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Abstract:  The significance of Channel State Information (CSI) is very essential in a hybrid mm-WAVE Multiple Input 

Multiple Input (MIMO) System due to its direct dependency on medium capacity and energy efficiency of a network. 

Therefore, a Channel State Information (CSI)-based Sparse Reconstruction (CSISR) technique is adopted for effective 

evaluation of CSI for future 5G cellular network implementation. A hybrid mm-WAVE MIMO communication system is also 

employed for effective bandwidth spectrum utilization. Furthermore, a joint sparse coding algorithm is introduced to study 

the channel matrices of hybrid mm-WAVE MIMO system. The proposed CSISR technique ensure proficient signal 

reconstruction, signal compression and resource reduction by exploiting sparsity of channel matrix. The proposed CSISR 

technique under low SNR conditions as well for hybrid mm-WAVE MIMO system with optimization of pre-processors and 

combiners. The performance throughput of proposed CSISR technique is measured against conventional algorithms 

considering power consumption, Normalized Mean Square Error (NMSE) and spectral efficiency of the mm-Wave MIMO 

system. The superiority of proposed CSISR technique is concluded based on simulations considering different system 

configurations and performance matrices.  

Keywords: Hybrid mm-WAVE MIMO System, Channel State Information, Sparse Reconstruction, Biomedical Applications, 

5-th Generation (5G) Cellular Network 

 

1. Introduction 

 

Recent developments in several technologies have enormously benefitted sectors like Healthcare, 

Manufacturing, Telecom, Communication, sports and music based scientific assessment approaches as well [1]. 

However, healthcare devices and equipment requires constant technology developments in order to get 

maximum yield from their diagnosis efforts.  Moreover, healthcare instruments, medical devices and diagnosis 

methods are directly dependent on technology developments. The exceptional developments in technology has 

made healthcare departments very powerful and efficient. Diagnosis methods like Magnetic Resonance Imaging 

(MRI), Respiratory Diagnosis, blood pressure measurement and Electrocardiograph (ECG) for electric 

movement recording of heart etc. become highly effective and successful due to the utilization of high-tech 

technologies. Furthermore, these diagnosis methods need high-tech reliable medical devices and instruments 

which works on scientific principles and signal processing. However, digital signal processing and these 

diagnosis methods generates enormous amount of information whose storage and transmission from one place to 

another is highly complex and challenging process.  

 

Therefore, highly efficient compression methods are required to transmit these enormous amount of medical 

data which can ensure preservation of its essential features. Thus, several researchers have shown their interest in 

finding a suitable compression method for medical data transmission and many researchers have considered 

Compressive Sensing (CS) method is a suitable and attractive option for biomedical signal compression [2-5]. 

CS is an exceptional signal compression technique which exploits the sparsity nature of medical signals to attain 

real-time, precise and power-effective compression outcomes. CS technique can ensure complete data extraction 

from small set of compressed signals [6]. Thus, this technique can be efficiently utilized for the reconstruction of 

biomedical signals. Moreover, the difference between actual and reconstructed biomedical signals defines the 

minimum number of samples needed for effective signal reconstruction. The minimum number of samples 

needed for signal reconstruction in CS method is lower than the Nyquist rate.  

 

Furthermore, biomedical signals can be defined as the analysis of physiological organism actions. Here, 

biomedical signal examination include analysis of whole body which can be conducted using various medical 

equipment and devices. Generally, biomedical signals acquired from this analysis possess enormous information 

which need to be transmitted through a communication link after compression. However, transmission of bulky 

medical information requires an implementation of superfast high-frequency high-bandwidth technology. Thus, 

several researches have shown Fifth generation (5G) cellular networks is a promising solution for high data 

transmission which provides excellent coverage with low as well as high frequencies for multi-radio access 

technologies and possess exceptional information rate up to many gigabits and ensure ultra-reliable services. 
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From a recent survey it is predicted that traffic in mobile applications will enhance 1000 times while using future 

5G network in comparison with current 4G network. Thus, future 5G network will need at least a bandwidth up 

to 100 MHz, utilization of greater than hundred antennas and ultra-densely deployed Source Station (SS) to 

support high data rate which is a quite challenging and complex task.  

