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Abstract: For each non-prime odd number as F=pq, if we consider m/n as an approximation for q/p and choose k=mn, then by 
proving some lemmas and theorems, we can compute the values of m and n. Finally, by using Fermat’s factorization method 
for F and 4kF as difference of two non-consecutive natural numbers, we should be able to find the values of p and q. Then we 
introduce two new and powerful methods for separating composite numbers from prime numbers.  

Keywords: Prime numbers, odd numbers, Fermat’s factorization method, new methods, composite number 

 

1. Introduction  

There are many features for identification of prime numbers from non-prime numbers. In this paper, we 

attempt to identify very important properties about non-prime odd numbers by proving some theorems and 

lemmas. In 1643, Fermat a French mathematician described a method for factorization of big odd numbers by a 

letter to Marin Mersenne. In composite numbers as F = pq , by propose  kr =  q/p ≈  m/n  and K = mn  ,we 

introduce two new methods for factorization of non-prime odd numbers by developing Fermat’s factorization 

method. The first method is α − s method  that based on the relation (⌊√F⌋ + θ)2 − F=(
p−q

2
)
2

and the second 

method is β − s method that based on the   (⌊√4kF⌋ + θ)
2
− 4kF = (mp − nq)2 .( θ is a natural number) We 

show this methods are very convenient for big numbers, because we don't use long calculation within process of 

them. 

2. Development of Fermat’s factorization method 

We know each non-prime odd number as F = pq (3 ≤ p < q), can be written as a difference of squares of two 

nonconsecutive natural numbers as following: 

{
p = 2m + 1 
q = 2n + 1   

  ⟹  F = pq = (m + n + 1)2 − (m − n)2 

It is clear that by assuming  kr =
q

p
, we have F = krp

2. 

For each natural number bigger than 1 as k, we can write 4kF as difference of squares of two even numbers or 

odd numbers as bellow, in which F is a non-prime odd number. 

4kF = 4k(pq) = (2kp) (2q) = (q + kp)2 − (q − kp)2         

If we assume k = mn, in this case, we can write:  

4kF = 4mnpq = (mp + nq)2 − (mp − np)2 

Definition: In this paper, the expressions (⌊√4kF⌋ + θ)
2
− 4kF and (⌊√F⌋ + θ)

2
− F are shown by β(k, θ) 

and  α(θ) respectively. 

If F is a square number, this means that it’s a non-prime number and if F isn’t a square number, and α(θ)  is a 

square, then according to the identity F = pq = (
p+q

2
)
2

− (
p−q

2
)
2

 and 

definition of α(θ) , we have:   

α(θ)  = (⌊√F⌋ + θ)2 − F ⇒ {

p + q

2
= ⌊√F⌋ + θ

p − q

2
= √α(θ)     

 ⇒ {
  p = (⌊√F⌋ + θ) − √α(θ) 

q = (⌊√F⌋ + θ) + √α(θ) 
   

If kF is a square number and assume kr =
q

p
 , it means that:   

F = krp
2⟹ kF = kkrp

2⟹ kkr = t
2. 

Since t and k are natural numbers, so kr is also a natural number. This means that F  based on relation F =
krp

2is a non-prime number. If kF isn’t a square number and β(k, θ) is a square number, then we will have:  
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4kF = (q + kp)2 − (q − kp)2 = (⌊√4kF⌋ + θ)
2
− β(k, θ) ⇒ {

q + kp = ⌊√4kF⌋ + θ

|q − kp| = √β(k, θ)  
   

⇒ p =
(⌊√4kF⌋ + θ) ∓ √β(k, θ)

2k
 , q =

(⌊√4kF⌋ + θ) ± √β(k, θ)

2
   

By assuming  k = mn, we will have:  

p =
(⌊√4kF⌋ + θ) ∓ √β(k, θ)

2m
  , q =

(⌊√4kF⌋ + θ) ± √β(k, θ)

2n
 

Lemma 1: Whenever k is a natural even number such that x >
(K−2)2

8
  and x is a natural number, in this case, 

we will have:   

⌊√x2 + kx⌋ = x +
k − 2

2
. 

Proof: From the basic algebra, we have:   

(x +
k

2
− 1)2 < x2 + kx < (x +

k

2
)2⟹ x+

k

2
− 1 < √x2 + kx < x + k. 

If x +
K

2
− 1 isn’t the biggest integer number smaller than √x2 + kx, we should have at least:    

(x +
K

2
− 1) + 1 < √x2 + kx ⟹ x2 + kx +

K2

4
< x2 + kx.      (1 )  

Since 
K2

4
> 0, therefore the inequality (1) isn’t correct. So x +

K

2
− 1 is the biggest integer number smaller than 

√x2 + kx and based on the bracket function definition, we will have 

⌊√x2 + kx⌋ = x +
k − 2

2
. 

Because (x +
K

2
− 1)

2

< x2 + kx , so we will have x >
(K−2)2

8
. 

Lemma 2: Suppose x is a natural number and k is a natural even number such that  x >
(K+2)2

8
. Then, we will 

have:       

⌊√x2 − kx⌋ = x −
k + 2

2
    . 

Proof: From basic algebra, we have  :    

(x −
k + 2

2
)2 < x2 − kx < (x −

k

2
)2⟹ x−

k + 2

2
< √x2 − kx < x −

k

2
   . 

If x −
k+2

2
 isn’t the biggest integer component smaller than  √x2 + kx  , then we should have:    

   (x −
k+2

2
) + 1 < √x2 − kx ⟹ (x2 − kx) +

k2

4
< x2 − kx                                                           (1) 

Because 
k2

4
>0, so the inequality (1) is incorrect and x −

k+2

2
 is the biggest integer number smaller than 

√x2 − kx and from bracket function definition, we will have: 

⌊√x2 − kx⌋ = x −
k + 2

2
, 

And so: 

(x −
k+2

2
)2 < x2 − kx ⟹  x >

(k+2)2

8
  . 

In this paper, the approximate value of a number as x will be shown in the form of ~(x) or x̃. 
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Theorem 1: For each natural odd number as F = pq, (1 ≤ p < q)  if we assume k̃r = ~(q/p) = m/n  and 

|k̃r − kr|=0 ∙ a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ ,   by choosing k=mn, the result of  β(k, 1) will be square when a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p2 < √4F × 10s  ±

1. 

Proof: If k̃r > kr, we can write: 

K̃r =
m

n
=
q

p
+ 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ =

10Sq + a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p  

10Sp
. 

If we choose m= 10Sq + a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p and n =  10Sp, then we will have: 

k = mn = 102SF + a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p2 × 10S ⇒ 4kF = (2 × 10SF)2 + (2p2 a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅)(2 × 10S F)          (1) 
Now, by assuming  a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ (2p2) = k′ and x = 2 × 10SF, we arrive at 4kF = x2 + k′x. Since k′ is even, so 

by lemma (1), we get 

⌊√4kF⌋ = ⌊√x2 + k′x⌋ = x +
k′ − 2

2
= 2 × 10SF + a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p2 − 1 ⇒ 

β(k, 1) = (⌊√4kF⌋ + 1)2 − 4kF = (2 × 10SF + a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ p2)2 − 4kF, 

and therefore, according to the relation (1), we will obtain β(k, 1) = (a1…as ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ P2)2. Consequently, based on the 

lemma (1) and by assuming x >
(k´−2)2

8
 , we should have: 

k′ < √8x + 2 ⟹ a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅. P2 < √4F × 10S + 1. 

