[1, 2]-Connected domination number of graphs

G. Mahadevan¹, K. Renuka², C.Sivagnanam³

¹ Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India.

E-mail address: drgmaha2014@ gmail.com.

² Ful ltime Research Scholar, Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India.

E-mail address: math.renuka@ gmail.com

³ Department of General Requirments, Sur College of Applied Sciences,

Ministry of Higher Education, Sultanate of Oman.

E-mail address: choshi71 @ gmail.com

Abstract

A set $S \subseteq V(G)$ in a graph G is said to be a [1,2]-connected dominating set if for every vertex $v \in V - S$, $1 \leq |N(v) \cap S| \leq 2$ and $\langle S \rangle$ is connected. The minimum cardinality of a [1,2]-connected dominating set is called the [1,2]-connected domination number and is denoted by $\gamma_{[1,2]c}(G)$. In this paper, we initiate a study of this parameter.

Keywords: Connected domination, [1,2]-sets, [1,2]-domination, [1,2]-connected domination

1 Introduction

The graph G = (V, E) we mean a finite, undirected, connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. The degree of a vertex u in G is the number of edges incident with u and is denoted by $d_G(u)$, simply d(u). The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2].

A set $S \subseteq V$ is a dominating set if every vertex in V - S is adjacent to atleast one vertex in S. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$. Sampathkumar and Walikar [6] introduced the concept of connected domination in graphs. A dominating set S is a connected dominating set if it induces a connected subgraph in G. The minimum cardinality of a connected dominating set of G is called the connected domination number and is denoted as $\gamma_c(G)$. Paulraj Joseph. J and Arumugam. S [7,4] proved that $\gamma(G) + \chi(G) \leq n + 1$ and $\gamma(G) + \kappa(G) \leq n$. Also they characterized the corresponding extremal graphs.

Mustapha Chellali et.al., 2 first studied the concept of [1,2]-sets. A subset $S \subseteq V$ is a [j,k] - set if, for every vertex $v \in V - S$, $j \leq |N(v) \cap S| \leq k$ for any non-negative integer j and k. A vertex set $S \subseteq V$ is a [1,2]-set if, $1 \leq |N(v) \cap S| \leq 2$ for every vertex $v \in V - S$, that is, every vertex $v \in V - S$ is adjacent to either one or two vertices in S. The minimum cardinality of a [1,2]-set of G is denoted by $\gamma_{[1,2]}(G)$ and is called [1,2]-domination number of G. Xiaojing Yang and Baoyindureng Wu [8] extended the study of this parameter.

Motivated by the above concepts, in this paper we introduce the concept of [1,2]-connected domination in graphs. **Notations:**

This research work was supported by Departmental Special Assistance, University Grants Commission, New Delhi and UGC-BSR Research fellowship in Mathematical Sciences-2014-2015.

Let H be a regular graph.

1. $H(P_k)$ is a graph obtained from H by attaching an end vertex of P_k to a vertex of H.

2. H(m₁, m₂,..., m_n) denotes the graph obtained from the graph H by attaching m_i pendant edges to the vertex v_i ∈ V(H), 1 ≤ i ≤ n. The graph K₂(m₁, m₂) is called bistar and it is also denoted by B(m₁, m₂).
3. H(mP_k) is the graph obtained from H by attaching m times an end vertex of P_k to a vertex of H.

2 Main Result

Definition 2.1 A set $S \subseteq V$ in a graph G is said to be a [1,2]-connected dominating set ([1,2]cd - set) if for every vertex $v \in V - S$, $1 \leq |N(v) \cap S| \leq 2$ and $\langle S \rangle$ is connected. The minimum cardinality of a [1,2]connected dominating set is called the [1,2]-connected domination number and is denoted by $\gamma_{[1,2]c}(G)$. A [1,2]cd -set of cardinality $\gamma_{[1,2]c}$ is called a $\gamma_{[1,2]c}$ -set.

