At Most Twin Outer Perfect Domination Number Of A Graph

G. Mahadevan¹, A.Iravithul Basira² C.Sivagnanam³

¹ Department Of Mathematics,
Gandhigram Rural Institute - Deemed University, Gandhigram, Dindigul
E-Mail : Drgmaha2014@Gmail.Com
²Full Time Research Scholar, Department Of Mathematics,
Gandhigram Rural Institute - Deemed University, Gandhigram, Dindigul
E-Mail : J.Basiraabbas@Gmail.Com
³ Department Of General Requirements, Sur College Of Applied Sciences, Ministry Of Higher Education, Sultanate
Of Oman. Email: <u>Choshi71@Gmail.Com</u>

ABSTRACT

A Set $S \subseteq V(G)$ In A Graph G Is Said To Be At Most Twin Outer Perfect Dominating Set If For Every Vertex $v \in V - S$, $1 \boxtimes N(v) \cap S | \leq 2$ And $\langle V - S \rangle$ Has At Least One Perfect Matching. The Minimum Cardinality Of At Most Twin Outer Perfect Dominating Set Is Called At Most Twin Outer Perfect Domination Number And Is Denoted By $\gamma_{atop}(G)$. In This Paper, We Initiate A Study Of This Parameter.

Keywords: Domination , Complementary Perfect Domination

1. Introduction

The Concept Of Complementary Perfect Domination Number Was Introduced By Paulraj Joseph Et.Al [8]. A Set $S \subseteq V$ Is Called A Complementary Perfect Dominating Set, If S Is A Dominating Set Of G And The Induced Sub Graph $\langle V - S \rangle$ Has A Perfect Matching. The Minimum Cardinality Taken Over All Complementary Perfect Dominating Sets Is Called The Complementary Perfect Domination Number And Is Denoted By $\gamma_{cp}(G)$. In [6] Mustapha Chellali Et.Al., First Studied The Concept Of [1,2]-Sets. A Subset $S \subseteq V$ In A Graph G Is A [j,k] If, $j \leq |N(V) \cap| \leq K$ For Every Vertex , For Any Non-Negative Integer J And K. In [7], Xiaojing Yang And Baoyindureng Wu, Extended The Study Of This Parameter. A Vertex Set S In Graph G Is [1,2]-Set If, $1 \leq |N(V) \cap| \leq 2$ For Every Vertex $v \in V - S$, That Is, Every Vertex $v \in V - S$ Is Adjacent To Either One Or Two Vertices In S. The Minimum Cardinality Of A [1,2]-Set Of G Is Denoted By $\gamma_{[1,2]}(G)$ And Is Called [1,2]Domination Number Of G.

This Research Work Was Supported By Departmental Special Assistance, University Grant Commission, New Delhi

 $H_{p,p}$ Is The Graph With Vertex Set $V(H_{p,p}) = \{v_1, v_2, v_3, \dots, v_p, u_1, u_2, \dots, u_p\}$ And The Edge Set $E(H_{p,p}) = \{v_i u_j 1 \le i \le p, p-i+1 \le j \le p\}$. We Denote L_r , P_r , C_r As Ladder Graph, Path, And Cycle Respectively On p^{th} . For $p \ge 4$, Wheel W_p Is Defined To Be The Graph $K_1 + C_{p-1}$.

By Attaching A Pendent Edge At Each Vertex Of W_p Except The Central Vertex Forms A Helm Graph.

The Square Of A Graph G Is Doneted As G^2 In Which It Has The Same Vertices As In G And The Two Vertices U And V Are Adjacent In G^2 If And Only If They Are Joined In G By A Path Of Length One Or Two.

In This Paper, We Introduce The Concept Of At Most Twin Outer Perfect Domination Number Of A Graph And Investigate This Number For Some Standard Classes Of Graphs.

2. Previous Result

Theorem 2.1[7] For Any Connected Graph
$$G$$
, $\gamma_{cp}(P_p) = \begin{cases} r+2, & \text{if } p = 3r \\ r+1, & \text{if } p = 3r+1 \\ r+2, & \text{if } p = 3r+2 \end{cases}$

Theorem 2.2 [7] For Any Connected Graph *G*, $\gamma_{cp}(C_p) = \begin{cases} r, & \text{if } p = 3r \\ r+1, & \text{if } p = 3r+1 \\ r+2, & \text{if } p = 3r+2 \end{cases}$

3. Main Result

Definition 3.1 A Set $S \subseteq V$ Is Called A At Most Twin Outer Perfect Dominating Set (Atopd-Set) In G If For Every Vertex $v \in V - S$, $1 \leq |N(v) \cap S| \leq 2$ And $\langle V - S \rangle$ Has At Least One Perfect Matching. The Minimum Cardinality Taken Over All The At Most Twin Outer Perfect Dominating Set In G Is Called The At Most Twin Outer Perfect Domination Number Of G And Is Denoted By $\gamma_{atop}(G)$ And The Atopd-Set With Minimum Cardinality Is Also Called $\gamma_{atop} - set$.