In the case that k̃r < kr, the proof is similar to the above and we should have: 

a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ P2 < √4F × 10S − 1. 

 

Note1: For each natural odd number, when p = 1, then we have  β(k, 1) = (a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅)2. 

Whenever |k̃r − kr|=10
−s, then we have β(k, 1) = 1. 

Theorem 2: In a non-prime odd number as  F = pq  (1 ≤ p < q), if p > √F + 1 − √(√F + 1)2 − F, then the 

result of α(1) will be square and we will have:     

 α(1) = (⌊√F⌋ + 1)2 − F = (
δ

2
)2 = (

q − p

2
)2. 

Proof: Since δ = q − p is even, then from lemma (2) we have: 

⌊√F⌋ = ⌊√pq⌋ = ⌊√p(p + δ)⌋ = ⌊√p2 + δ. P⌋ = p +
δ − 1

2
=
q + p

2
− 1 

⟹  α(1) = (
p + q

2
)2 − pq = (

q − p

2
)2 = (

δ

2
)2 

In this case, according to lemma  (1), we have: 

δ = q − p < √8p + 2 ⟹ F < (p + √2p)
2
⟹ P > √F + 1 − √(√F + 1)

2
− F . 

Lemma 3: If k is a natural odd number and x is a natural number such that x > (
k−1

2
)2, then we will have: 

   ⌊√x2 + kx⌋ = x +
k−1

2
 . 

Proof: From the basic algebra, we will have: 

(x +
k − 1

2
)2 < x2 + kx < (x +

k

2
)2  ⇒ x +

k − 1

2
< √x2 + kx < x +

k

2
. 

If x +
k−1

2
  is not the biggest integer number smaller than √x2 + kx , then, we should have at least: 

(x +
k−1

2
) + 1 < √x2 + kx ⇒ (x +

k+1

2
)
2

< x2 + kx ⇒ (x2 + kx) + x + (
k+1

2
)2 < x2 + kx.    (1) 
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Because  x + (
k+1

2
)2 > 0, so the inequality (1) is not correct and therefore this means that x +

k−1

2
  is the 

biggest integer number smaller than √x2 + kx. Then, according to definition of the bracket function, we should 

have ⌊√x2 + kx⌋ = x +
k−1

2
. But (x +

k−1

2
)2 < x2 + kx, so we should have   

x > (
k−1

2
)2. 

Theorem3: In a natural odd number as F = pq, (1 ≤ p < q), by assuming kr = q/p and k̃r = ~(q/p) = m/n 

, we will have β(k, 1) = (mp − nq)2. 

 In the case that k̃r > kr,we should have |mp − nq| = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ np < 2√nq + 1, 

and in the case that k̃r < kr, we should have |mp − nq| = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ np < 2√mp + 1. 

Proof : By assuming k = mn,we have ⌊√4kF⌋ = ⌊√4mnpq⌋ = ⌊√PQ⌋ which P = 2mp and Q = 2nq. 

If  k̃r > kr:  
m

n
>
q

p
⇒ k̃r − kr = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

m

n
−
q

p
=
mp−nq

np
.      (1) 

According to lemma (1), we will have: 

δ = P − Q = 2mp − 2nq ⇒ ⌊√4kF⌋ = ⌊√PQ⌋ =  ⌊√Q(Q + δ)⌋ = Q +
δ − 2

2
 

=
P + Q

2
− 1 = (mp + nq) − 1 ⇒ β(k, 1) = (mp + nq)2 − 4mnpq = (mp − nq)2. 

Based on lemma (1), we have:  

δ = P − Q < √8Q + 2 ⇒ mp − nq < 2√nq + 1, 

and according to the relation (1), we can write mp − nq = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ np < 2√nq + 1  . 

If  k̃r < kr : 
m

n
<
q

p
⇒ kr − k̃r = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

q

p
−
m

n
=
nq−mp

np
  .  (2) 

According to lemma (1), we have:  

δ = Q − P = 2nq − 2mp ⇒ ⌊√4kF⌋ = ⌊√4mnpq⌋ =  ⌊√PQ⌋ = ⌊√P(P + δ)⌋ = ⌊√P2 + Pδ⌋ 

= P +
δ − 2

2
=
P + Q

2
 − 1 = nq + mp − 1 ⇒ β(k, 1) = (nq + mp)2 − 4mnpq = (mp − nq)2. 

According to lemma (1), we should have: 

δ = Q − P < √8P + 2 ⇒ nq − mp < 2√mp + 1 .   

Based on the relation  (2), we will have: nq − mp = 0. a1…as̅̅ ̅̅ ̅̅ ̅̅ ̅ np < 2√mp + 1. 

Theorem 4: For each natural odd number as F = pq, (1 ≤ p < q), the value of β(k, 1) will be square when k 

lies in interval  (
(√q+1)2

P
,
(√q−1)2

P
 ( except in a case that k = kr. 

Proof (1) :If k >
q

p
 , in this case 2kp > 2q and because the result of δ = 2kp − 2q is even, then from lemma 

(1), we will have: 

⌊√4kF⌋ = ⌊√(2kp)(2q)⌋ = ⌊√2q(2q + δ)⌋ = ⌊√(2q)2 + 2qδ⌋ = 2q +
δ − 2

2
= q + kp − 1 

⇒ β(k, 1) = (q + kp)2 − 4kpq = (q − kp)2. 

According to lemma (1), we should have:  

δ = 2kp − 2q < √8(2q) + 2 ⇒ kp − q − 1 < 2√q ⇒ kp < (√q + 1)2 ⇒ k <
(√q+1)2

p
 .  (1) 

If  k <
q

p
 , in this case 2kp < 2q  and because the result of δ = 2q − 2kp  is even, then from lemma (1), we 

will get:  
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⌊√4kF⌋ = ⌊√(2kp)(2q)⌋ = ⌊√(2kp)(2kp + δ)⌋ = ⌊√(2kp)2 + 2kpδ⌋ = 2kp +
δ − 2

2
 

= q + kp − 1 ⇒ β(k, 1) = (q + kp)2 − 4kpq = (q − kp)2. 

Based on the lemma (1), we should have: 

δ = 2q − 2kp < √8(2kp) + 2 ⇒ q − kp < 2√kp + 1 ⇒ q < (√kp + 1)2 ⇒ k >
(√q−1)2

p
.  (2) 

Now, from (1) and (2), we will have 
(√q−1)2

p
< k <

(√q+1)2

p
, thus if  k = kr , we can write:  

k = kr =
q

p
⇒ 4kF = 4q2 ⇒ β(k, 1) = (2q + 1)2 − 4q2 = 4q + 1 ≠ |kp − q| = 0 

so we can conclude k ≠ kr . 