Observation 2.2

The [1,2]-connected domination number for some standard graphs can be easily found.

- 1. For a path P_n , $\gamma_{[1,2]c}(P_n) = \begin{cases} 1 & if \ n < 3 \\ n-2 & otherwise \end{cases}$
- 2. For a cycle $C_n, \gamma_{[1,2]c}(C_n) = n 2, n \ge 3$.
- 3. If G is a complete graph K_n or a star $K_{1,n-1}$ or wheel W_n then $\gamma_{[1,2]c}(G) = 1$.
- 4. For a complete bipartite graph $K_{r,s}$, $\gamma_{[1,2]c}(K_{r,s}) = 2, r, s \ge 2$.
- 5. If G is a bistar B(r,s), then $\gamma_{[1,2]c}(G) = 2$.

Theorem 2.3 For a tree T of order $n \ge 3$, $\gamma_{[1,2]c}(T) = n - e$, where e is the number of pendant vertices.

Proof. Let *A* be the set of all pendant vertices of *T*. Then V - A is a [1,2]-connected dominating set of *T*. Hence $\gamma_{[1,2]c}(T) \leq n - e$. Let *S* be any $\gamma_{[1,2]c}$ – set of *T*. Since *S* is connected *S* contains all the internal vertices and hence $|S| \geq n - e$. Thus the result follows.

Corollary: 2.4 For a tree T, $\gamma_{[1,2]c}(T) = n - 2$ if and only if T is a path. Observation: 2.5 Let G be a connected graph of order $n \ge 3$. Then $\gamma_{[1,2]c}(G) \le n - 2$. Observation: 2.6

- 1. The complement of a [1,2]cd set need not be a [1,2]cd set.
- 2. Every [1,2]*cd* -set is a dominating set but not conversely.
- 3. Every [1,2]*cd* -set is a connected dominating set but the converse need not be true.

Observation: 2.7 For a graph G, $\gamma(G) \leq \gamma_{[1,2]}(G) \leq \gamma_{[1,2]c}(G)$ and $\gamma_c(G) \leq \gamma_{[1,2]c}(G)$. **Theorem:** 2.8 For a graph G, $\left\lfloor \frac{n}{\Delta + 1} \right\rfloor \leq \gamma_{[1,2]c}(G) \leq 2m - n$.

Vol.12 No 13 (2021), 5100-5105

Research Article

Proof. Since $\gamma(G) \leq \gamma_{[1,2]c}(G)$, the lower bound follows directly. By observation 2.5, $\gamma_{[1,2]c}(G) \leq n-2 \leq 2(n-1)-n \leq 2m-n$.

Theorem: 2.9 Let G be a connected graph. Then $\gamma_{[1,2]c}(G) = 2m - n$ if and only if $G \cong P_n$

Proof. If G is a path, then $\gamma_{[1,2]c}(G) = n-2 = 2(n-1) - n = 2m - n$. Conversely, assume that $\gamma_{[1,2]c}(G) = 2m - n$. Then $2m - n \le n - 2$ which gives m = n - 1 and hence G is a tree. Thus n - e = 2m - n = 2(n-1) - n which gives e = 2. Hence G is a path.

Observation: 2.10 If G is K_n or W_n or $K_{1,n-1}$ or C_n or a tree, then $\gamma_c(G) = \gamma_{[1,2]c}(G)$. **Observation:** 2.11 For a graph G, $\gamma_{[1,2]c}(G) = 1$ if and only if there exist a vertex u such that d(u) = n - 1.

3 Relationship with connectivity and chromatic number

Theorem 3.1 For a connected graph G, $\gamma_{[1,2]c}(G) + \kappa(G) \leq 2n - 3$ and the equality holds if and only if G is K_3 .

