## [1,2]-Connected domination number of graphs

G. Mahadevan ${ }^{1}{ }_{x}$ K. Renuka $^{2}$, C.Sivagnanam ${ }^{3}$
${ }^{1}$ Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul624302, India.
E-mail address: drgmaha2014@ gmail.com.
${ }^{2}$ Ful ltime Research Scholar, Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India.
E-mail address: math.renuka@ gmail.com
${ }^{3}$ Department of General Requirments, Sur College of Applied Sciences, Ministry of Higher Education, Sultanate of Oman.
E-mail address: choshi71 @ gmail.com


#### Abstract

A set $S \subseteq V(G)$ in a graph G is said to be a $[1,2]$-connected dominating set if for every vertex $v \in V-S$, $1 \leq|N(v) \cap S| \leq 2$ and $<S>$ is connected. The minimum cardinality of a [1,2]-connected dominating set is called the $[1,2]$-connected domination number and is denoted by $\gamma_{[1,2] c}(G)$. In this paper, we initiate a study of this parameter.


Keywords: Connected domination, [1,2]-sets, [1,2]-domination, [1,2]-connected domination

## 1 Introduction

The graph $G=(V, E)$ we mean a finite, undirected, connected graph with neither loops nor multiple edges. The order and size of $G$ are denoted by $n$ and $m$ respectively. The degree of a vertex $u$ in $G$ is the number of edges incident with $u$ and is denoted by $d_{G}(u)$, simply $d(u)$. The minimum and maximum degree of a graph $G$ is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2].
A set $S \subseteq V$ is a dominating set if every vertex in $V-S$ is adjacent to atleast one vertex in $S$. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$. Sampathkumar and Walikar [6] introduced the concept of connected domination in graphs. A dominating set $S$ is a connected dominating set if it induces a connected subgraph in G. The minimum cardinality of a connected dominating set of G is called the connected domination number and is denoted as $\gamma_{c}(G)$. Paulraj Joseph. J and Arumugam. S [7,4] proved that $\gamma(G)+\chi(G) \leq n+1$ and $\gamma(G)+\kappa(G) \leq n$. Also they characterized the corresponding extremal graphs.
Mustapha Chellali et.al., 2 first studied the concept of [ 1,2$]$-sets. A subset $S \subseteq V$ is a $[j, k]-\operatorname{set}$ if, for every vertex $v \in V-S, j \leq|N(v) \cap S| \leq k$ for any non-negative integer j and k. A vertex set $S \subseteq V$ is a [1,2]-set if, $1 \leq|N(v) \cap S| \leq 2$ for every vertex $v \in V-S$, that is, every vertex $v \in V-S$ is adjacent to either one or two vertices in $S$. The minimum cardinality of a $[1,2]$-set of $G$ is denoted by $\gamma_{[1,2]}(G)$ and is called [1,2]domination number of G. Xiaojing Yang and Baoyindureng Wu [8] extended the study of this parameter. Motivated by the above concepts, in this paper we introduce the concept of [1,2]-connected domination in graphs. Notations:

## This research work was supported by Departmental Special Assistance, University Grants Commission, New Delhi and UGC-BSR Research fellowship in Mathematical Sciences-2014-2015.

Let $H$ be a regular graph.

1. $H\left(P_{k}\right)$ is a graph obtained from $H$ by attaching an end vertex of $P_{k}$ to a vertex of $H$.
2. $H\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ denotes the graph obtained from the graph $H$ by attaching $m_{i}$ pendant edges to the vertex $v_{i} \in V(H), 1 \leq i \leq n$. The graph $K_{2}\left(m_{1}, m_{2}\right)$ is called bistar and it is also denoted by $B\left(m_{1}, m_{2}\right)$.
3. $H\left(m P_{k}\right)$ is the graph obtained from $H$ by attaching $m$ times an end vertex of $P_{k}$ to a vertex of $H$.

## 2 Main Result

Definition 2.1 A set $S \subseteq V$ in a graph $G$ is said to be a [1,2]-connected dominating set ( $[1,2] c d-s e t$ ) if for every vertex $v \in V-S, 1 \leq|N(v) \cap S| \leq 2$ and $<S>$ is connected. The minimum cardinality of a [1,2]connected dominating set is called the [1,2]-connected domination number and is denoted by $\gamma_{[1,2] c}(G)$. A $[1,2] c d-$ set of cardinality $\gamma_{[1,2] c}$ is called a $\gamma_{[1,2] c}-$ set.