Proof(2):According to theorem(3), when we assume k = k̃r = m and n = 1, we will have:  

{
k̃r > kr   ⟹ kp − q < 2√q + 1

k̃r < kr⟹ q− kp < 2√kp + 1
 ⇒   { 

k <
(√q+1)2

p

k >
(√q−1)2

p

     ⇒     
(√q−1)2

p
< k <

(√q+1)2

p
      or 

   (
√F −√P

p
)
2

< k < (
√F +√P

P
)
2

   

 If we propose kmin =
(√q−1)2

p
 and kmax =

(√q+1)2

p
 and show the difference of Kmin and Kmax by δK  then for 

every integer number which is lied in that interval, the result of β(k, 1) will be square. Therefore, we have δK   =

kmax − kmin =
4√q

p
  .We will have the Maximum value of δK    when  P = 1. In this case, we haveδKmax =

4√F  .If the number of natural numbers located in interval (kmin, kmax) are demonstrated by N, so we will have 

N = ⌊kmax⌋ − ⌊kmin⌋. If k = kr  and it is located in interval (Kmin, Kmax) ,  then we will have N = ⌊Kmax⌋ −
⌊Kmin⌋ − 1.When the value of δK  is maximum, then the value of N will be maximum too.  

{
P = 1
q = F

⇒ {
⌊kmin⌋ = ⌊(√F − 1)

2⌋

⌊kmax⌋ = ⌊(√F + 1)
2⌋
⇒ Nmax = ⌊kmax⌋ − ⌊kmin⌋ − 1 

= ⌊F + 2√F + 1⌋ − ⌊F − 2√F + 1⌋ − 1 = (F + 1) + ⌊2√F⌋ − (F + 1) − ⌊−2√F⌋ − 1 

= ⌊2√F⌋ − (−⌊2√F⌋ − 1) − 1 = ⌊4√F⌋. 

Example1: Find the value of N in F = 17 × 43 = 6851.    

Answer: p = 17, q = 43 ⇒ 21 < k ≤ 26 ⇒ N = 26 − 21 = 5. 

We can see that: 

k = 22 ⇒ β(22,1) = 52, k = 23 ⇒ β(23,1) = 122, k = 24 ⇒ β(24,1) = 52, 

 k = 25 ⇒ β(25,1) = 442, k = 26 ⇒ β(26,1) = 392. 

Theorem 5: For odd natural numbers as  F = pq  , by propose kr =
q

p
≃
m

n
 , (m, n) = 1  and choose k=

r2mn  , when r is a natural number ,then the value of β(k, 1) will be square. 

 Proof:  For proof in the first case, we propose 
m

n
>
q

p
 

Therefore  
rm

rn
>
q

p
=>    rmp > rnp =>        ⌊√4kF⌋   = ⌊√(2rmp)(2rnq)⌋     = √PQ   

If P = 2rmp , Q = 2rnq, then we have δ = P − Q = 2rmp − 2rnq > 0 . 

Based on lemma (1) ,  we should have : 

⌊√PQ⌋ = ⌊√Q(  Q + δ )⌋ = Q +
δ − 2

2
=
P + Q

2
− 1 = rmp − rnq − 1 => 

 β(k, 1) =  (⌊√4kF⌋ + 1)
2
− 4kF =  (rmp + rnq)2 − 4r2mnpq =  (rmp − rnq)2. 
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Therefore we should have  rmp − rnq < 2√rnq + 1 . 

In the case  
m

n
<
q

p
  , the proof is similar as  above . 

 Theorem 6: For each non-prime odd number as  F = pq(3 ≤ p < q), if we assume 

θ = ⌊(√kp − √q)2⌋ + 1  and  kF doesn’t be square, then the value of β(k, θ) will be square so that 

(√q+√θ−1)
2

p
≤ k <

(√q+√θ)
2

p
   and   

(√q−√θ)
2

p
< k ≤

(√q−√θ−1)
2

p
  . 

Proof: In the identity 4kF = 4k(pq) = (q + kp)2 − (q − kp)2,since kF can not be square, thus we have 

 θ = ⌊kp + q − √4kpq⌋ + 1 = kp + q + ⌊−√4kpq⌋ + 1 = kp + q + (−⌊√4kpq⌋ − 1) + 1 

= kp + q − ⌊√4kpq⌋ ⇒ β(k, θ) = (kp + q)2 − 4kpq = (kp − q)2. 

At that rate for any k value, we can write : 

θ = ⌊(√kp − √q)
2
⌋ + 1 =>   θ − 1 ≤ (√kp − √q)

2
< θ =>  √θ − 1 ≤ |√kp − √q| < √θ  => 

  
(√q+√θ−1)

2

p
≤ k <

(√q+√θ)
2

p
     ,       

(√q−√θ)
2

p
< k ≤

(√q−√θ−1)
2

p
  . 

In the sequel we have : 

 

For example when   F = 89 × 911 = 81,079 and  θ = 7 , we can calculate k values as bellow: 

(√q + √θ − 1)
2

p
≤ k <

(√q + √θ)
2

p
 =>

(√911 + √6)
2

89
≤ k <

(√911 + √7)
2

89
=> 

11/9 ≤ k < 12/1 => k = 12 =>  β(k, θ) = β(12,7) = (1972 + 7)2 − 3,891,792 = 1572 

We can observe when θ = 6  , we can’t find any value for k. 

Note 2: For any value of k as a natural number , exist a nonnegative integer number as θ 

(θ = ⌊(√kp − √q)
2
⌋ + 1) , so that β(k, θ) should be  square . Whiles  for any value of θ , may don’t be exist 

a value for k. 

Theorem 7: For each non-prime odd number as F = pq(3 ≤ p < q), by assuming m > n ( m,n are natural 

numbers), if we choose θ = ⌊(√mp − √nq)2⌋ + 1 and mnpq doesn’t be square, then the value of β(k, θ) will be 

square.  

Proof: According to the identity  4kF = 4mnpq = (mp + nq)2 − (mp − np)2 and if 4mnpq  doesn’t be 

square, so we should have: 

θ = ⌊mp + nq − 2√mnpq⌋ + 1 = mp + nq + ⌊−√4mnpq⌋ + 1 

= mp + nq + (−⌊√4mnpq⌋ − 1) + 1 = mp + nq − ⌊√4mnpq  ⌋ 

⇒ β(k, θ) = (⌊√4mnpq⌋ + θ)2 − 4mnpq = (mp − nq)2.  

For example, when F = 17 × 23 = 391  and propose m=5 and n=2, then we should have: 

θ = ⌊(√mp − √nq)
2
⌋ + 1 = ⌊(√5 × 17 − √2 × 23)

2
⌋ + 1 = 6 and k = mn = 10 ⇒ 

β(k, θ) = β(10,6) = (125 + 6)2 − 15640 = 1521 = 392 
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Theorem 8: For each non-prime natural numbers as F = pq (3 ≤ p < q), if we have k̃r = ~(q/p) =  m/
n  and k = mn, then the value of β(k, 1) would be square whenever 

 
(√nq−1)2

p
< m <

(√nq+1)2

p
.  

Proof: From theorem (3), we have: 

{
 
 

 
 k̃r > kr ⇒ mp − nq < 2√nq + 1 ⇒ mp < (√nq + 1)

2 ⇒ m <
(√nq + 1)2

p

k̃r < kr ⇒ nq −mp < 2√mp + 1 ⇒ nq < (√mp + 1)
2 ⇒ m >

(√nq − 1)2

p
 

 

⇒ 
(√nq−1)2

p
< m <

(√nq+1)2

p
  . 

According to q = √krF  and P = √
F

kr
  as well as assuming  Mmax =

(√nq+1)2

p
 and  Mmin =

(√nq−1)2

p
, if 

difference of Mmin  and Mmax  will be shown by δm , so we will get: 

δm = Mmax −Mmin ⇒ δm =
4√nq

p
= 4√

nF

P3
= 4√

kr
3n2

F

4

. 