 

Therefore, several experts and researchers have identified utilization of M𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟-wave (mm-Wave) 

frequency bands in future 5G technology as a most promising solution which ensures high-frequency high-

bandwidth spectrum. The M𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟-wave (mm-Wave) technology makes future cellular network 

communication very powerful and efficient [7]. The mm-Wave communication supports high data rates such as 

gigabits-per-second which can be implement byexploiting huge bandwidth present at mm-Wave frequencies. The 

bandwidth spectrum occupied by mm-Wave communication is 200 times more than the spectrum available in 

current cellular networks. The multiple-input multiple-output (MIMO) technology can work in coordination with 

mm-Wave communication to ensure large information rates, greater spectral efficiency, lower latency and 

greater ability to handle congestion. However, occurrence of large attenuation and signal absorption in an mm-

Wave communication is a concerning area [8]. The utilization of several antenna array elements in mm-Wave 

communication reduces attenuation and signal absorption to a significant extent.  

 

Several researchers have provided their attention for the enhancement of compression sensing and mm-Wave 

communication technology and some of them are presented in the following paragraph. In [9], mm-Wave 

communication technique is presented based on sparse encoding and decoding methods and beam alignment 

problem is discussed and sparse scattering nature is used for compressive phase-less measurements. In [10], a 

hybrid mm-WAVE MIMO System is introduced for the estimation of channel information using Off-Grid 

 𝑖𝑟𝑖  𝑙𝑒𝑡 Kernels. Here, an Orthogonal Matching Pursuit (OMP) algorithm is utilized for efficiency 

enhancement. In [11], a research survey on mm-Wave user association mechanism is conducted to provide a 

comprehensive discussion over mm-Wave spectrum sharing methods, their challenges and how these issues can 

be avoided. In [12], a Hybrid Beamforming mm-Wave Systems is introduced for the estimation of channel 

information in accordance with Wideband MIMO using random spatial sampling. This technique focuses on 

channel information recovery based on the angular information and low rank property. However, there are 

several issues present in mm-Wave communication technology which need to be discussed comprehensively for 

the enhancement of spectrum efficiency such as high attenuation, severe path loss, signal propagation delay, high 

power consumption due to utilization of large antenna array elements, accurate estimation of channel state 

information acquired at transmitter and reception side, high computational cost, spectral efficiency loss in 

conventional methods, high overhead and optimization problem.  

 

Therefore, sparse coding method is a promising solution for efficient information compression as well as for 

signal transmission. The sparse nature of mm-Wave communication frequency bands can reduce beam alignment 

problem significantly. Sparse coding is represented as the signal processing scheme that focusses on retrieving a 

frame from few training samples in which sparse nature is present and it extracts sparse nature from few training 

samples by exploiting linear combination of basic elements. This method is primarily utilized for signal 

reconstruction, signal compression and resource reduction. The main objective of sparse coding method is 

effective signal measurement by finding knowledge about their signal structure. This method can help in storage 

capacity enhancement, fast transmission and effective compression without noise. However, Channel State 

Information (CSI) estimation and extraction become quite challenging due to the utilization of antenna array 

elements to a large extent and high channel inconsistency in mm-WAVE communication technology [12]. 

Channel State Information (CSI) is a representation of channel attributes of a communication network. CSI refers 

to the signal propagation information from transmitter to receiver and shows the mutual signal scattering, signal 

fading and power consumption effects. Moreover, CSI estimation is very crucial and essential for reliable data 

transmission with current channel conditions and with high information rates in mm-WAVE communication 

technology [13-14]. The efficiency of mm-WAVE communication technology is directly depends upon Channel 

State Information (CSI) of source station and receiver.  

 

Therefore, a Channel State Information (CSI)-based Sparse Reconstruction (CSISR) technique is introduced 

for efficient estimation of CSI at both transmitter and receiver side to enhance efficiency of hybrid mm-WAVE 

communication system for future 5G cellular network. The proposed CSISR technique requires very few training 

samples for efficient extraction of CSI with low computational complexity. The proposed CSISR provide 

significant performance while signal reconstruction, signal compression and resource reduction due to the use of 

fewer training samples by exploiting sparse nature of biomedical signalsunder low SNR conditions as well. 