## Observation 2.2

The [1,2]-connected domination number for some standard graphs can be easily found.

1. For a path $P_{n}, \gamma_{[1,2] c}\left(P_{n}\right)= \begin{cases}1 & \text { if } n<3 \\ n-2 & \text { otherwise }\end{cases}$
2. For a cycle $C_{n}, \gamma_{[1,2] c}\left(C_{n}\right)=n-2, n \geq 3$.
3. If G is a complete graph $K_{n}$ or a star $K_{1, n-1}$ or wheel $W_{n}$ then $\gamma_{[1,2] c}(G)=1$.
4. For a complete bipartite graph $K_{r, s}, \gamma_{[1,2] c}\left(K_{r, s}\right)=2, r_{,} s \geq 2$.
5. If G is a bistar $B(r, s)$, then $\gamma_{[1,2] c}(G)=2$.

Theorem 2.3 For a tree T of order $n \geq 3, \gamma_{[1,2] c}(T)=n-e$, where $e$ is the number of pendant vertices.
Proof. Let $A$ be the set of all pendant vertices of $T$. Then $V-A$ is a $[1,2]$-connected dominating set of $T$. Hence $\gamma_{[1,2] c}(T) \leq n-e$. Let $S$ be any $\gamma_{[1,2] c}-$ set of $T$. Since $S$ is connected $S$ contains all the internal vertices and hence $|S| \geq n-e$. Thus the result follows.

Corollary: 2.4 For a tree T, $\gamma_{[1,2] c}(T)=n-2$ if and only if $T$ is a path.
Observation: 2.5 Let G be a connected graph of order $n \geq 3$. Then $\gamma_{[1,2] c}(G) \leq n-2$.
Observation: 2.6

1. The complement of a $[1,2] c d-$ set need not be a $[1,2] c d-$ set.
2. Every $[1,2] c d-$ set is a dominating set but not conversely.
3. Every $[1,2] c d-$ set is a connected dominating set but the converse need not be true.

Observation: 2.7 For a graph G, $\gamma(G) \leq \gamma_{[1,2]}(G) \leq \gamma_{[1,2] c}(G)$ and $\gamma_{c}(G) \leq \gamma_{[1,2] c}(G)$.
Theorem: 2.8 For a graph $G,\left\lceil\frac{n}{\Delta+1}\right\rceil \leq \gamma_{[1,2] c}(G) \leq 2 m-n$.

Proof. Since $\gamma(G) \leq \gamma_{[1,2] c}(G)$, the lower bound follows directly. By observation 2.5, $\gamma_{[1,2] c}(G) \leq n-2 \leq 2(n-1)-n \leq 2 m-n$.

Theorem: 2.9 Let G be a connected graph. Then $\gamma_{[1,2] c}(G)=2 m-n$ if and only if $G \cong P_{n}$
Proof. If $G$ is a path, then $\gamma_{[1,2] c}(G)=n-2=2(n-1)-n=2 m-n$. Conversly, assume that $\gamma_{[1,2] c}(G)=2 m-n$. Then $2 m-n \leq n-2$ which gives $m=n-1$ and hence $G$ is a tree. Thus $n-e=2 m-n=2(n-1)-n$ which gives $e=2$. Hence $G$ is a path.

Observation: 2.10 If $G$ is $K_{n}$ or $W_{n}$ or $K_{1, n-1}$ or $C_{n}$ or a tree, then $\gamma_{c}(G)=\gamma_{[1,2] c}(G)$.
Observation: 2.11 For a graph $G, \gamma_{[1,2] c}(G)=1$ if and only if there exist a vertex $u$ such that $d(u)=n-1$.

## 3 Relationship with connectivity and chromatic number

Theorem 3.1 For a connected graph G, $\gamma_{[1,2] c}(G)+\kappa(G) \leq 2 n-3$ and the equality holds if and only if $G$ is $K_{3}$.

Proof. Since $\gamma_{[1,2] c}(G) \leq n-2$ and $\kappa(G) \leq n-1$ the result follows. Let $\gamma_{[1,2] c}(G)+\kappa(G)=2 n-3$. Then $\gamma_{[1,2] c}(G)=n-2$ and $\kappa(G)=n-1$. Since $\kappa(G)=n-1$, G is complete. But for a complete graph $\gamma_{[1,2] c}(G)=1$ and hence $n=3$. Thus $G$ is $K_{3}$. The converse is obvious.