If we propose  k̃r =
m

n
= a ∙ b1b2…bs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

ab1…bs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

10s
 then by choosing n = 10s and = ab1…bs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 

we should have:  

 
(√10sq−1)2

p
< m <

(√10sq+1)2

p
   or  (

√10sF−√p

p
)
2

< m < (
√10sF+√p

p
)
2

   

⇒ δm =
4√10sq

p
= 4√

10sF

p3
= 4√

kr
3 × 102s

F

4

 

 

3. Introducing 𝛂 − 𝐬   𝐦𝐞𝐭𝐡𝐨𝐝  

 

Since for each odd composite number we have:  

{
F = pq         ,              3 ≤ p ≤ q
P = 2x + 1  ,            q = 2y + 1

⟹ F = 4xy + 2(x + y) + 1 = 2k + 1 

Therefore if we propose S=x+y+1 and R=x y, then we will have: 

K =
F − 1

2
= 2 xy +  x + y = 2R + S − 1                                             

By assuming α = S2 − F so that α becomes a square number, we will to have: 

S =
p + q

2
⇒  α = S2 − F = (

p + q

2
)
2

− pq = (
p − q

2
)
2

 

In general case, for each value of S, we can obtain its corresponding p as follows: 

S =  
p + q

2
⇒ q = 2S − p ⇒ F = pq = p(2S − p) ⇒ S =

F + p2

2p
 ⇒  {

P = S − √S2 − F

q = S + √S2 − F
 

If suppose pmin =
√F

2
 then we should have Smax = √F 

and  from F = krp
2 we have s =

kr+1

2
√
F

kr
  . 

Therefore by assuming α = S2 − F =t2, we will have  P = S − t and q = S + t  . 

When the difference between Sp and S√F is represented by n, then we will have: 
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n = Sp − S√F = 
F + p2

2p
− √F ⇒ n =

(√F − p)
2

2p
⇒

{
 

 p = (n + √F) − √(n + √F)2 − F 

q = (n + √F) + √(n + √F)2 − F

 

In this case we have: 

S =  
p + q

2
= ⌊√F⌋ + n ⇒  α = S2 − F = t2 = (

p − q

2
)
2

 

By considering the points mentioned, we can recommend a method to identify an odd number is prime or 

composite. This is based on the premise that if we are able to find values of S in a way that the value of α becomes 

square, therefore F will be a composite number. 

By considering the relation K=2R+S-1 we will have: 

 

|
k =   odd  ⇒  S =   even 

 
k =  even  ⇒  S =   odd 

    

 

The process of calculating the value of α = S2 − F and establishing the fact that whether it is square numbers 

or not, is called α test. Any interval of 10 consecutive S is called the test domain. The reason for defining such a 

concept as the test domain is due to the repetition of the first digit on the right side of S values in it. For any 

natural odd number as F, considering the oddness or evenness of K and the digit on the right side of it, a unique 

array for values of S can be stated as follows; in which o represents the oddness of S and e represents the evenness 

of it. Therefore for any odd number in the form of F = … f2f1̅̅ ̅̅ ̅̅ ̅ on the condition that K is even or odd, we define 

Se or o
f1  as  

Se or o
f1  = (digits on the right side of S in one domain) . 

Therefore, for different cases , we have: 

 

F = 2k + 1 = …1̅̅̅̅̅                ⇒          {
k = odd    ,   Se

1 = (0,4 ,6)  

k = even   ,   So
1 = (1 ,5 ,9)

                

F = 2k + 1 = …3̅̅̅̅̅                ⇒          {
k = odd    ,     Se

3 = (2 ,8 )

k = even    ,   So
3 = (3 ,7 )

         

F = 2k + 1 = …7̅̅̅̅̅               ⇒          {
k = odd     ,    Se

7 = (4 ,6)

 k = even    ,    So
7 = (1 ,9)

    

F = 2k + 1 =  … 9̅̅̅̅̅              ⇒         {
k = odd      ,     Se

9 = (0 ,2 ,8)

k = even     ,    So
9 = (3 ,5 ,7)

   

 

It is noteworthy to mention that in this method by finding the first response point, the compositeness of the F 

number will become obvious. From now the S of any response point will be represented by  Sr. In this case we 

will have Sr = Smin + (n − 1) × 10 . 

 

Here n represents the number of the test domain which contains the response point ( or Sr) and  Smin also is 

the value of S in first test domain which has a digit on the right side equal to  Sr.Therefore for each response point 

we will have Sr =
p+q

2
 .For any α test, we will eliminate the values of S in test domains as much as possible. In 

other words, some values of S for which α does not become square number (or perfect square) will be eliminated. 

These processes of eliminating the S values and reaching the response points are called α - S method. When F has 

more than two numbers as p, then the probability of reaching the first response point will be much. One of the 

significant points about this sieve is the increase in density of the existence probability of P values by decreasing S 

value. In order to establish the compositeness of an odd number, we only need to reach the first response point. 

One of the benefits of this method is the fact that in many cases we do not need α test for all values of S in 

order to identify whether α is a square number or not. By using only a few digits on the right side of S and F, we 

will be able to eliminate many values of S. If  α = emem−1…e3e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is a prefect square number, then we will be 

able to use the  following notes in this method. 

 

Note 3:We can easily show  
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{
anan−1…amam−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 = …bmbm−1…b1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                

amam−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝟐 = …cmcm−1… . c1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                   
⇒ bmbm−1…b1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = cmcm−1… . c1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

and 

 

anan−1…amam−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ± brbr−1…bmbm−1…b1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  cscs−1…cmcm−1… . c1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⇒ 

amam−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ± bmbm−1…b1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = … cmcm−1… . c1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 

Note 4:For all square numbers we always have e1 ∈ {0, 1, 4, 5, 6, 9 } . 
Note 5: If e1=5, then E3 = e3e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅ ∈   {025, 225, 625} . 

 

For proving, by assume α = (… l3l2l1̅̅ ̅̅ ̅̅ ̅̅ ̅)2 we should have: 

 

(l3l2l1̅̅ ̅̅ ̅̅ ̅)2 = (l3l25̅̅ ̅̅ ̅̅ )2 = 104l3
2 + (2l1l3 + l3) × 10

3 + (l2
2 + l2) × 10

2 + 52 

⇒ {
e2e1̅̅ ̅̅ ̅̅ = 52 = 25̅̅̅̅                                                      

e3 = l2
2 + l2 ⇒ e3 ∈ {0,2,6}                                

 

 

Note 6: For perfect square numbers with the digit zero on their right side, the number of zeros on their right 

side must always be even.  

 

Note 7: In the case that α is an even number, we have E3 − 0 = 8m or E3 − 4 = 8m  and 

in the case that α is an odd number, we have  E3 − 1 = 8m  . 

Therefore by selecting EN for big value of N we can eliminate  more test points in a way that fewer test points 

will remain for α test and this is very suitable  for large numbers. In doing so, we will utilize the following 

theorems. 