Furthermore, a joint sparse coding algorithm is presented for the optimization of transmitted and received 

biomedical signals and to study the channel matrices of hybrid mm-WAVE MIMO system. This algorithm 

jointly optimize the common sparse nature of subcarriers. The proposed CSISR technique ensure significant 



Channel State Information (CSI) based Sparse Reconstruction for Biomedical Applications Using hybrid mm-

WAVE MIMO System 

1559 

reduction in antenna disturbances and antenna coupling errors. The proposed CSISR technique make their efforts 

for avoiding optimization problem and reducing channel overhead present in the conventional orthogonal 

matching pursuit (OMP) algorithm. The performance of proposed sparse coding algorithm is compared with 

conventional algorithms in terms of SNR, NMSE and efficiency of the mm-Wave MIMO systems.  

 

This paper is arranged in following manner which is described below. Section 2, discusses about the literature 

survey presented for mm-WAVE technology, their identified issues and how those issues can be sorted with the 

help of proposed Channel State Information (CSI)-based sparse reconstruction techniques. Section 3, describes 

about the methodology utilized in proposed CSI-based sparse reconstruction techniques. Section 4 discusses 

about experimental results and their comparison with state-of-arts-compression techniques and section 5 

concludes the paper. 

 

2. Literature Survey 

 

Recent researches have shown  𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟 wave (mm-Wave) communication have tremendous potential to 

collaborate with future 5G cellular networks as future cellular networks will require bandwidth up to some GBPS 

according to several experts which cannot be achieved by current bandwidth spectrums. However,  𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟 

wave (mm-Wave) communication frequency bands are immensely capable of delivering the desired bandwidth 

for effective implementation of future 5G cellular networks. Though, there are a significant research gap present 

for the efficient utilization of mm-Wave communication frequency bands. There are several challenges are 

encountered in mm-Wave communication which can degrade their efficiency and need to be formulated very 

quickly to avoid any future complexities as the market expectations and demands are rapidly growing. Some of 

the challenges are high power consumption, accurate estimation of channel state information, high computational 

cost, spectral efficiency loss, optimization problem and high channel overhead. Therefore, many researchers are 

making their efforts to handle these challenges and enhance spectrum efficiency. Some of the literatures are 

presented below in the following paragraph.  

 

In [15], a  𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑒𝑟 wave (mm-Wave) communication system is employed for the estimation of channel 

sparsity using block sparse nature. Moreover, low-rank structures are utilized for Doppler shifts and optimize 

their parameters. These methods are utilized for effective reconstruction of signals by exploiting channel 

sparsity. In [16], a low-rank matrix completion (LRMC) survey is conducted for understanding challenges and 

potentials of LMRC technique which can be widely utilized in applications such as image compression, image 

reconstruction, Massive multiple-input multiple-output and localization in  𝑜  devices etc. Convolutional Neural 

Network (CNN) is also adopted for exploiting the graph structure of LMRC technique. In [17], mm-Wave 

Massive MIMO System is introduced to reduce computational complexity of the network using Orthogonal 

matching pursuit (OMP) algorithm. Here, order-recursive least squares (ORLS) compositions are utilized for 

balancing of spectral efficiency and computational complexity. In [18], a biomedical signal restoration technique 

is employed based on compression sensing model for efficient recovery of biomedical signals and enhance 

quality of restored signals. Here, compression sensing model provide strength to storage and transmission 

activities as well. In [19], mm-Wave Massive MIMO System is employed for the compression and estimation of 

CSI feedback based on Multiple-Rate Compressive Sensing techniques. Furthermore, Convolutional Neural 

Network (CNN) is presented for the enhancement of signal restoration efficiency. In [20], a comprehensive 

research survey is conducted for proficient resource allocation in ultra-dense mediums like Massive MIMO & 

mm-Wave networks, Massive  𝑜  devices and D2D networks etc. Their research challenges, issues and solutions 

to mitigate them are discussed briefly. In [21], a mm-Wave massive MIMO system is employed for effective 

channel state information acquisition. Here, a hybrid analog-digital antenna is presented for understanding the 

insights of analog and digital beamforming. In [22], mm-Wave Massive MIMO model is introduced for channel 

state information extraction Using Sparse Channel estimation and for effective downlink transmission of signals.  