Theorem 3.2 Let G be a connected graph. Then $\gamma_{[1,2] c}(G)+\kappa(G)=2 n-4$ if and only if $G$ is isomorphic to $K_{4}$ or $P_{3}$ or $C_{4}$.

Proof. Let $\gamma_{[1,2] c}(G)+\kappa(G)=2 n-4$. Then there are two cases to consider.
(i) $Y_{[1,2]_{c}}(G)=n-2$ and $\kappa(G)=n-2($ ii) $) Y_{[1,2]_{c}}(G)=n-3$ and $\kappa(G)=n-1$

Case 1. $Y_{[1,2] c}(G)=n-2$ and $\kappa(G)=n-2$
Since $\kappa(G)=n-2$ we have $n-2 \leq \delta(G)$. If $\delta=n-1$, then $G$ is a complete graph, which is a contradiction. Hence $\delta(G)=n-2$. Then $G$ is $K_{n}-Q$ where $Q$ is a matching in $K_{n}$. Thus $\gamma_{[1,2] c}(G) \leq 2$. If $\gamma_{[1,2] c}(G)=2$, then $n=4$ and hence $G$ is isomorphic to $C_{4}$. If $\gamma_{[1,2] c}(G)=1$, then $n=3$ and hence $G$ is $P_{3}$.
Case 2. $\gamma_{[1,2] c}(G)=n-3$ and $\kappa(G)=n-1$
Since $\kappa(G)=n-1, G$ is a complete graph. But for complete graph $\gamma_{[1,2] c}(G)=1$ and hence $n=4$. Thus $G$ is $K_{4}$. The converse is obvious.

Theorem 3.3 For a cycle $C_{n}, \gamma_{[1,2] c}\left(C_{n}\right)=\chi\left(C_{n}\right)$ if and only if $n=4 o r 5$.
Proof. Let $\gamma_{[1,2] c}\left(C_{n}\right)=\chi\left(C_{n}\right)$. Then $\gamma_{[1,2] c}\left(C_{n}\right)=2$ or 3 . If $\gamma_{[1,2] c}\left(C_{n}\right)=2$, then $n=4$. If $\gamma_{[1,2] c}\left(C_{n}\right)=3$, then $n=5$. The converse is obvious.

Theorem 3.4 For a connected graph G, $\gamma_{[1,2] c}(G)+\chi(G) \leq 2 n-2$ and the equality holds if and only if $G$ is

## $K_{3}$.

Proof. The inequality follows directly from $\gamma_{[1,2] c}(G) \leq n-2$ and $\chi(G) \leq n$. Let $\gamma_{[1,2] c}(G)+\chi(G)=2 n-2$. Then $\gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n$. Since $\chi(G)=n$, G is complete. But for complete graph $\gamma_{[1,2] c}(G)=1$ and hence $n=3$. Thus $G$ is $K_{3}$. The converse is obvious.

Theorem 3.5 Let G be a connected graph. Then $\gamma_{[1,2] c}(G)+\chi(G)=2 n-3$ if and only if $G$ is $K_{4}$ or $P_{3}$.
Proof. Let $\gamma_{[1,2] c}(G)+\chi(G)=2 n-3$. Then (i) $\gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-1$ or (ii) $\gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n$.
Case: $1 \gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-1$
Since $\chi(G)=n-1$, G contains a clique K on $n-1$ vertices or does not contains a clique K on $n-1$ vertices.
Let G contains a clique K of order $n-1_{\text {vertices and let }} v \notin V(K)$. Let $u \in N(v)$. Then $\{u\}$ is a $[1,2] c d-$ set of G. Thus $n=3$ and $K=K_{2}$ and hence $G$ is $P_{3}$.
If $G$ does not contains a clique $K$ on $n-1$ vertices, then it is verified that no graph exists.
Case: $2 \gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n$
Since $\chi(G)=n$ and hence G is complete. But for a complete graph $\gamma_{[1,2] c}(G)=1$ and hence $n=4$. Thus $G$ is $K_{4}$. The converse is obvious.

Theorem 3.6 Let $G$ be a connected graph. Then $\gamma_{[1,2] c}(G)+\chi(G)=2 n-4$ if and only if $G \in\left\{P_{4}, C_{4}, C_{5}, K_{5}, K_{3}\left(P_{2}\right), K_{4}-e\right\}$.