 

Theorem 9: If the natural number as α = eMeM−1…e3e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a square number and the N digit on the right 

side is represented by EN=eNeN−1…e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then in a way that α is odd, we have: 

EN − (2i − 1)
2 = 2Nmi                      (1 ≤ i ≤ 2

N−3, N > 3) 

 and in a way that α is even, we have: 

EN − (2i − 2)
2 = 2Nmi                     (1 ≤ i ≤ 2

N−3 , N > 3) 

(mi is a natural number) 

 

Proof: Since any natural number can be represented by 2kr + lr in a way that if the number is even, then lr =
0  and if it is odd, then lr = 1   and that kr is a non-negative integer number; therefore, by assuming that α is a 

perfect square number, we will have: 

 

α = eMeM−1…e3e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (2k1 + l1)
2 = (2(2k2 + l2) + l1)

2       = (2(2(2k3 + l3) + l2) + l1)
2 

= ⋯ = [2NkN + (2
N−1 × lN + 2

N−2 × lN−1 +⋯+ 2l2 + l1)]
2 

 

If we continue, receive to the value of kr  in 2kr + lr equal to 1. 

When we assume: 

 

A = 2N−1 × lN + 2
N−2 × lN−1 + 000 + 2l2 + l1 

 

It can be seen that A equivalent to a number in base 2 as below: 

 

 

A = (lNlN−1… l3l2l1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 

Therefore: 

 

α = (2NkN + A)
2 = (2NkN

2 + 2kNA) × 2
N + A2 
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By assuming T = 2NkN
2 + 2kNA ,we will have: 

 

 (1                         )   α = T × 2N + A2 

 

On the other hand, we can write: 

 

α = eMeM−1…e3e2e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = eMeM−1…eN+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 10N + eNeN−1…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                    

 

By assuming EN = eNeN−1…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and  S = eMeM−1…eN+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, we will have: 

 

                                (2                                                   )α = S × 10N + EN 

 

From (1) and (2) we can conclude that: 

 

EN − A
2 = (T − S × 5N) × 2N = 2N × Q 

 

It means that 2N counts the number EN − A
2. 

 

Since we have: 

 

Amax = (111…1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 = 2
N−1 + 2N−2 +⋯+ 2 + 1 ⇒ Amax = 2

N − 1 

 

Therefore the number of the tests that we can do in a definite EN will be as below: 

 

||

EN − 1
2 = 2Nm1                                                   

EN − 3
2 = 2Nm2                                                   

………………… . ..                                                  
EN − (2n1 − 1)

2 = 2Nmn1                                   

 

 

Thus we will have: 

 

2N − 1 = 2n1 − 1 ⇒   n1 = 2
N−1   

 

Therefore: 

 

EN − (2i − 1)
2 = 2Nmi      , 1 ≤ i ≤ 2N−1     

 

For the case that α is even, we have l1 = 0 and its proof is like the previous one; then for this case we will 

have: 

 

Amax = (111…1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 = 2
N−1 + 2N−2 +⋯+ 2 + 0 ⇒ Amax = 2

N − 2    

 

Therefore the number of  EN tests, when α is even ,will be as below: 

||

EN − 0
2 = 2Nm1                                                       

EN − 2
2 = 2Nm2                                                        

………………….                                                          
EN − (2n1 − 2)

2 = 2Nmn1                                      

 

 

Thus we have: 
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2N − 2 = 2n1 − 2 ⇒   n1 = 2
N−1   

Then in general case we will have: 

 

EN − (2i − 2)
2 = 2Nm      , 1 ≤ i ≤ 2N−1   

 

To continue the proof, we first consider a case in which α  is odd and for a definite EN  test with the 

arrangement of A values in ascending order, therefore we should have:  

 

   

|

|

|

EN − 1
2 = 2Nm1                                                                                                        

EN − 3
2 = 2Nm2                                                                                                        

………………….                                                                                                          
EN − (2i − 1)

2 = 2Nmi                                                                                           
………………… ..                                                                                                        
EN − [2n1 − (2i − 1)]

2 = 2Nmn1−i                                                                      
…………………… ..                                                                                                    
EN − (2n1 − 3)

2 = 2Nmn1−1                                                                                 

EN − (2n1 − 1)
2 = 2Nmn1                                                                                       

                                  

 

In general case by attention to symmetrical position for any twoEN test we can conclude:  

 

 EN − (2i − 1)
2 = 2Nmi   , EN − [2n1 − (2i − 1)]

2 = 2Nmn1−i   ⇒ 

[2n1 − (2i − 1)]
2 − (2i − 1)2 = (2n1)( 2n1 + 4i + 2) = 2

N( 2n1 + 4i + 2) = K × 2
N ⇒ 

[2n1 − (2i − 1)]
2 = (2i − 1)2 + K × 2N ⇒ EN − [2n2 − (2i − 1)]

2 = EN − (2i − 1)
2 + K × 2N 

= 2Nmn1−i  ⇒ EN − (2i − 1)
2 = 2N(mn1−i  − K × 2

N) = 2Nmi 

 

Therefore the total number of the remaining values of A for EN tests decreases from 2N−1to 2N−2 . 

Because the number of EN tests can be calculated by n2 = 2
N−2.  

The ascending arrangement of the remaining A values in EN tests, are as below:  

 

|

|

|

EN − 1
2 = 2Nm1                                                                                                        

EN − 3
2 = 2Nm2                                                                                                        

………………….                                                                                                          
EN − (2i − 1)

2 = 2Nmi                                                                                           
………………… ..                                                                                                        
EN − [2n2 − (2i − 1)]

2 = 2Nmn2−i                                                                      
…………………… ..                                                                                                    
EN − (2n2 − 3)

2 = 2Nmn2−1                                                                                 

EN − (2n2 − 1)
2 = 2Nmn2                                                                                       

                                  

 

Therefore by attention to symmetrical position for any twoEN test, we can conclude: 

 

[2n2 − (2i − 1)]
2 − (2i − 1)2 = (2n2)( 2n1 + 4i + 2) = 2

N( n1 + 2i + 1) = K × 2
N ⇒ 

[2n2 − (2i − 1)]
2 = (2i − 1)2 + K × 2N ⇒ EN − [2n2 − (2i − 1)]

2 = EN − (2i − 1)
2 + K × 2N 

= 2Nmn2−i  ⇒ EN − (2i − 1)
2 = 2N(mn2−i  − K × 2

N) = 2Nmi 

 

Because the number of EN  tests can be calculated by n3 = 2
N−3.  

Thus in general case when α is odd, for every EN test we will have: 
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||

EN − 1
2 = 2Nm1                                                       

EN − 3
2 = 2Nm2                                                       

………………….                                                          
EN − (2nN − 1)

2 = 2NmnN                                     

 

consequently the total number of EN tests equal to  nN = 2
N−3  . 

For the case in which α is even, the proof process is completely similar and for each EN test we have: 

 

||

EN − 0
2 = 2Nm1                                                       

EN − 2
2 = 2Nm2                                                       

………………….                                                          
EN − (2nN − 2)

2 = 2NmnN                                     

 

 

In a way that the total number of each EN  test is calculated like that of the previous case, thus we will 

have nN = 2
N−3, therefore the proof is complete. 

 

Theorem 10: When EN − x
2  by assuming that EN = aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  can be counts by 2N , and 

when we replace aN   with another digit  as aŃ  and represent the result of aŃaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   by EŃ , 

therefore EŃ − x
2 can be count by 2N. 

 

Proof: If in EN = aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2N + x2 ,we replace aN with aŃ in a way that áN = aN ± r, 
and r can have one of the digits from 1 to 9, then we will have: 

 

EŃ = aŃaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (aN ± r)aN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

= (aN ± r)aN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ((±r) × 10N−1 + aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

= r2 × 102N−2 ± 2r × 10N−1 × aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

 = (r2 × 52N−2 × 2N−2 ± r × 5N−2 × aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) × 2N + aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2 − fNfN−1… f1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . 

