR code. In this paper, we propose a very simple form of lossy data compression, in which 
runs of data is dividing into blocks of equals size. The entire block is stored as a character rather than as the 
original run with generic HashMap which makes more robust and provides all sorts of security. Finally, our 
results are compared with other techniques to differentiate the optimality, efficiency of the new technique for 
producing optimal QR codes. 
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1. Introduction 
QR Code [1] is a machine-generated and readable code generally used to store URL or other information. It is a 

2D barcode which consists sequence of black squares over a white background arranged in a grid format. The 
barcode or Quick Response code is an important interface between real life and the virtual world nowadays [2]. 

 
Figure (a) 

There are five different types of QR Codes 
I. QR Code Model 1&2 

II. Micro QR Code 
III. iQR Code 
IV. SQRC 
V. Frame QR. 

In this, we are using QR Code Model 1&2 as our data store. 
Typical QR Code can store up to 3 KB of data. It is made up of rows and columns which form a sequence of small 
squares where each square is called a module [3]. Maximum there can be 177 rows and 177 rows that are 31,329 
modules. Image is a 2D array of pixels where each pixel ranges from 0 – 225. 
 

 
Figure (b) 

There are three types of images. 
I. Binary Images [2] 

II. Grey-scale Images [3] 
III. Color Images [4] 
In this, we are using Gray-scale Image for explaining the flow and color images for testing. 
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2. DATA ENCODING AND DECODING 
Encoding 
We can enhance the capacity of the QR Code by using compression techniques [5]. In this, we are introducing a 
new lossy compression [6] algorithm named SN-6 for compressing an image to store in QR Code. Figure(c) 
describes the flow to keep a shot in the QR Code. 

 
Figure (c) 

 
Extract pixels from Image: 
Image is formed by a sequence of pixels [7] arranged in a two-dimensional array. Each pixel is ranged from 0-255 
for monochrome image and color image; it is the combination of RGB each will go from 0-255.  Figure (d) 
describes the above. 

  
Figure (d) 

 
Convert pixels to base 2: 
After extracting all the pixels from the image and storing them in a byte array, we need to convert all the pixel 
values into base 2. Figure (e) describes the above. 

 
Figure (e) 

 
Encode and Compress: 
After converting the byte array to bit array, pass it as an input to SN-6.  
SN-6 Compression: 
The value of pixel will increase exponentially from right to left. So, if we remove the last few bites, it won’t 
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impact the overall pixel value at a greater extent. For example,  
Two hundred forty-nine can be represented as 11111001. If we remove the last four digits, then the value of the 
pixel will be 240. Here the overall impact factor is every less. Figure (f) describes the above. 
 
 
 

 

 
Figure (f) 

Divide the pixel into two parts, append the first part to a stream and XOR the second half.  
Now divide the runs of data into blocks of equal size and replace each block with the corresponding value from 
Hash Map table. Figure (g) describes the above. 

  
Figure (g) 

 
Before constructing the Hash Map, we need to fix the block size, which will act as a key in our Hash Map and 
corresponding value can be any printable ASCII character. Here we consider only printable characters because at 
the end we need to store them in a QR Code which can hold only printable characters.  
Total ASCII printable characters [8] are 97, which is in between 26 < 97 < 27. So, the best possible size for a block 
is six why because if the block is seven, then the max value will be 128 (1111111) which exceeds 97. Here we 
can’t replace the above value (128) with any printable character. 
Constructing Hash Map: 
After finalizing the block size to 6, the minimum value for a block is 00000, which is 0, and the maximum value is 
111111, which is 64. With 97 printable characters, we can form 64*97 Hash Maps where each HashMap contains 
64 elements. Figure (h) describes one such Hash Map out of 64*97. 

 
Figure (h) 

 
To make SN-6 more secure, we are concatenating all the keys in order and form a stream of characters and sending 
as input to any of the secured hashing algorithms to get 32-bit Hash Key. This key will change if we change the 
order of keys in HashMap. 
Total we have 64 keys in HashMap [9]. So, 64 keys can be arranged in 64! times. Based on this, we can generate 
97*64*64! HashMap and will take exponential time to find the correct HashMap used. 

 
                            No of printable chars * no of keys * total number of arrangements in keys 
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Generate QR Code: 
After replacing all the blocks with corresponding hash value and attaching the hash key at the end of the string, we 
need to store the entire series into a QR Code. You can prefer any language to do this. I used the Python library 
named “QR-code” to generate Figure (i). 
 