Example

Figure 1:

In Figure 1, G_1 , $\gamma_{atop}(G) = 1$. In G_2 , $\gamma_{atop}(G) = 2$. In G_3 , $\gamma_{atop}(G) = 3$.

Observation 3.2 For Any Connected Graph G, $\gamma(G) \leq \gamma_{cp}(G) \leq \gamma_{atop}(G)$ And The Bounds Are Sharp. **Observation 3.3** The Complement Of The Atopd - Set Need Not Be A Atopd- Set. **Observation 3.4** Every Atopd - Set Is A Dominating Set But Not The Converse. **Observation 3.5** Any At Most Twin Outer Perfect Dominating Set Must Contain All The Pendant Vertices Of G.

Theorem 3.6 For Any Connected Graph G With $p \ge 3$, We Have $1 \le \gamma_{(atop)}(G) \le p-2$ And The Bound Is Sharp.

Proof. Let G Be A Connected Graph With $p \ge 3$ Vertices. By Definition 3.1, $\gamma_{(atop)}(G) \ne p$. If $\gamma_{atop}(G) = p-1$, Then There Exists A Atopd- Set S With p-1 Vertices. In This Case $\langle V-S \rangle$ Has Only One Vertex And Hence Perfect Matching Is Not Possible, Which Is A Contradiction. Hence $\gamma_{atop}(G) \ne p-1$. Thus $\gamma_{atop}(G) \le p-2$. The Lower Bound Is Sharp For K_5 And The Upper Bound Is Sharp For C_5 .

Theorem 3.7 For Any Connected Graph G With $p \ge 3$, $\lceil \frac{p}{\Delta + 1} \rceil \le \gamma_{atop}(G)$ The Bound Is Sharp.

Proof. For Any Connected Graph G, We Have $\lceil \frac{p}{\Delta+1} \rceil \le \gamma(G)$ And Also $\gamma(G) \le \gamma_{atop}(G)$ And The Result Follows. The Bound Is Sharp For C₄ And K₅.

Observation3.8 There Is No Graph, For Which $\gamma_{atop}(G) = p - i$ Where I Is An Odd Number.

Theorem 3.9 Let G Be A 2-Regular Graph. Then $\gamma_{atop}(G) = \chi(G)$ If And Only If $G \cong C_4$ or C_5 or C_6 or C_7 or C_9 .

Proof. Let G Be A 2-Regular Graph. Assume $\gamma_{atop}(G) = \chi(G)$. Since G Is 2-Regular, $\chi = 2$ Or 3 Which Implies P = 4 Or 5 Or 6 Or 7 Or 9. If P=4, $G \cong C_4$. If P=5, $\gamma_{atop}(G) = \chi(G) = 3$ Then $G \cong C_5$. If P=6, $\gamma_{atop}(G) = \chi(G) = 2$, Then $G \cong C_6$. If P = 7, $\gamma_{atop}(G) = \chi(G) = 3$ Then $G \cong C_7$. If P = 9, $\gamma_{atop}(G) = \chi(G) = 3$ Then $G \cong C_9$. The Converse Is Obvious.

4. Exact Values Of Atopd- Number For Some Standard Graphs

The Atopd- Number For Some Standard Graphs Are Given As Follows:

1.
$$\gamma_{atop}(W_p) = \begin{cases} 2 & if \ p \ is \ even \\ 1 & if \ p \ is \ odd. \end{cases}$$

2. $\gamma_{atop}(K_p) = \begin{cases} 2 & if \ p \ is \ even \\ 1 & if \ p \ is \ odd. \end{cases}$
3. $\gamma_{atop}(H_{p,p}) = \begin{cases} 4 & if \ p > 2 \\ 2 & if \ p = 2. \end{cases}$
4. $\gamma_{atop}(H_p) = \begin{cases} p+1 & if \ p \ is \ even \\ p+2 & if \ p \ is \ odd. \end{cases}$
5. If G Is A Peterson Graph $\gamma_{atop}(G) = 4.$