Proof. Since $\gamma_{[1,2]c}(G) \leq n-2$ and $\kappa(G) \leq n-1$ the result follows. Let $\gamma_{[1,2]c}(G) + \kappa(G) = 2n-3$. Then $\gamma_{[1,2]c}(G) = n-2$ and $\kappa(G) = n-1$. Since $\kappa(G) = n-1$, G is complete. But for a complete graph $\gamma_{[1,2]c}(G) = 1$ and hence n = 3. Thus G is K_3 . The converse is obvious.

Theorem 3.2 Let G be a connected graph. Then $\gamma_{[1,2]c}(G) + \kappa(G) = 2n - 4$ if and only if G is isomorphic to K_4 or P_3 or C_4 .

Proof. Let $\gamma_{[1,2]c}(G) + \kappa(G) = 2n - 4$. Then there are two cases to consider. (i) $\gamma_{[1,2]c}(G) = n - 2$ and $\kappa(G) = n - 2$ (ii) $\gamma_{[1,2]c}(G) = n - 3$ and $\kappa(G) = n - 1$ Case $1.\gamma_{[1,2]c}(G) = n - 2$ and $\kappa(G) = n - 2$

Since $\kappa(G) = n - 2$ we have $n - 2 \le \delta(G)$. If $\delta = n - 1$, then G is a complete graph, which is a contradiction. Hence $\delta(G) = n - 2$. Then G is $K_n - Q$ where Q is a matching in K_n . Thus $\gamma_{[1,2]c}(G) \le 2$. If $\gamma_{[1,2]c}(G) = 2$, then n = 4 and hence G is isomorphic to C_4 . If $\gamma_{[1,2]c}(G) = 1$, then n = 3 and hence G is P_3 .

Case 2. $\gamma_{[1,2]c}(G) = n - 3$ and $\kappa(G) = n - 1$

Since $\kappa(G) = n - 1$, G is a complete graph. But for complete graph $\gamma_{[1,2]c}(G) = 1$ and hence n = 4. Thus G is K_4 . The converse is obvious.

Theorem 3.3 For a cycle C_n , $\gamma_{[1,2]c}(C_n) = \chi(C_n)$ if and only if n = 4or5.

Proof. Let $\gamma_{[1,2]c}(C_n) = \chi(C_n)$. Then $\gamma_{[1,2]c}(C_n) = 2$ or 3. If $\gamma_{[1,2]c}(C_n) = 2$, then n = 4. If $\gamma_{[1,2]c}(C_n) = 3$, then n = 5. The converse is obvious.

Theorem 3.4 For a connected graph G, $\gamma_{[1,2]c}(G) + \chi(G) \leq 2n-2$ and the equality holds if and only if G is

Кз.

Proof. The inequality follows directly from $\gamma_{[1,2]c}(G) \le n-2$ and $\chi(G) \le n$. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n-2$. Then $\gamma_{[1,2]c}(G) = n-2$ and $\chi(G) = n$. Since $\chi(G) = n$, G is complete. But for complete graph $\gamma_{[1,2]c}(G) = 1$ and hence n = 3. Thus G is K_3 . The converse is obvious.

Theorem 3.5 Let G be a connected graph. Then $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 3$ if and only if G is K_4 or P_3 .

Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 3$. Then (i) $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 1$ or (ii) $\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n$. Case: $1 \gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 1$

Since $\chi(G) = n - 1$, G contains a clique K on n - 1 vertices or does not contains a clique K on n - 1 vertices. Let G contains a clique K of order n - 1 vertices and let $v \notin V(K)$. Let $u \in N(v)$. Then $\{u\}$ is a [1,2]cd -set of G. Thus n = 3 and $K = K_2$ and hence G is P_3 .

If G does not contains a clique K on n - 1 vertices, then it is verified that no graph exists.

Case: $2\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n$

Since $\chi(G) = n$ and hence G is complete. But for a complete graph $\gamma_{[1,2]c}(G) = 1$ and hence n = 4. Thus G is K_4 . The converse is obvious.