Proof. Let $\gamma_{[1,2] c}(G)+\chi(G)=2 n-4$. This is possible only if (i) $\gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-2$ or (ii) $\gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n-1$ or (iii) $\gamma_{[1,2] c}(G)=n-4$ and $\chi(G)=n$.
Case: $1 \gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-2$
Since $\chi(G)=n-2$, either $G$ contains a clique $K$ on $n-2$ vertices or $G=C_{5}+K_{n-5}$. Let $G=C_{5}+K_{n-5}$. If $n \geq 6$ then $\gamma_{[1,2] c}(G)=1$ and hence $n=3$ which is a contradiction. Thus $n=5$ and hence $G=C_{5}$.
Suppose G contains a clique K on $n-2$ vertices. Let $S=V-V(K)=\left\{v_{1}, v_{2}\right\}$. Then either $\langle S\rangle=K_{2}$ or $<S>=\bar{K}_{2}$.
Subcase: $1<S\rangle=K_{2}$
Since G is connected either $v_{1}$ or $v_{2}$ is adjacent to a vertex in $K$. Let $v_{1}$ be adjacent to $u_{1} \in V(K)$. Then $\left\{v_{1}, u_{1}\right\}$ is a $[1,2] c d-$ set of G. Hence $\gamma_{[1,2] c}(G) \leq 2$ so that $n \leq 4$. If $n=4$, then G is either $P_{4}$ or $C_{4}$. If $n=3$, then there is no graph satisfying the statement of the theorem.
Subcase: $2<S\rangle=\bar{K}_{2}$
Since G is connected, we have two cases to consider.
Subcase: $2.1 N\left(v_{1}\right) \cap N\left(v_{2}\right) \neq \phi$
Let $u \in N\left(v_{1}\right) \cap N\left(v_{2}\right)$. Then $\{u\}$ is a $[1,2] c d-$ set of G and hence $\gamma_{[1,2] c}(G)=1$ which gives $n=3$. Thus $G$ is isomorphic to $P_{3}$. But $\chi\left(P_{3}\right)=2 \neq n-2$ which is a contradiction.
Subcase: $2.2 N\left(v_{1}\right) \cap N\left(v_{2}\right)=\phi$
Let $v_{1} u_{1}, v_{2} u_{2} \in E(G)$ for some $u_{1}, u_{2} \in V(K)$. Then $\left\{u_{1}, u_{2}\right\}$ is a $[1,2] c d-$ set of G. Thus $\gamma_{[1,2] c}(G)=2$ and hence $n=4$. Thus $K=K_{2}$ which gives $G=P_{4}$.
Case: $2 \gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n-1$

Since $\chi(G)=n-1$, either $G$ contains a clique K on $n-1$ vertices or does not contains a clique K on $n-1$ vertices. Let G contains a clique K on $n-1$ vertices and let $v \in V-V(K)$. Since G is connected, without loss of generality we may assume that v be adjacent to $u \in V(K)$. Then $\{u\}$ is a $[1,2] c d-$ set of $G$ which gives $\gamma_{[1,2] c}(G)=1$ and hence $n=4$. Thus $K=K_{3}$. If $d(v)=1$ then $G \cong K_{3}\left(P_{2}\right)$. If $d(v)=2$ then $G=K_{4}-e$.
If $G$ does not contains a clique K on $n-\mathbb{1}$ vertices, then it is verified that no graph exist.
Case: $3 \gamma_{[1,2] c}(G)=n-4$ and $\chi(G)=n$
Since $\chi(G)=n$, $G$ is complete and hence $\gamma_{[1,2] c}(G)=1$. Thus $n=5$, so that $G=K_{5}$. The converse is obvious.

Theorem 3.7 Let G be a connected graph then, $\gamma_{[1,2] c}(G)+\chi(G)=2 n-5$ if and only if G is isomorphic to $P_{5}$ or $K_{3}\left(P_{3}\right)$ or $K_{1,3}$ or $K_{3}(1,1,0)$ or $K_{6}$ or $K_{5}-Y$, where $Y \subseteq E\left(K_{5}\right)$ such that the edge induced subgraph $<Y>$ is a star and $1 \leq|Y| \leq 3$ or $H_{i}, 1 \leq i \leq 3$.