 

However, several challenges still remain undiscussed and their practical implementation is quite far away. 

Therefore, a Channel State Information (CSI)-based Sparse Reconstruction (CSISR) technique is presented in 

this article to encounter challenges of hybrid mm-WAVE communication system. The proposed CSISR 

technique make their efforts for avoiding optimization problem and reducing channel overhead present in the 

conventional algorithms. A detailed mathematical modelling of CSISR technique is presented in the following 

section.  

 

3. Modelling of Channel State Information (CSI)-based Sparse Reconstruction (CSISR) technique  

 

This section discusses about a detailed mathematical modelling of Channel State Information (CSI)-based 

Sparse Reconstruction (CSISR) technique for the precise estimation of CSI at transmitter and receiver side. The 



Sunil Kumar M, Narayanappa CK, M. Nagendra Kumar 

 

1560 

efficient mathematical representation of CSISR technique enhances efficiency of mm-WAVE communication 

system. Here, the proposed CSISR technique utilizes less training samples for CSI estimation with lower 

computational complexity. The proposed CSISR technique ensure proficient signal reconstruction, signal 

compression and resource reduction by utilizing sparse nature of biomedical signals. Moreover, the proposed 

CSISR technique reduces antenna coupling errors and phase disturbances. A joint sparse coding algorithm is 

presented for the optimization of transmitted and received biomedical signals. This algorithm jointly optimize the 

common sparse nature of biomedical signals and reduces noise present in these signals.  

 

Assume that a composite hybrid mm-Wave massive MIMO network model is considered for efficient channel 

state information estimation based on proposed CSISR technique in a multiple consumer system. Here, hybrid 

mm-Wave massive MIMO model is employed with a Security Control Point (SCP) and Consumer Equipment 

(CE). The Security Control Point (SCP) is responsible for developing a wireless network in a designated region. 

The SCP of mm-Wave massive MIMO model consists of    antennas and    radio frequency set. The radio 

frequency set is defined a set of electronic components like mixers, amplifiers, attenuators, filters and detectors. 

Similarly, Consumer Equipment (CE) consists of    antennas and    radio frequency set. The medium present 

between Consumer Equipment (CE) and Security Control Point (SCP) is considered as frequency-demanding. 

Here, Orthogonal Frequency Division Multiplexing (OFDM) is easily compatible with mm-Wave massive 

MIMO model which utilizes    subcarriers. This subcarriers is defined as the sidebands of radio frequency set 

and utilized for transmitting additional   information chains. Here,    can be defined by following equation (1), 

 

  
     (     ) 

(1) 

 

The hybrid pre-processor and combiner utilized for frequency-demanding mm-Wave massive MIMO model 

can be defined by following equation (2) for 𝑠   subcarrier which belongs to  (  ),  
 

 ,𝑠-          ,𝑠-       𝑛        ,𝑠-          ,𝑠- (2) 

 

Where,  (  ) represents the index group of multiplicity    which can be further defined as  (  )  
*               +. Here,       

      represents  𝑛 𝑙𝑜  pre-processors and    ,𝑠-   
      

represents digital pre-processors. Similarly,       
      𝑛 𝑙𝑜  combiner and    ,𝑠-    

        denotes 

digital combiner. Here,   is a set of complex numbers. Here, each frequency signal component for both  𝑛 𝑙𝑜  

pre-processor and combiner encounters similar magnitude of fading while digital pre-processor and combiner 

experiences different magnitude of fading for each frequency signal component. Consider, a fully linked phase 

shifting system for both  𝑛 𝑙𝑜  pre-processor and combiner. Here, assume that a prior training knowledge of 

pre-processors and combiners is available for both SCP and CE for the execution of channel state information 

estimation phase.  