 

By assuming T = r2 × 52N−2 × 2N−2 ± r × 5N−2 × aNaN−1…a1 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , we should have: 

 

EŃ = T × 2
N + EN ⇒ EŃ = T × 2

N + 2Nm+ x2   ⇒   EŃ − x
2 = (T +m) × 2N   

It means EŃ − x
2 can be counts by 2N and the proof is complete. 

 

Note 8: When the values of EN are even, we can decrease the number of EN test. As an example, for E5 to E7 
we have: 

N = 5  ⇒ |

 E5 − 0
2 = 32m

 E5 − 2
2 = 32m

 E5 − 4
2 = 32m

   ,    N = 6  ⇒ ||

 E6 − 0
2 = 64m

 E6 − 2
2 = 64m

 E6 − 4
2 = 64m

 E6 − 6
2 = 64m

 , N = 7  ⇒

|

|

|

 E7 − 0
2 = 128m

 E7 − 2
2 = 128m

 E7 − 4
2 = 128m

 E7 − 6
2 = 128m

 E7 − 8
2 = 128m

 E7 − 10
2 = 128m

 E7 − 14
2 = 128m

 

In this method we can use theorems 9 and 10 in EN tests as follow .If for one value of  EN  as aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ the 

result of EN  test will be positive then the result of EN tests for another value of EN with equal in N − 1  right 

digits, are positive .In other words ,If  EN test for aNaN−1…a1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ will be positive then we can conclude when aN 

change from 1 to 9 , the result of EN test  should be positive and vice versa ..   
 

Theorem 11: When EN test for a definite S is positive then EN−r test is positive for that S. 
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Proof: From theorem (4) we have: 

EN − x
2 = 2Nm ⇒ eNeN−1…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − x2 = 2Nm1  

⇒ eNeN−1…eN−r+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 10N−r + eN−i…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − x2 = 2Nm1  

⇒ eN−i…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − x2 = 2Nm1 − eNeN−1…eN−r+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 5N−r × 2N−r 

= 2N−i(2im1 − eNeN−1…eN−r+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 5N−r) = 2N−rm2  ⇒ EN−r − x
2 = 2N−rm2 . 

 

It means the number  2N−r counts EN−r − x
2. In other words EN−r test is positive and the proof is complete. 

Therefore in every EN test for a definite S except for values of x for which EN−1   test is positive, all the tests 

related to the other values of x are eliminated from the EN tests. Thus total number of EN tests can be calculated as 

follows: 

n EN
≈ 2N−3 − 2N−4 + 1 = 2N−4 + 1 

 

Theorem 12: If EN − x
2 = 2Nm, i.e. EN  test will be positive, then EM − x

2 for each M greater than N can  be 

count by 2N. 

 

Proof: 

 EN − x
2 = eNeN−1…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − x2 = 2Nm ⇒ EM − x

2 = eMeM−1…eN+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 10N + eNeN−1…e1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − x2  

= 2Nm+ eMeM−1…eN+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 10N = 2N(m + eMeM−1…eN+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × 5N) = 2Nm′ 

It means that the 2N counts  EM − x
2  and the proof is complete. 

 

In EN tests for a definite S, only for a one value of x, the test result is positive. If we assume for the two 

different values x1 and x2 the test result is positive, then it means x1 and  x2 will have the same outcome. 

 

Theorem 13: If values of EN for two values of S with a difference equal to10 ,from the two domains of the 

consecutive test is represented by EN(i+1)and EN(i) in a way that i represents the number of the test domain, then 

values of ∆EN(i,i+1) = EN(i+1) − EN(i) for the two consecutive domains of the EN tests form an arithmetic 

progression with 200  as common difference. 

 

Proof: From EN  definition ,we have: 

 

{
EN(1) = Smin

2 − fN… f1̅̅ ̅̅ ̅̅ ̅̅                               

EN(i) = (Smin + 10(i − 1))
2 − fN… f1̅̅ ̅̅ ̅̅ ̅̅

⇒      EN(i) = EN(1) + 20(i − 1)Smin + 100(i − 1)
2 

⇒

{
 
 

 
 
EN(i+1) = EN(1) + 20iSmin + 100i

2                                                                                                                                          

EN(i) = E(N)1 + 20(i − 1)Smin + 100(i − 1)
2         ⇒ {

∆EN(i−1,i) = 20Smin + 100(2i − 3)

∆EN(i,i+1) = 20Smin + 100(2i − 1)

EN(i−1) = EN(1) + 20(i − 2)Smin + 100(i − 2)
2                                                                              

 

 ⇒ ∆EN(i,i+1) − ∆EN(i−1,i) = 200 

 

It means the values of  ∆EN(i,i+1) forms an arithmetic progression with 200 as common difference value. 

Therefore we will have: 

X = ∆EN(1,2)
+200
→    ∆EN(2,3)

+200
→   ∆EN(3,4)

+200
→   … 

⇒ EN(1)
X
→ EN(2)

X+200
→     EN(3)

X+2×200
→      EN(4)

X+3×200
→      EN(5)⟶⋯ 

⇒ EN(i) − EN(i−1) = X + (i − 2) × 200 ⇒ EN(i) = EN(1) + (i − 1)X + (i − 1)(i − 2) × 100 

 

If we represent the i th part of the S values with the number 10N by   HN(i) and the j th part of the S values   

with the number 10N−1 by AN(j), in a way that i in them is from 1 to ⌈
Smax−Smin

10N
⌉ and j is from 1 to 10, then 

according to theorem (8) it will suffice to do the EN  tests only   for AN(1),i.e. the first part with the number 
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10N−1in the  HN(1)part. If the test result for one definite S in AN(1) will be positive, it means the result of this test is 

positive for all the S values that contain N-1 similar digits on the right side and are only different in the first digit 

on the left side and are located in other nine part of A. But if the result of EN test is negative for one of the S 

values in AN(1), then this test  is negative for all the S values which are only different  in their first digit on the left 

side and are located in the other nine parts of A. If in the first AN(1) all the tests of EN are negative, it means that 

the odd number under the test is a  prime number. 

   We must do the EN tests only 

       in AN(1) 

 

 

 

 

 

 

 

If we assume that the number of EN
+ tests in AN(1) is equal to w, then the total number of α tests in α − S 

method can be calculated by nα−EN
+ = ⌈

Smax−Smin

10N
⌉ × 10w . Consequently the algorithm of α − S method can be as 

bellow: 

 

F = fM… f1 ⇒ K =
F−1

2
⇒  K  = odd ⇒ select Se

f1 or K = even ⇒ select S0
f1 

⇒ the values of  Smin  in D1  ⇒ doing  E3 test on the values of Sn  . (  Sn = Smin + (n − 1) × 10  ) 
⇒ the values of SE3+ ⇒ doing EN1 test on SE3+  . If EN1

+  then we go to doing EN2 test and if   EN1
−  then 

we continue EN1 test on SE3+  . ( EN1 − (2i − 1)
2 = 2N1mi , 1 < i ≤ 2

N1−3) 

 

In this case if EN1
+  then we go to EN2 test .If EN2

+  then we go to EN3  test and if  EN2
−  then we continue EN2 test 

on SEN1
+  . (EN2 − (2i − 1)

2 = 2N2mi , 2
N1−3 < i ≤ 2N2−3 ) 

If EN2
+  then we go to EN3  test. By continue this process we reach to S values with EN

+ in AN(1) , then   select S 

values with EN
+ in HN(1) . In continuation we select S values with EN

+ in residue HN parts. (from HN(2)  to HN(nmax) ) 

then we doing α test on S values with EN
+ in all HN  parts  .If α  test for one value of S is positive (or α is a perfect 

square number),then we can calculate p and q values.  

in  the α − S method it is better to do the EN tests for the three value of   N . (E3, EN1 , EN2)   So that 

  

α test EN2 EN1  E3 S D 

     D1 

     D2 

 ......................  .........................  .........................  .........................  .........................  .................... 