 
Figure (i) 

 
Decoding 
In this process, we decode and decompress the QR Code using SN-6 decompression technique. We follow the 
same methods as above but in the backwards direction, as shown in the Figure (j). 

 

 
Figure (j) 

 
Read data from QR Code: 
Extract the data from the QR Code using any physical device or custom code. The size of the QR Code may vary 
based on the data. Store them in a stream of characters, as shown in Figure (k). 

 
Figure (k) 
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Decode and Decompress: 
Separate the last 32bit characters from the stream and compare it with the newly generated hash key formed by 
concatenating all the keys from the Hash Map [11]. If both the hash keys are equal, then continue the process else 
terminate the process saying incorrect Hash Map.  
If a user were using a different Hash Map other than the one that we used in the encoding process, then the 
decoding process will fail to say incorrect Hash Map. So, this increased the security to the next level. 
If both the Hash keys are matched, then we replace each value in the stream with its corresponding key from the 
Hash Map. Figure (l) describes the above process. 

 

 
Figure (l) 

After replacing all the values with its keys from the hash map, we need to divide the stream into equal parts of size 
four as shown in the Figure (m) 

 
Figure (m) 

 
 

Now we can concatenate any random 4 bits, or we can use the XOR value that we calculated during the Encoding 
process to a stream of bits. Divide the stream of bits into a byte array [12].  

 
Figure (m) 

 
Above figure(m) shows the process of generating the stream of bits by concatenating with XOR-value or any 
random 4-bits. We need to generate a byte array from the above stream of bits.  
Convert the stream of bits into pixels by dividing the stream into blocks. Figure(o) describes the above. 

 
Figure (o) 
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Generate Image from a sequence of pixels: 
After generating the byte array, we need to arrange the byte array into a two-dimensional array to form an image, 
as shown in Figure (p). 

 
Figure (p) 

 
3. Results 

 

 
(a) 

 
 

1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 
1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 
1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 
0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 
1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 
0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 

 
(b) 
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         [0000;s';.q';.000ofjlidsjfidsfisjfjsofpasjfoasjfopdsofdaspo[s 
Dfosadfp00000000000H8Y40000^^h%000056TtTsCG0000 
00000000000000DtTtTtTs400000DtTtTtTtTX00fdol;agrnj 
g0000001TtCtTtTp9c0000dfgfdg000005dTtTtTtTtG00000;' 
.a';csd0000003TtTtTtTtOG0000dfgsfdgsdfg0000cTtTtTtKG 
000000000000000000548H4ZC0000000000000H4H00000 
00194H4H34000000000000002Hb42HKH4H4HJ00000b';; 
m';m.j00005YOCKPtPKH5PdPI5LCG000N40000000Ardcf..] 

 
 

(c) 

 
(d) 

 
Figure(q) - (a) color image (b) before and (c) after compression (d) QR Code 

 

 
 

(a) 
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1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 
0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 
0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 
0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 
0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 
0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 
0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 
0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 
0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 
1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 

 
(b) 

 
[G0000001DMU9Y9Y9TG80WUhkxkxkxkwOc0Qxkxkxkxkxk 
uC0022Bkxkxkxkxkxk2C0GwkxkxkxkxkxkwD03bgxkgg9kwg 
gkxf500QxbuYAc8cOYAkZG01hgCpCpCpCpBUv8m07kQpC 
pCpCpCoQW200UulCpCpCpCpAc0401hdCpCpCpCpCk7rcip 
BpCpClCotGW08fxpBISpCbBpBQM00dApCoRpBovpCpCS0 
2SpCpCouYSpCpCjG07pCpCpClCpCpAkZOBE7dCpCpCpCpC 
UN0G011ipCgRkepCaa5W002JhCpAXulCam0001ApCpCpB 
SW00000DwpCouG00000000DeXuO0000000008kxo…] 
 

(c)  

 
(d)  
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Figure(r) - (a) color image (b) before and (c) after compression (d) QR Code 
IV. COMPARISON 
This section presents the performance analysis results comparing with RLE [10] algorithm by applying these 
techniques on various test images.  
Test case – 1:  

 
 

Figure(s) 
 

Test case - 2 
 

 
Figure (t) 

 
 

V.  CONCLUSION 
In this paper, we have designed and developed a method that enhances the capacity of the QR code. We have 
developed and implemented a software code that compresses an image file which is to be stored in into the QR 
code in a more secure way. Doing so, we were able to expand the capacity of the QR code and store data 
securely.  
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