Proof. Let $\gamma_{[1,2] c}(G)+\chi(G)=2 n-5$. This is possible only if (i) $\gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-3$ or (ii) $\gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n-2$ or (iii) $\gamma_{[1,2] c}(G)=n-4$ and $\chi(G)=n-1$ or (iv) $\gamma_{[1,2] c}(G)=n-5$ and $\chi(G)=n$.
Case. $1 \gamma_{[1,2] c}(G)=n-2$ and $\chi(G)=n-3$
Since $\chi(G)=n-3$, G contains a clique on $n-3$ vertices or does not contains a clique on $n-3$ vertices. Suppose $G$ contains a clique $K$ on $n-3$ vertices. Let $S=V(G)-V(K)=\left\{v_{1}, v_{2}, v_{3}\right\}$.
Subcase 1: $<S\rangle=\bar{K}_{3}$
Since $G$ is connected, every vertex in $S$ is adjacent to atleast one vertex in $K$.
Suppose all the vertices of $S$ are adjacent to $u_{1} \in K$. Then $\left\{u_{1}\right\}$ is $[1,2] c d-$ set of G. Hence $\gamma_{[1,2] c}(G)=1$. Then $n=3$ which is a contradiction.
Suppose $v_{1}, v_{2}$ are adjacent to a vertex $u_{1} \in K$ and $v_{3} u_{2} \in E$. Then $\left\{u_{1}, u_{2}\right\}$ is $[1,2] c d-$ set. Hence $\gamma_{[1,2] c}(G) \leq 2$, then $n \leq 4$ and hence $K=K_{1}$, which is a contradiction.
Suppose all the vertices of S are adjacent to distinct vertices of K . Let $u_{i} v_{i} \in E$. Then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $[1,2] c d$-set. Hence $\gamma_{[1,2] c}(G) \leq 3$, then $n \leq 5$, which is a contradiction.
Subcase 2: $<S\rangle=K_{2} \cup K_{1}$
Let $v_{1} v_{2} \in E$. Since $G$ is connected $v_{1}$ and $v_{3}$ have neighbors in K .
Suppose $N\left(v_{1}\right) \cap N\left(v_{3}\right) \neq \emptyset$. Let $v_{1} u_{1}, v_{3} u_{1} \in E$. Then $\left\{v_{1}, u_{1}\right\}$ is a $[1,2] c d-$ set of $G$ and hence $\gamma_{[1,2] c e}(G) \leq 2$ and $n \leq 4$, which is a contradiction.
Suppose $N\left(v_{1}\right) \cap N\left(v_{3}\right)=\emptyset$. Let $v_{1} u_{1}, v_{3} u_{2} \in E$. Then $\left\{v_{1}, u_{1}, u_{2}\right\}$ is a $[1,2] c d-$ set of $G$ and hence $n=5$.Then $G \cong P_{5}$. If $d\left(v_{1}\right)>2$ or $d\left(v_{2}\right)>1$ or $d\left(v_{3}\right)>1$, then no graph exists.
Subcase 3: $<S>=C_{3}$
Let $v_{1} u_{1} \in E$. Then $\left\{u_{1}, v_{1}\right\}$ is a $[1,2] c d-_{\text {set }}$ of $G$ and hence $\gamma_{[1,2] c}(G) \leq 2$. Then $n \leq 4$. Hence $K=K_{1}$, which is a contradiction.
Subcase 4: $<S>=P_{3}$
Let $<S>=\left(v_{1}, v_{2}, v_{3}\right)$. Since $G$ is connected, at least one vertex of $S$ is adjacent to a vertex in K. Let $v_{2} u_{1} \in E(G)$. Then $\left\{v_{2}, u_{1}\right\}$ is a $[1,2] c d-_{\text {set }}$ of G. Thus $\gamma_{[1,2] c}(G) \leq 2$ and hence $n=4$. Then $K=K_{1}$ and hence no graph exists.
Suppose $v_{2} u_{1} \notin E(G)$. Let $v_{1} u_{1} \in E(G)$. Then $\left\{v_{1}, v_{2}, u_{1}\right\}$ is $[1,2] c d-$ set of G. Hence $\gamma_{[1,2] c}(G) \leq 3$ and $n \leq 5$. It is clear that $n=5$. Then $K=K_{2}$ and $G \cong P_{5}$. If $d\left(v_{1}\right)>2$ or $d\left(v_{3}\right)>1$, then no graph exists.