 

 Assume that a frequency-demanding medium model is considered using proposed CSISR technique which 

contains     cluster with    beam present in every cluster and a tapped delay distance  . Consequently, the main 

focus remains on sparse coding and downstream Channel State Information (CSI) estimation. Similarly, the 

proposed CSISR technique and analysis study can be utilized for upstream CSI as well. The 𝑙  𝑡  tapped delay 

of the downstream medium between SCP and CE is represented by the following equation (3), 

  

     
        (3) 

 

Where, 𝑙   (  ) and    is further defined by the following equation (4),  

 

    0(     ) (     )
  
1
   

 ∑∑    𝑞  (𝑙      )

  

   

  

   

.      (    )/ .      (    )/
 

 

(4) 

 

Where, 𝑞  ( ) represents a fixed finite signal frequency limited operation with all filtering influence 

considered at  . Here, network sampling time is denoted by    and         represents a complex yield. 

Moreover,       and     lies in the interval ,    ) i.e.          ,    ). Here,      is defined as the 

approximate signal arrival angle and      is defined as the approximate signal egress angle of the 𝑝  𝑡  beam in 

  𝑡  cluster. The approximate signal arrival angle can be calculated by measuring different of arrival time 

between all the signals of an antenna array whereas the approximate signal egress angle can be evaluated by 

measuring phase delay between all the departed signals of an antenna array elements from a particular location. 
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Furthermore,   (    )      
       represents reaction vectors of antenna array elements at CE whereas 

  (    )     
       represents reaction vectors of antenna array elements at SCP. The reaction vectors are 

largely depends upon particular configurations of antenna array elements due to design errors. For example, a 

rectilinear antenna array element is considered with a stable and perfect antenna spacing 𝑙 in place of considering 

an ideal and steady linear array elements then   ( ) can be defined as,  

 

  ( )   (  
  ⁄ )

  
[
  𝑒    (      ) (    ( ))

  

   𝑒    (       ) (    ( ))
  

     

𝑒    .
(    )         / (    ( ))

  ] 
(5) 

 

 

Where,   is defined as the wavelength of carrier signals and the fluctuations in the antenna spacing 𝑙 between 

receiver antenna array elements can be defined as                 . Moreover,      
        represents 

correlative coupling matrix for sender array elements whereas      
        represents correlative coupling 

matrix for collector array elements. These correlative coupling matrix shows the undesirable energy exchange 

between array elements. Furthermore,      
       and      

       represents phase disturbance matrix and 

antenna yield respectively. Then,  

 

    𝑖  2    
           

                 
 
      

3 (6) 

 

Where, {    }   
  

 is defined as the receiver yield disturbances formalized to an ideal amplitude whereas 

{    }   
  

 represents extra receiver phase disturbances. The main reason of antenna yield and phase disturbances 

are hardware design issues. A sloped matrix           that consists of medium coefficients can be 

determined by following equation (7),  

 

    0(     ) (     )
  
1

 

 
 𝑖   2    𝑞  (𝑙      )         𝑞  (𝑙       )3 

(7) 

  

Then, equation (4) is further classified by the following equation (8) as,  

 

              
   

   
  (8) 

 

Where,     0  (    )      .      /1 represents reaction vectors of collector antenna array elements 

calculated at the real signal arrival angle whereas     0  (    )      .      /1 represents reaction 

vectors of sender antenna array elements calculated at the real signal egress angle. With the help of proposed 

CSISR technique the sparsity in the medium matrix can be exploited. For that equation (8) can be further 

classified using elongated medium model as,  

 

            
   

 (  
 )   

   
  (9) 

 

Here, steering matrices   
            and   

         optimizes    and    respectively whereas    is 

optimized by   
           . Furthermore,   

  represents the reaction vectors of collector antenna array 

elements calculated based on    approximated angles for signal arrival angle whereas   
  represents the reaction 

vectors of sender antenna array elements calculated based on    approximated angles for signal egress angle. 

Both   
  and   

  lies in the interval ,    ) and   
  consists of trajectory yield of these disjoined approximated 

signal arrival angle and signal egress angle at non-null array elements. It is assumed that the prior knowledge of 

the coefficients           𝑛    present in the equation (9) are available to understand the sparse nature of 

signals using proposed CSISR technique based on the sparse coding algorithm. Consider that each correlative 

coupling matrix and phase disturbance matrix are identity matrix whereas antenna spacing matrix is a zero 

matrix. Then,       
  and       

  are replaced by two basic steering matrices    and    without any 

limitation of array element design. Therefore, these steering matrices are employed to any random antenna 

configuration. Then, equation (8) can be further decomposed into following equation (10) as,  