Theorem 4.1 For Any Connected Graph G, $\gamma_{\text{atop}}(p_p) = \begin{cases} r+2 & \text{if } p = 3r \\ r+1 & \text{if } p = 3r+1 \\ r+2 & \text{if } p = 3r+2. \end{cases}$

Proof Let $P_p = (V_1, V_2, \dots, V_p)$ And Let $S = \{V_i : i \equiv 1 \pmod{3}\},\$

 $S_1 = S \cup \{V_{p-1}, V_p\}, S_2 = S \cup \{V_p\}$. If P = 3r For Some R, Then S_1 Is A Atopd-Set. If P = 3r+1 For Some R, Then S Is A Atopd-Set. If P = 3r+2 For Some R, Then S_2 Is A Atopd-Set.

$$\begin{split} & \text{Hence } \gamma_{\text{atop}} \big(p_p \big) \leq \begin{cases} r+2 & \text{if } p = 3r \\ r+1 & \text{if } p = 3r+1 \\ r+2 & \text{if } p = 3r+2 \end{cases} \\ & \text{But } \gamma_{\text{cp}} \big(p_p \big) = \begin{cases} r+2 & \text{if } p = 3r \\ r+1 & \text{if } p = 3r+1 \\ r+2 & \text{if } p = 3r+2 \end{cases} \end{split}$$

And $\gamma_{cp} \leq \gamma_{atop}$. Hence The Result Follows.

Theorem 4.2 For Any Connected Graph
$$G$$
, $\gamma_{atop}(C_p) = \begin{cases} r & \text{if } p = 3r \\ r+1 & \text{if } p = 3r+1 \\ r+2 & \text{if } p = 3r+2. \end{cases}$

Proof Let $C_p = (V_1, V_2, ..., V_p, V_1)$ Be A Cycle And Let $S = \{V_i : I \equiv 1 \pmod{3}\}$, $S_1 = S \cup \{V_p\}$. If P = 3r Or P = 3r+1 For Some R, Then S Is A Atopd-Set. If P = 3r+2 For Some R, Then S_1 Is A Atopd-Set.

$$\begin{array}{ll} \mbox{Hence } \gamma_{atop} \left(C_p \right) \leq \begin{cases} r & \mbox{if } p = 3r \\ r+1 & \mbox{if } p = 3r+1 \\ r+2 & \mbox{if } p = 3r+2. \end{cases} \\ \mbox{But } \gamma_{cp} \left(C_p \right) = \begin{cases} r & \mbox{if } p = 3r \\ r+1 & \mbox{if } p = 3r+1 \\ r+2 & \mbox{if } p = 3r+2. \end{cases} \end{array}$$

And $\gamma_{cp} \leq \gamma_{atop}$. Hence The Result Follows.

5. Atopd-Number For Some Standard Square Graphs

Theorem 5.1 For A Path Pr $\gamma_{atop}(P_r^2) = \begin{cases} \left[\frac{r}{5}\right] + 1 & \text{if } r \equiv 2,4 \pmod{5} \\ \left[\frac{r}{5}\right] & \text{otherwise.} \end{cases}$ Proof Let Pr = (V₁, V₂,...V_r), If R \geq 3. Let S = {V₁ : I \equiv 3(Mod5)}. Then $S_1 = \begin{cases} S & \text{if } r \equiv 0,3 \pmod{5} \\ S \cup \{v_r\} & \text{if } r \equiv 1,4 \pmod{5} \\ S \cup \{v_1, v_r\} & \text{if } r \equiv 2 \pmod{5}. \end{cases}$ Is An Atopd-Set Of P_r^2 . Hence $\gamma_{atop}(P_r^2) \leq \begin{cases} \left[\frac{r}{5}\right] + 1 & \text{if } r \equiv 2,4 \pmod{5} \\ \left[\frac{r}{5}\right] & \text{otherwise.} \end{cases}$ Let S. Ps. Arr. γ_{r} . Set Of P_r^2 . Since $\gamma(P_r^2) = \begin{bmatrix} r \\ r \end{bmatrix}$. We there γ_{r}

Let S Be Any γ_{atop} -Set Of P_r^2 . Since $\gamma(P_r^2) = \left[\frac{r}{5}\right]$, We Have $\gamma_{atop}(P_r^2) = \left[\frac{r}{5}\right]$, If $r \not\equiv 2 \text{ or } 4 \pmod{5}$. Let $R \equiv 2 \text{ Or } 4 \pmod{5}$. Then Every γ -Set D Of P_r^2 Such That V-D Contain Odd Number Of Vertices And Hence $\langle V-D \rangle$ Has No Perfect Matching. Thus $\gamma_{atop}(P_r^2) \ge \left[\frac{r}{5}\right] + 1$. Hence The Result Follows.