 

If for very large numbers, EN tests are done by bigger value of  N ,Then  the number  of α tests will be 

decreased. It should be noted that working on some digits on the right side of a large number is much easier than 

working on all of its digits and takes much less time. We can observe the number of EN tests will be rigorous 

decreased, which is one of the important properties of this sieve. 

 

Example 2: Show that    F = 251,953,878,652,772,860,514,325,499,229 is  a composite number. 

Answer: ⌊√F⌋ = 501,950,075,865,935  , k =
F−1

2
= even, ⇒  SO

9 = (3,5,7) 

 

E5 E3 The first set of S by 103 length 

E5
−⟶  E3 = 100̅̅ ̅̅ ̅ ⟶ E3

+ 501,950,075,865,932  

AN(1) 

AN(2) 

…………. 

AN(9) 

AN(10) 

𝐻𝑁(1) 
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E3 = 260̅̅ ̅̅ ̅ ⟶  

E3 = 996̅̅ ̅̅ ̅ ⟶  

 

501,950,075,865,933 

501,950,075,865,935 
D1 

 

 

E5
−⟶  

 

 

E5
−⟶  

 

E3 = 740̅̅ ̅̅ ̅ ⟶  

E3 = 020̅̅ ̅̅ ̅ ⟶  

E3 = 796̅̅ ̅̅ ̅ ⟶ E3
+ 

501,950,075,865,937 

501,950,075,865,943 

501,950,075,865,945 

D2 

E3 = 580̅̅ ̅̅ ̅ ⟶  

E3 = 980̅̅ ̅̅ ̅ ⟶  

E3 = 796̅̅ ̅̅ ̅ ⟶ E3
+ 

501,950,075,865,947 

501,950,075,865,953 

501,950,075,865,955 

D3 

 

It can be seen that for S=504,037,195,361,823, α is a perfect square number and for this first Sr we have: 

 

Sr = 504,037,195,361,823 → α = Sr
2 − F = t2 ⇒⇒ {

p = 458,215,632,147,113  
q = s594,858,758,576,533

 

It is observed that only by E5 test, the S values are eliminated  from 3 domains.  

The most important notes regarding to the α − S  sieve are mentioned as follows: 

1. There is no need to know the prime numbers less than the square root of the number under test. 

2. The results of EN tests do not depend on the largeness of the numbers under test. They only depend on the 

type and the arrangement of N digits on the right side. 

3. When we use ENtest for N digits on the right side of a definite S in a way that the test result becomes 

negative, all the S values which contain N − 1 similar digits on the right side ,will be eliminated from the α test. 

4. For large numbers, by this method, we will reach the answer more quickly and more easily than by tests 

divisibility test for prime numbers less than its square root. The largeness of the number allows us to do 𝐸𝑁 tests 

for greater N value.  

5. We will not need time-consuming and big computations with this sieve because in 𝐸𝑁 tests we only use N 

digits on the right side of the numbers. 

 

4.Introduce 𝜷 − 𝒔    method 

 

Whenever by assuming (1 ≤ 𝑝 ≤ 𝑞) 𝐹 = 𝑝𝑞   𝑎𝑛𝑑 (1 ≤ 𝑛 ≤ 𝑚)𝑘 = 𝑚𝑛   the result of 𝛽(𝑘, 𝜃)  is a square 

number  and by representing the phrase ⌊√4𝑘𝐹⌋ + 𝜃 by S, therefore the values of p and q can be calculated as 

follows:  
 

𝛽(𝑘, 𝜃) = 𝑆2 − 4𝑘𝐹 = 𝑡2  ⟹ 𝑝 =
𝑆 ∓ 𝑡

2𝑚
 , 𝑞 =

𝑆 ± 𝑡

2𝑛
 

For any k values we can calculate the values of S and 𝛽(𝑘, 𝜃) by placing the consecutive values of natural 

numbers in (𝜃 ≥ 1)𝜃.By Considering the theorems and the notes mentioned, from a few number of digits on the 

right side of 𝛽(𝑘, 𝜃) value we will be able to eliminate  many value of S from the test for which the result of 

𝛽(𝑘, 𝜃)  is not square. This method of sieve, in which by eliminating S values, we want that 𝛽(𝑘, 𝜃) to be a prefect 

square, is called 𝛽 − 𝑆 method. In this method, we represent N digits on the right side of 𝛽(𝑘, 𝜃)  value by  𝐸𝑁 and 

we do the 𝐸𝑁 tests like 𝛼 − 𝑆 method. To use this method on S values only from 𝑘𝑟 = 1 to 𝑘𝑟 = 4 , is equal to 

apply  this method for the p values from √𝐹 to 
√𝐹

2
  .This is one of the most important benefits of this sieve. In this 

method for one definite 𝜃 and K, we can assume: 

 

    {
⌊√4𝑘𝐹⌋ + 𝜃 = 𝑆 = …𝑎𝑁 …𝑎2𝑎1 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4𝑘𝐹 = …𝑏𝑁 …𝑏2𝑏1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                        
 

⇒ 𝛽(𝑘, 1) = 𝑆2 − 4𝑘𝐹 = …𝑒𝑁 …𝑒2𝑒1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⇒ 𝐸𝑁 = 𝑒𝑁 …𝑒2𝑒1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

If we represent the odd values of 𝑎1 for 𝑏1 by 𝑆𝑜
𝑏1 and the even values of 𝑎1 for 𝑏1 by 𝑆𝑒

𝑏1,thus we will have: 

 

𝑏1 = 0 ⇒ {
𝑆𝑜
0 = (1,3,5,7,9)

𝑆𝑒
0 = (0,2,4,6,8)

      ,     𝑏1 = 2 ⇒ {
𝑆𝑜
2 = (1,9)

𝑆𝑒
2 = (4,6)

    ,     𝑏1 = 4 ⇒ {
𝑆𝑜
4 = (3,5,7)

𝑆𝑒
4 = (0,2,8)
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 𝑏1 = 6 ⇒ {
𝑆𝑜
6 = (1,5,9)

𝑆𝑒
6 = (0,4,6)

         ,       𝑏1 = 8 ⇒ {
𝑆𝑜
8 = (3,7)

𝑆𝑒
8 = (2,8)

    

 

When the result of 𝛽(𝑘, 1) is a square number, we will have: 

 

𝛽(𝑘, 𝜃) = 𝑆2 − 4𝑘𝐹 = (𝑚𝑝 + 𝑛𝑞)2 − 4(𝑚𝑛)(𝑝𝑞) = (𝑚𝑝 − 𝑛𝑞)2 = 𝑡2  
 

Therefore when we have 𝑆 = 𝑚𝑝 + 𝑛𝑞, the value of 𝛽(𝑘, 𝜃) will be a square number and the desired S value 

,will be 𝑆𝑟 = 𝑚𝑝 + 𝑛𝑞 . Considering that the values of m and n are odd or even, through k=mn we can determine 

if the values of S are odd or even .   