 

          
  (10) 

 

Where,    [                    ]    
        and    [                    ]    

        

represents finest receiver and transmission steering matrices to be evaluated whereas      
      is a sparse 
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medium matrices with some non-null array elements same as    
  shown in equation (9). To discard uncertainties 

between steering matrices and medium matrices, the columns of steering matrices can be optimized by following 

equations,  

 

‖     ‖ 
    𝑝   (  )  𝑛  ‖     ‖ 

    𝑝   (  ) (11) 

 

Where,         and         are the number of columns for every steering matrices. Here, it is anticipated 

that the novel medium matrix    contains higher sparsity than its counterparts   
  due to less uncertainties 

present in normalized steering matrices and easily adjustable to various conditions of medium matrix.  

 

The frequency domain of medium matrices at the 𝑠  𝑡  subcarrier where 𝑠   (  ) for the configured 

medium matrix of equation (10) can be defined as,  

 

 ,𝑠-   ∑   𝑒
  

    

     

    

   

      (∑   𝑒
  

    

  

    

   

)  
   

   
     (∑   𝑒

  
    

  

    

   

)  
  

(12) 

 

Where, (∑   𝑒
  

    

  
    
   )    ,𝑠-  and (∑   𝑒

  
    

  
    
   )    ,𝑠- represents the medium yield in frequency 

domain. Consider that                         all are frequency independent. Then,  

 

𝑣𝑒 ( ,𝑠-)   ((  ̅̅ ̅̅   ̅̅ ̅̅   ̅̅ ̅)    (        ))𝑣𝑒 ( ,𝑠-)    (  ̅̅̅̅     )𝑣𝑒  ( ,𝑠-)    �̃�,𝑠- (13) 

 

 Where,   (  ̅̅̅̅    )    
          represents the joint sparsity and �̃�,𝑠-   𝑣𝑒  ( ,𝑠-)  

        represents the vectorised steering medium matrices when joint sparsity matrix is utilized to 

evaluate 𝑣𝑒 ( ,𝑠-).  
 

From equation (9) and (10), the collected signal at CE for the 𝑠  𝑡  subcarrier is evaluated as,  

 

 ,𝑠-     
 ,𝑠-    

  ,𝑠-       ,𝑠- ,𝑠-     
 ,𝑠-    

  ,𝑠- (14) 

 

Where,  ,𝑠-         represents the broadcasted signal the sender side for the 𝑠  𝑡  subcarrier and 

 ,𝑠-    (       ) represents Gaussian disturbance vector with variance  . Consider that at the time of 

channel state information estimation and sparse coding implementation stage, CE and SCP utilizes pre-processor 

       
      and combiner        

      of similar frequency for each subcarrier signal in the   

𝑡  OFDM. Then, the broadcasted signal is defined as,  

 

 {  ,𝑠-  
 ,𝑠-}  (   ⁄ )    (15) 

 

Where,   denotes total limiting energy then SNR is defined as       (  )  . To formularize channel 

state information estimation and sparse coding implementation, the broadcasted signal is further decomposed as, 

 

  ,𝑠-       ,𝑠- (16) 

 

Where,      
    is a frequency set of similar magnitudes and   ,𝑠- is a complex exponential in time. 

Then, training series can be evaluated using sparse coding based on the additional signal series  ,𝑠-. Where, 

          . Then, the training series   ,𝑠- for a propagation factor    can be defined as,  

 

   ,𝑠-   ⌊  
  
⌋
,𝑠- (17) 

 

Then, equation (17) can be further discomposed as,  

 

   ,𝑠-     ,𝑠-      ,𝑠-   ,𝑠-     ,𝑠-     (18) 

 

Then, after joining the training series at collector side for the 𝑠  𝑡  subcarrier in the   𝑡  OFDM training 

signal is evaluated as,  
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  ,𝑠-     
  ,𝑠-      ,𝑠-     

   ,𝑠- (19) 

 

With the help of sparse coding for efficient signal reconstruction the collected signal   ,𝑠- is multiplied 

with(  ,𝑠-)
  

 . Then,  

 

 ̃ ,𝑠-  𝑣𝑒  .(  ,𝑠-)
  