Theorem 5.2 For A Cycle C_r,
$$r \ge 3$$
 $\gamma_{atop}(C_r^2) = \begin{cases} \left[\frac{r}{5}\right] + 1 & \text{if } r \equiv 2 \text{ or } 4 \pmod{5} \\ \left[\frac{r}{5}\right] & \text{otherwise.} \end{cases}$

Proof Let
$$C_r = (V_1, V_2, ..., V_r, V_1)$$
, $R \ge 3$. Let $S = \{V_i : I \equiv 3 \pmod{5}\}$.
Then $S_1 = \begin{cases} S & \text{if } r \equiv 0,3 \pmod{5} \\ S \cup \{v_r\} & \text{if } r \equiv 1 \pmod{5} \\ S \cup \{v_1, v_{r-1}\} & \text{if } r \equiv 2 \pmod{5} \\ S \cup \{v_1\} & \text{if } r \equiv 4 \pmod{5} \end{cases}$

Is An Atopd-Set Of C_r^2 .

Hence
$$\gamma_{atop}(C_r^2) \leq \begin{cases} \left|\frac{r}{5}\right| + 1 & \text{if } r \equiv 2 \text{ or } 4 \pmod{5} \\ \left|\frac{r}{5}\right| & \text{otherwise.} \end{cases}$$

Let S Be Any γ_{atop} -Set Of C_r^2 . Since $\gamma(C_r^2) = \left[\frac{r}{5}\right]$, We Have $\gamma_{atop}(P_r^2) = \left[\frac{r}{5}\right]$ If $r \neq 2 \text{ or } 4 \pmod{5}$. Let $r \equiv 2 \text{ or } 4 \pmod{5}$. Then Every γ -Set D Of C_r^2 Such That V-D Contain Odd Number Of Vertices And Hence < V-D > Has No Perfect Matching. $\gamma_{atop}(C_r^2) \geq \left|\frac{r}{r}\right| + 1$. Hence The Result Follows. Thus

Theorem 5.3 Let $L_r = P_2 \times P_r$ Be A Ladder Graph $\gamma(L_r^2) = \begin{cases} \frac{r}{4} + 1 & \text{if } r \equiv 0 \pmod{4} \\ \left[\frac{r}{4}\right] & \text{otherwise} \end{cases}$

Proof It Can Be Verified That The Result Is True For $r \leq 4$. Now We Assume $r \geq 5$. Hence V(L_r) = {U_i, V_i: 1 \leq $I \leq r$ And $E(L_r) = \{(U_i, V_i), (U_i, U_{i+1}), (V_i, V_{i+1}) (U_r, V_r): 1 \leq I \leq r-1\}$. Now Let $S = \{u_i v_j : i \equiv 2 \pmod{8}, j \equiv 6 \pmod{8}\}$ Then $S_1 = \begin{cases} S & \text{if } r \equiv 2 \text{ or } 3 \pmod{4} \\ S \cup \{u_r\} & \text{otherwise.} \end{cases}$ $\gamma(L_r^2) \leq$ Is A Dominating Set Of Lr² And Hence $\begin{cases} \frac{r}{4} + 1 & if \ r \equiv 0 \ (mod \ 4) \\ \left[\frac{r}{4}\right] & otherwise. \end{cases}$ Since $\Delta = 7$, we have $\gamma \ge \left[\frac{p}{\Delta+1}\right] = \left[\frac{2r}{8}\right] = \left[\frac{r}{4}\right]$. Hence If $r \ne 0 \pmod{4}$, Then $\gamma = \left[\frac{r}{4}\right]$. Let

 $r \equiv 0 \pmod{4}$. Then Any Set $S \subseteq V$ Of Cardinality $\begin{bmatrix} r \\ 4 \end{bmatrix}$ Is Not A Dominating Set And Hence $\gamma \geq \left[\frac{r}{4}\right] + 1 = \frac{r}{4} + 1$ And Hence $\gamma = \frac{r}{4} + 1$. Thus The Result Follows.

Theorem 5.4 Let $L_r = P_2 \times P_r$ Be A Ladder Graph

 $\gamma_{atop}(L_r^2) = \begin{cases} \frac{r}{4} + 2 & \text{if } r \equiv 0 \pmod{8} \\ 2\left[\frac{r}{2}\right] & \text{otherwise.} \end{cases}$

Proof Let $V(L_r) = \{U_i, V_i: 1 \le I \le R\}$ And $E(L_r) = \{(U_i, V_i), (U_i, U_{i+1}), (V_i, V_{i+1}), (U_r, V_r): 1 \le I \le r - 1\}$. Now Let, $S = \{u_i v_j : i \equiv 2 \pmod{8}, j \equiv 6 \pmod{8}\}$.