If $G$ does not contains a clique on $n-3$ vertices, it can be verified that no graph exists.
Case. $2 \gamma_{[1,2] c}(G)=n-3$ and $\chi(G)=n-2$
Since $\chi(G)=n-2, G$ contains a clique $K$ of order $n-2$ or $G=C_{5}+K_{n-5}$. Let K be a clique of order $n-2$ in G. Let $S=V-V(K)=\left\{v_{1}, v_{2}\right\}$
Subcase. $1\langle S\rangle=K_{2}$
Without loss of generality we assume that $v_{1} u_{1} \in E$ for some $u_{1} \in V(K)$. Then $\left\{v_{1}, u_{1}\right\}$ is a $[1,2] c d-$ set of G and hence $\gamma_{[1,2] c}(G) \leq 2$. If $\gamma_{[1,2] c}(G)=1$ then $n=4$ and hence $K=K_{2}$ which is a contradiction. If $\gamma_{[1,2] c}(G)=2$, then $n=5$ and $K=K_{3}$. Hence G is isomorphic to $K_{3}\left(P_{3}\right)$ or $\mathrm{H}_{1}$ ort $\mathrm{O}_{2} \mathrm{orH}_{3}$.
Subcase. $2<S>=\bar{K}_{2}$
If $N\left(v_{1}\right) \cap N\left(v_{2}\right) \neq \phi$, then $\gamma_{[1,2] c}(G)=1$. Hence $n=4$ and $K=K_{2}$. Thus $G \cong K_{1,3}$. If $d\left(v_{1}\right) \geq 2$, then $K=K_{3}$ which is a contradiction. Thus $d\left(v_{1}\right)=1$ and hence $G \cong K_{1,3}$.
Let $N\left(v_{1}\right) \cap N\left(v_{2}\right)=\phi$. Let $u \in N\left(v_{1}\right)$ and $v \in N\left(v_{2}\right)$. Then $\{u, v\}$ is a $\gamma_{[1,2] c}-$ set of G. Thus $n=5$ and $K=K_{3}$. Hence G is isomorphic to either $K_{3}(1,1,0)$ or $H_{1}$.
Suppose $G=C_{5}+K_{n-5}$. Then $\gamma_{[1,2] c]}(G)=1$ and hence $n=4$ which is a contradiction.
Case. $3 \gamma_{[1,2] c}(G)=n-4$ and $\chi(G)=n-1$
Then G contains a clique K of order $n-1$. Let $V-V(K)=\{v\}$. Since G is connected there exists a vertex $u \in V(K)$ such that $u v \in E$. Then $\{u\}$ is a $[1,2] c d-$ set of $G$. Thus $n=5$ and $K=K_{4}$. Hence $G$ is isomorphic to $K_{5}-Y$ where $Y \subseteq E\left(K_{5}\right)$ such that the edge induced subgraph $\langle Y\rangle$ is a star and $1 \leq|Y| \leq 3$.
Case. $4 \gamma_{[1,2]_{c}}(G)=n-5$ and $\chi(G)=n$
Since $\chi(G)=n, G$ is a complete graph. But for complete graph $G, \gamma_{[1,2] c}(G)=1$, so that $n=6$ and hence $G \cong K_{6}$. The converse is obvious.

## Conclusion:

In this paper, we introduced the concept of [1,2]-Connected domination number of graphs and obtained its bounds. We also showed the relation between $[1,2] c d-$ set with connectivity and chromatic number of graphs.

## References

[1] G.Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition CRC Press, Boca Raton, 2005.
[2] T.W.Haynes, S.T.Hedetniemi and P.J.slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[3] Mustapha Chellali, Teresa W. Haynes, Stephen T. Hedetniemi and Alice McRae, [1,2]-Sets in graphs, Discrete Applied Mathematics, 161, (2013), 2885-2893.
[4] J.Paulraj Joseph and S.Arumugam, Domination and Connectivity in graphs, International Journal of Management and Systems, 8, (1992), 233-236.
[5] J.Paulraj Joseph and S.Arumugam, Domination and coloring in graphs, International journal of Management systems, 8(1), (1997), $37-44$.
[6] E.Sampathkumar and H.B.Walikar, The connected domination number of a graph, Journal of Math. Phy. Sci. Vol. 13, No. 6, (1979), $607-613$.
[7] C.Sivagnanam, Double domination number and connectivity of graphs,International Journal of Digital Information and Wireless Communications, 2(1), (2012), 40-45.
[8] Xiaojing Yang and Baoyindureng Wu, [1,2]-domination in graphs, Discrete Applied Mathematics, 175, (2014), $79-86$.