Theorem 3.6 Let G be a connected graph. Then $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 4$ if and only if $G \in \{P_4, C_4, C_5, K_5, K_3(P_2), K_4 - e\}.$

Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 4$. This is possible only if (i) $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 2$ or (ii) $\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n - 1$ or (iii) $\gamma_{[1,2]c}(G) = n - 4$ and $\chi(G) = n$. Case: $1 \gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 2$

Since $\chi(G) = n - 2$, either G contains a clique K on n - 2 vertices or $G = C_5 + K_{n-5}$. Let $G = C_5 + K_{n-5}$. If $n \ge 6$ then $\gamma_{[1,2]c}(G) = 1$ and hence n = 3 which is a contradiction. Thus n = 5 and hence $G = C_5$.

Suppose G contains a clique K on n - 2 vertices. Let $S = V - V(K) = \{v_1, v_2\}$. Then either $\langle S \rangle = K_2$ or $\langle S \rangle = \overline{K}_2$.

Subcase: $1 \le S \ge K_2$

Since G is connected either v_1 or v_2 is adjacent to a vertex in K. Let v_1 be adjacent to $u_1 \in V(K)$. Then $\{v_1, u_1\}$ is a [1,2]cd -set of G. Hence $\gamma_{[1,2]c}(G) \leq 2$ so that $n \leq 4$. If n = 4, then G is either P_4 or C_4 . If n = 3, then there is no graph satisfying the statement of the theorem.

Subcase: $2 < S >= \overline{K}_2$

Since G is connected, we have two cases to consider.

Subcase: 2.1 $N(v_1) \cap N(v_2) \neq \phi$

Let $u \in N(v_1) \cap N(v_2)$. Then $\{u\}$ is a [1,2]cd -set of G and hence $\gamma_{[1,2]c}(G) = 1$ which gives n = 3. Thus G is isomorphic to P_3 . But $\chi(P_3) = 2 \neq n - 2$ which is a contradiction. Subcase: $2 \cdot 2 \cdot N(v_1) \cap N(v_2) = \phi$

Let $v_1u_1, v_2u_2 \in E(G)$ for some $u_1, u_2 \in V(K)$. Then $\{u_1, u_2\}$ is a [1,2]cd-set of G. Thus $\gamma_{[1,2]c}(G) = 2$ and hence n = 4. Thus $K = K_2$ which gives $G = P_4$. Case: $2\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n - 1$

Since $\chi(G) = n - 1$, either G contains a clique K on n - 1 vertices or does not contains a clique K on n - 1 vertices. Let G contains a clique K on n - 1 vertices and let $v \in V - V(K)$. Since G is connected, without loss of generality we may assume that v be adjacent to $u \in V(K)$. Then $\{u\}$ is a [1,2]cd-set of G which gives $\gamma_{[1,2]c}(G) = 1$ and hence n = 4. Thus $K = K_3$. If d(v) = 1 then $G \cong K_3(P_2)$. If d(v) = 2 then $G = K_4 - e$.

If G does not contains a clique K on n - 1 vertices, then it is verified that no graph exist. Case: $3\gamma_{[1,2]c}(G) = n - 4$ and $\chi(G) = n$

Since $\chi(G) = n$, G is complete and hence $\gamma_{[1,2]c}(G) = 1$. Thus n = 5, so that $G = K_5$. The converse is obvious.

Theorem 3.7 Let G be a connected graph then, $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 5$ if and only if G is isomorphic to P_5 or $K_3(P_3)$ or $K_{1,3}$ or $K_3(1,1,0)$ or K_6 or $K_5 - Y$, where $Y \subseteq E(K_5)$ such that the edge induced subgraph $\langle Y \rangle$ is a star and $1 \leq |Y| \leq 3$ or H_i , $1 \leq i \leq 3$.

Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 5$. This is possible only if (i) $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 3$ or (ii) $\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n - 2$ or (iii) $\gamma_{[1,2]c}(G) = n - 4$ and $\chi(G) = n - 1$ or (iv) $\gamma_{[1,2]c}(G) = n - 5$ and $\chi(G) = n$. Case.1 $\gamma_{[1,2]c}(G) = n - 2and\chi(G) = n - 3$

Since $\chi(G) = n - 3$, G contains a clique on n - 3 vertices or does not contains a clique on n - 3 vertices. Suppose G contains a clique K on n - 3 vertices. Let $S = V(G) - V(K) = \{v_1, v_2, v_3\}$. Subcase 1: $\langle S \rangle = \overline{K}_3$

Since G is connected, every vertex in S is adjacent to atleast one vertex in K.

Suppose all the vertices of S are adjacent to $u_1 \in K$. Then $\{u_1\}$ is [1,2]cd —set of G. Hence $\gamma_{[1,2]c}(G) = 1$. Then n = 3 which is a contradiction.

Suppose v_1, v_2 are adjacent to a vertex $u_1 \in K$ and $v_3 u_2 \in E$. Then $\{u_1, u_2\}$ is [1,2]cd—set. Hence $\gamma_{[1,2]c}(G) \leq 2$, then $n \leq 4$ and hence $K = K_1$, which is a contradiction.

Suppose all the vertices of S are adjacent to distinct vertices of K. Let $u_i v_i \in E$. Then $\{u_1, u_2, u_3\}$ is [1,2]cd —set. Hence $\gamma_{[1,2]c}(G) \leq 3$, then $n \leq 5$, which is a contradiction.

Subcase 2:
$$< S > = K_2 \cup K_1$$

Let $v_1 v_2 \in E$. Since G is connected v_1 and v_3 have neighbors in K.

Suppose $N(v_1) \cap N(v_3) \neq \emptyset$. Let $v_1u_1, v_3u_1 \in E$. Then $\{v_1, u_1\}$ is a [1,2]cd -set of G and hence $\gamma_{[1,2]cc}(G) \leq 2$ and $n \leq 4$, which is a contradiction.

Suppose $N(v_1) \cap N(v_3) = \emptyset$. Let $v_1u_1, v_3u_2 \in E$. Then $\{v_1, u_1, u_2\}$ is a [1,2]cd -set of G and hence n = 5. Then $G \cong P_5$. If $d(v_1) > 2$ or $d(v_2) > 1$ or $d(v_3) > 1$, then no graph exists.

Subcase 3:
$$< 5 >= C_3$$

Let $v_1u_1 \in E$. Then $\{u_1, v_1\}$ is a [1,2]cd-set of G and hence $\gamma_{[1,2]c}(G) \leq 2$. Then $n \leq 4$. Hence $K = K_1$, which is a contradiction.

Let $\langle S \rangle = (v_1, v_2, v_3)$. Since G is connected, at least one vertex of S is adjacent to a vertex in K. Let $v_2u_1 \in E(G)$. Then $\{v_2, u_1\}$ is a [1,2]cd -set of G. Thus $\gamma_{[1,2]c}(G) \leq 2$ and hence n = 4. Then $K = K_1$ and hence no graph exists.

Suppose $v_2 u_1 \notin E(G)$. Let $v_1 u_1 \in E(G)$. Then $\{v_1, v_2, u_1\}$ is [1,2]cd -set of G. Hence $\gamma_{[1,2]c}(G) \leq 3$ and $n \leq 5$. It is clear that n = 5. Then $K = K_2$ and $G \cong P_5$. If $d(v_1) > 2$ or $d(v_3) > 1$, then no graph exists.

If G does not contains a clique on n - 3 vertices, it can be verified that no graph exists.