 $\gamma_{atop} (K_{1,P-1}^2) = \begin{cases} 1 & if p is odd \\ 2 & if p is even \end{cases}$

Research Article

$$Then S_{1} = \begin{cases} S & \text{if } r \equiv 6 \text{ or } 7 \pmod{8} \\ S \cup \{u_{r}, v_{2}\} & \text{if } r \equiv 0 \text{ or } 1 \pmod{8} \\ S \cup \{v_{r}\} & \text{otherwise.} \end{cases}$$
Is An Atopd-Set Of L_{r}^{2} And Hence
$$\gamma_{atop} (L_{r}^{2}) \leq \begin{cases} \frac{r}{4} + 2 & \text{if } r \equiv 0 \pmod{8} \\ 2 \left[\frac{r}{8}\right] & \text{otherwise.} \end{cases}$$
Let S Be Any γ_{atop} -Set Of L_{r}^{2} .
$$But \gamma (L_{r}^{2}) = \begin{cases} \frac{r}{4} + 1 & \text{if } r \equiv 0 \pmod{4} \\ \left[\frac{r}{4}\right] & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{r}{4} + 1 & \text{if } r \equiv 0 \pmod{4} \\ \left[\frac{r}{4}\right] & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{r}{4} + 1 & \text{if } r \equiv 0 \pmod{8} \\ 2 \left[\frac{r}{8}\right] - 1 & \text{if } r \equiv 1 \text{ or } 2 \text{ or } 3 \pmod{8} \\ 2 \left[\frac{r}{8}\right] & \text{otherwise.} \end{cases}$$

Hence If $r \equiv k \pmod{8}$, $4 \leq k \leq 7$, Then $\gamma_{atop}(L_r^2) \geq 2 \left[\frac{r}{8}\right]$. Also If $0 \leq k \leq 3$, Then Every γ -Set D Of L_r^2 Such That V - D Contains An Odd Number Of Vertices And Hence $\langle V - D \rangle$ Has No Perfect Matching.

Thus
$$\gamma_{atop}(L_r^2) \ge \begin{cases} \frac{r}{4} + 2 & \text{if } r \equiv 0 \pmod{8} \\ 2\left[\frac{r}{8}\right] & \text{if } r \equiv 1 \text{ or } 2 \text{ or } 3 \pmod{8}. \end{cases}$$

Hence The Result Follows.

Observation 5.5 For A Star Graph K_{1,P-1},

Observation 5.6 For A Wheel Graph, $\gamma_{atop} (W_p^2) = \begin{cases} 1 & if \ p \ is \ odd \\ 2 & if \ p \ is \ even \end{cases}$

Conclusion

In This Paper, We Introduced The Concept Of At Most Twin Outer Perfect Domination Number Of A Graph. We Obtain This Number For Some Standard Classes Of Graphs And Square Graphs.

References

[1] Harary F Graph Theory, Addison Wesley Reading Mass (1972) .

[2] T.W.Haynes, S. T.Hedetniemi And P.J.Slater, Fundamentals Of Domination In Graphs, Marcel Dekker, Inc., New York, 1998.

[3] Mahadevan G. Selvam A And Mydeen Bibi A. Complementary Perfect Triple Connected Domination Number Of A Graph, International Journal Of Engineering Research And Applications Vol 2(2013) Pp 260-265

[4] Mahadevan G . Iravithul Basira. A And Sivagnanam C. Complementary Connected Perfect Domination Number Of A Graph, International Journal Of Pure And Applied Mathematics, Vol 106 (2016) Pp 17-24.

[5] Mahadevan G . Iravithul Basira. A And Sivagnanam C.Charecterization Of Complementary Connected Perfect Domination Number Of A Graph, International Organization Of Scientific And Research Devolpment, Vol 10 (2016) Pp 404-410.

[6] Mustapha Chellai, Teresa W. Haynes, Stephen T. Hedetniemi And Alice Mcrae, [1,2] Sets In Graphs, Discreate Applied Mathematics, 161, (2013), 2885–2893.

[7] J.Paulraj Joseph, G.Mahadevan And A. Selvam On Complementary Perfect Domination Number Of A Graph, *Acta Ciencia Indica*, (2006), 846-854.

[8] Xiaojing Yang And Baoyindureng Wu, [1,2]- Domination In Graphs, Discrete Applied Mathematics,175,(2014),79-86.