 

 {
𝑚 = 𝑜𝑑𝑑
𝑛 = 𝑜𝑑𝑑

   𝑜𝑟  {
𝑚 = 𝑒𝑣𝑒𝑛
𝑛 = 𝑒𝑣𝑒𝑛

  ⇒ 𝑆 = 𝑒𝑣𝑒𝑛 

 

{
𝑚 = 𝑜𝑑𝑑
𝑛 = 𝑒𝑣𝑒𝑛

   𝑜𝑟  {
𝑚 = 𝑒𝑣𝑒𝑛
𝑛 = 𝑜𝑑𝑑

  ⇒ 𝑆 = 𝑜𝑑𝑑 

 

 In order to use this sieve between two values of 𝑘𝑟, we will do as follows: 

 

 
 

By calculating the minimum value of S in the sieve interval of ∆, we will have: 

 

   𝑆𝑑 = ⌊√4𝑘𝐹⌋ = ⌊√4𝑥1𝑦1𝐹⌋ 

 

To calculate the maximum value of S in the sieve interval of ∆, we will do as follow:  

 

𝑘𝑟 =
𝑞

𝑝
=
𝑥2
𝑦2
     ,      𝐹 = 𝑘𝑟𝑝

2  ⇒

{
 
 

 
 
𝑝 = √

𝐹

𝑘𝑟
= √

𝑦2𝐹

𝑥2

𝑞 =
𝑥2
𝑦
√
𝑦2𝐹

𝑥2
         

      ⇒ 𝑆𝑢 = 𝑥1𝑝 + 𝑦1𝑞 = (𝑥1 + 𝑥2)√
𝑦2𝐹

𝑥2
 

 

In the best case, If we consider 𝑥1 and 𝑥2  as consecutive integer number and 𝑦1 = 𝑦2 = 𝑦  , then we will have: 

𝑆𝑑 = ⌊√4𝑥1𝑦𝐹⌋  , 𝑆𝑢 = (2𝑥1 + 1)√
𝑦𝐹

𝑥1+1
 

 

If one 𝑆𝑟  is located in the sieve interval of ∆, we represented it by ∆𝑟.For each 𝑆𝑟  in a sieve interval of ∆𝑟 , we 

have: 

 

{
𝑆𝑟 = 𝑆𝑑 + 𝜃 = 𝑚𝑝 + 𝑛𝑞    

𝜃 = ⌊(√𝑥1𝑝 − √𝑦𝑞)
2⌋ + 1

 ⇒ 𝛽(𝑘, 𝜃) = (𝑚𝑝 − 𝑛𝑞)2 = 𝑡2 

 

In orders that the method should be easier, between the two consecutive integer values of 𝑘𝑟, especially for big 

values of F, it is better to divide the distance into two equal parts in which each part is an independent sieve zone.: 
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  ∆𝑘−𝑖 represents the it h of sieve zone related to K. In a particular case when the distance between the two 

integer values of consecutive 𝑘𝑟 is selected as one sieve zone, we will do as follows: 

 
 

   𝑆𝑑 = ⌊√4𝑘𝐹⌋     ,     Su = ⌈(2k + 1)√
F

k + 1
⌉  

 

Therefore for the zones between the consecutive integer values of kr, the length of the intervals (L = Su −
Sd) are decreased. 

 

L∆1 > L∆2 > L∆3 > ⋯ 

 

The decreasing of the length of consecutive zones for kr values  ,finally to get at zero. In a way that for some 

consecutive integer value of kr, the result of β(k, 1) will be a square number. With the increase in kr  values, the 

number of consecutive integer values of k   on the condition that the result of  β(k, 1) are square, increased 

accordingly. Therefore based on the theorem(4) ,it is only necessary to do β(k, 1) test for one integer value of kr  .  
Example 3: By selecting k=2 prove that F = 9, 640, 669 is  a composite number. 

Answer: 

∆2−1                                           ∆2−2                                               

           𝑘𝑟     

   
4

2
                                                

5

2
                                                

6

2
                                                    

4kF = 4 × 4 × 2 × F = 308, 501, 408    ,    Sd2−1 = 17, 564      ,      Su2−1 = ⌈9√
2F

5
⌉ =  17, 673    

 

We can see ,when S = 17, 626  then β is a prefect square number ,we can see: 

β = Sr
2 − 4kF = (17, 622)2 − 308, 501, 608 = 14262 = t2 

|
m = 4
n = 2

 ⇒  |
p =

S − t

2m
=
17, 622 − 1426

2 × 4
= 2381

q =
S + t

2n
=
17, 622 + 1426

2 × 2
= 4049

   

 

The important benefits of β − S method is that we can easily apply it in a arbitrary zone of  kr  values. This is 

particularly very important for some values of kr since it includes a large part of the interval containing the p 

values. 

Because in general case by attention to  
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Sd = ⌊√4k1F⌋  ,Su = (k1 + k2)√
F

k2
⇒ L = Su − Sd = √

F

k2
(√k2 − √k1)

2
 

  

we can conclude that : 

1-By increasing ∆k for a natural number as  F , then the values of L increases.  

2-When the value of ∆k has a constant value, if we increase the value of k1 and k2, then  values of L  

decreases .If we select  k1 =
(√q−1)2

P
   and k2 = 

(√q+1)2

P
 , we can see that L = 1 and p ≥ √16F

3
 .  

By this method we can choice any arbitrary zone of kr for β test therefore it is the important advantages of this 

method.  

  Acknowledgments 

The author would like to express his sincere gratitude to Dr. Amir Jafari, associated professor of Sharif 

University and Dr. Kamyar Hosaini, assistant professor of Islamic Azad University of Rasht, for their guidance in 

all steps. I also want to thank my wife, Fariba, and my son Alireza, for their kind encouragement in all conditions.  

References   

1. D.M. Burton, “Elementary Number Theory”, Mc Graw Hill Companies, 2007.   

2. R. Cranal, C. Pomerance, “Prime Numbers”, Springer, 2005. 

3. D. Wells, “Prime Numbers”, Joun Wiley & Sons, 2005. 

4. P. Hackman,“Elementary Number Theory”, HHH. Production, 2009. 

5. T. Koshy, “Elementary Number Theory with Application”, Elsevier, 2007. 

6. K.C. Chowdhury, “A First course in Number theory”, Asian Books Private Limited, 2007. 

7. W. Narkiewicz, “The Development of Prime Number theory”, Spring, 2000.  

8. H.M. Stark, “An Introduction to Number theory”, MIT Press, 1987. 

9. A. Baker, “A Comprehensive Course in Number theory”, Cambridge University Press, 2012. 

10. K.H. Rosen, “Elementary Number theory”, Pearson Adisson Wisely, 2005. 

11. J.J. Tattersall, “Elementary Number Theory”, Cambridge University Press, 2005. 

12. G.A.Jones, M. Jones, “Elementary Number Theory”, Springer, 2005. 

13. W. Sierpinsky, “Elementary Theory of Numbers”, PWN-Polish Scientific Publishers, 1991. 

14. M.B. Nathanson. “Elementary Methods in Number Theory”, Springer, 2000. 

15. O. Ore, “Number Theory and Its History”, Mc Graw Hill Companies, 1948. 
  