  ,𝑠-/   (  

   
     

 ) 𝑣𝑒 ( ,𝑠-)   ̃ ,𝑠- 
(20) 

 

Where, ̃ ,𝑠-  𝑣𝑒  .(  ,𝑠-)
  
  
   ,𝑠-/. Then, from equation from equation (13) and (20),  

 

 ̃ ,𝑠-  (  
   

     
 )(  ̅̅̅̅     )𝑣𝑒  ( ,𝑠-)    ̃ ,𝑠-      �̃�,𝑠-    ̃ ,𝑠- (21) 

 

Where,    (  
   

     
 )              represents an observation matrix which depends on upon pre-

processors and combiners for   𝑡  OFDM and      is a quantification matrix used for sparse signal 

reconstruction. Furthermore, take out average of collected signals for noise free sparse signal reconstruction,  

 

 ̃     ,𝑠-   ∑  ̃     ,𝑠-   ⁄

    

   

    𝑜𝑟 𝑛          

(22) 

 

Then, from the average quantification the observation matrix is evaluated at the 𝑠  𝑡  subcarrier on the 

collector side to formulate received signals,  

 

0 ̃ 
     ,𝑠-     ̃

 
       ,𝑠-1

 

 ,  
        

 -   �̃�,𝑠-   0 ̃      ,𝑠-      ̃
 
       ,𝑠-1

 

 
(23) 

 

Where,  

 

 ̃,𝑠-                             𝑛     ̃,𝑠-           (24) 

 

4. Result and Discussions: 

 

This section discusses about the performance comparison of proposed Channel State Information (CSI)-based 

Sparse Reconstruction (CSISR) technique with other state-of-art-techniques in terms of average spectral 

efficiency, power consumption and energy efficiency. Furthermore, the hybrid mm-Wave massive MIMO 

system is considered for the detailed investigation of performance results. The efficiency of the mm-Wave 

massive MIMO system is heavily depends upon the effective estimation of Channel State Information (CSI). The 

proposed CSISR technique utilizes minimum training samples for effective signal reconstruction, signal 

compression and resource reduction under low SNR conditions as well by exploiting sparse nature of biomedical 

signals. The sparse coding algorithm exploits common sparse nature of subcarriers to reduce antenna 

disturbances and antenna coupling errors. The conventional state-of-art algorithms like Orthogonal Matching 

Pursuit (OMP) algorithm consists of optimization problem and channel overhead issues which are mitigated 

using proposed CSISR technique. The performance throughput of proposed sparse coding algorithm is measured 

against conventional algorithms considering power consumption, Normalized Mean Square Error (NMSE) and 

efficiency of the mm-Wave MIMO system. All the performance results are simulated using         .  

 

In this article, performance results like average spectral efficiency, power consumption, NMSE and energy 

efficiency are highlighted for proposed CSISR technique. The Monte-Carlo realizations are averaged at 100 to 

simulate performance results. A significant reduction in computational complexity is observed using the 

proposed CSISR technique in contrast to conventional techniques. It is assumed that there is an ideal 

synchronization take place between broadcaster and collector sides for the effective estimation of CSI. The 

simulation parameters considered for performance evaluation is presented in Table 1. Furthermore, the proposed 

CSISR technique is compared against several state-of-art-techniques like Digital Beamforming [24], 

Conventional Analog Beamforming with    𝑜     𝑢 (  ) [25] and Conventional Analog Beamforming 

with Phase Shifter (PS) [26] and Conventional Analog Beamforming-2 with Phase Shifter (PS) for Average 

Spectral Efficiency (ASE) [27] considering different scenarios and parameters as shown in Figure 1, Figure 2 

and Figure 3. Here, Figure 1-3 demonstrates the function of RX RF chains considering different mm-Wave 

massive MIMO system parameters at Signal to Noise Ratio (SNR) =        It is evident from Figure 1-3 that the 

signals which are lost due to non-orthogonality of conventional  𝑛 𝑙𝑜  joint matrix are effectively recovered 
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using proposed CSISR technique. It is also observed that the proposed CSISR technique shows smoother curve 

for low to mid number of RF chains than any other state-of-art-techniques which implies best results for effective 

channel estimation and channel overhead reduction for a cellular network among all the compared techniques 

considering different scenarios.  