Case.2 $\gamma_{[1,2]c}(G) = n - 3and\chi(G) = n - 2$ Since $\chi(G) = n - 2$, G contains a clique K of order n - 2 or $G = C_5 + K_{n-5}$. Let K be a clique of order n - 2 in G. Let $S = V - V(K) = \{v_1, v_2\}$

Subcase.1 $\leq S > = K_2$

Without loss of generality we assume that $v_1u_1 \in E$ for some $u_1 \in V(K)$. Then $\{v_1, u_1\}$ is a [1,2]cd -set of G and hence $\gamma_{[1,2]c}(G) \leq 2$. If $\gamma_{[1,2]c}(G) = 1$ then n = 4 and hence $K = K_2$ which is a contradiction. If $\gamma_{[1,2]c}(G) = 2$, then n = 5 and $K = K_3$. Hence G is isomorphic to $K_3(P_3)$ or $H_1orH_2orH_3$. Subcase $2 \leq S > = \overline{K}_2$

If $N(v_1) \cap N(v_2) \neq \phi$, then $\gamma_{[1,2]\sigma}(G) = 1$. Hence n = 4 and $K = K_2$. Thus $G \cong K_{1,3}$. If $d(v_1) \ge 2$, then $K = K_3$ which is a contradiction. Thus $d(v_1) = 1$ and hence $G \cong K_{1,3}$.

Let $N(v_1) \cap N(v_2) = \phi$. Let $u \in N(v_1)$ and $v \in N(v_2)$. Then $\{u, v\}$ is a $\gamma_{[1,2]c}$ -set of G. Thus n = 5 and $K = K_3$. Hence G is isomorphic to either $K_3(1,1,0)$ or H_1 .

Suppose $G = C_5 + K_{n-5}$. Then $\gamma_{[1,2]c]}(G) = 1$ and hence n = 4 which is a contradiction. Case.3 $\gamma_{[1,2]c}(G) = n - 4$ and $\chi(G) = n - 1$

Then G contains a clique K of order n-1. Let $V - V(K) = \{v\}$. Since G is connected there exists a vertex $u \in V(K)$ such that $uv \in E$. Then $\{u\}$ is a [1,2]cd-set of G. Thus n = 5 and $K = K_4$. Hence G is isomorphic to $K_5 - Y$ where $Y \subseteq E(K_5)$ such that the edge induced subgraph $\langle Y \rangle$ is a star and $1 \leq |Y| \leq 3$.

Case.4 $\gamma_{[1,2]c}(G) = n - 5$ and $\chi(G) = n$

Since $\chi(G) = n$, G is a complete graph. But for complete graph G, $\gamma_{[1,2]c}(G) = 1$, so that n = 6 and hence $G \cong K_6$. The converse is obvious.

Conclusion:

In this paper, we introduced the concept of [1,2]-Connected domination number of graphs and obtained its bounds. We also showed the relation between [1,2]cd —set with connectivity and chromatic number of graphs.

References

[1] G.Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition CRC Press, Boca Raton, 2005.

[2] T.W.Haynes, S.T.Hedetniemi and P.J.slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, **1998**.

[3] Mustapha Chellali, Teresa W. Haynes, Stephen T. Hedetniemi and Alice McRae, [1,2]-Sets in graphs, Discrete Applied Mathematics, 161, (2013), 2885 – 2893.

[4] J.Paulraj Joseph and S.Arumugam, Domination and Connectivity in graphs, International Journal of Management and Systems, 8, (1992), 233 – 236.

[5] J.Paulraj Joseph and S.Arumugam, Domination and coloring in graphs, International journal of Management systems, 8(1), (1997), 37 - 44.

[6] E.Sampathkumar and H.B.Walikar, The connected domination number of a graph, Journal of Math. Phy. Sci. Vol. 13, No. 6, (1979), 607 – 613.

[7] C.Sivagnanam, Double domination number and connectivity of graphs, International Journal of Digital Information and Wireless Communications, 2(1), (2012), 40 - 45.

[8] Xiaojing Yang and Baoyindureng Wu, [1,2]-domination in graphs, Discrete Applied Mathematics, 175, (2014), 79 - 86.