 

Table 1. Simulation Parameters for Performance Evaluation 

Simulation Parameter Parameter Value 

Channel Delay Tap   4 

Monte-Carlo realizations 100 

Signal To Noise Ratio (SNR) (dB) 15 

Number of Frames  40 

Number of antenna elements at Transmitter  16 

Number of Propagation path per channel delay tap 6 

Antenna Array Characteristics  Uniform Linear Array (ULA) 

 

 
Figure 1. ASE as a function of the number of RF chains considering antenna elements at receiver =32 and 

number of outputs =32 and using simulation parameters shown in Table 1 

 

 
Figure 2. ASE as a function of the number of RF chains considering antenna elements at receiver =64 and 

number of outputs =32 and using simulation parameters shown in Table 1 
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Figure 3. ASE as a function of the number of RF chains considering antenna elements at receiver =128 and 

number of outputs =64 and using simulation parameters shown in Table 1 

 

Then, a detailed study of power consumption in the mm-Wave MIMO system is conducted and their 

performance result are presented in Figure 4 and Figure 5. Here, Figure 4 demonstrates required power for the 

mm-Wave MIMO system in 𝑚  as a function of RX RF chains. The simulation results are obtained by 

considering ideal power parameters used in [23] for state-of-art-techniques like Digital Beamforming, 

Conventional Analog Beamforming with    𝑜     𝑢 (  ), Conventional Analog Beamforming with Phase 

Shifter (PS) and Conventional Analog Beamforming-2 with Phase Shifter (PS). It is evident from Figure 4 that 

power consumption in the mm-Wave MIMO system using proposed CSISR technique is minimum than compare 

other state-of-art-techniques.  

 

 
Figure 4. Power Consumption with respect to the number of RF chains considering antenna elements at receiver 

=64 and number of outputs =32 and using simulation parameters shown in Table 1 
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Figure 5. Energy Efficiency with respect to the number of RF chains considering antenna elements at receiver 

=64 and number of outputs =32 and using simulation parameters shown in Table 1 

 

Furthermore, the power requirement details is analysed in term of energy efficiency as well for the mm-Wave 

MIMO system. Here, Figure 5 demonstrates energy efficiency for the mm-Wave MIMO system in 
     

     
as a 

function of RX RF chains and energy efficiency is defined by following equation,  

 

       (  )  (  𝑖𝑡𝑠  𝑜𝑢𝑙𝑒⁄ ) (25) 

 

Where,    represents power consumption and     is defined as the average spectral efficiency. The 

proposed CSISR technique outperforms all the state-of-art-techniques in terms of average spectral efficiency, 

energy efficiency as well as power consumption.  

 

5. Conclusion 

 

In this article, Channel State Information (CSI)-based Sparse Reconstruction (CSISR) technique  is presented 

to evaluate CSI and reduce channel overhead of mm-WAVE communication system using biomedical signal 

transmission for the efficiency enhancement of future 5G cellular network. A detailed mathematical modelling 

for the CSI estimation and channel overhead reduction is presented. The proposed CSISR technique ensure 

proficient signal reconstruction, signal compression and resource reduction by utilizing sparse nature of 

biomedical signals. Furthermore, a composite mm-Wave massive MIMO network model is considered for 

efficient channel state information estimation. A joint sparse coding algorithm is presented to optimize antenna 

coupling errors and phase disturbances by exploiting common sparse nature of biomedical signals and efficiently 

reconstruct the original transmitted signals. The hybrid mm-Wave massive MIMO model is employed with a 

Security Control Point (SCP) and Consumer Equipment (CE). The hybrid pre-processor and combiner utilized 

for frequency-demanding mm-Wave massive MIMO model using proposed CSISR technique. In simulation 

results, Figure 1-3 discusses about the lost signal reconstruction considering different performance matrices 

whereas Figure 4-5 discusses about the power consumption reduction and high energy efficiency achieved using 

proposed CSISR technique The proposed CSISR technique outperforms all the state-of-art-techniques 

performance-wise for the performance matrices like average spectral efficiency, energy efficiency as well as 

power consumption. 
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