Deskins's conjecture on Lie algebras

Vahid Alamian ${ }^{\text {a* }}$ and Vahide Tavazoei ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Farhangian University, Tehran, Iran.
(* Corresponding: Vahid Alamian)

Article History: Received: 5 April 2021; Accepted: 14 May 2021; Published online: 22 June 2021

Abstract

We investigate relationships between the properties of maximal sub- algebras of L and the members of $\mathrm{P}(\mathrm{M})$ and solvability and supersolv- ability in Lie algebras. that corresponds to similar relationships in the group-theory. Further, we show that if L be a Lie algebra and algebri- caly closed field of zero characteristic, there exists a θ-subalgebra C such that $\mathrm{L}=\mathrm{M}+\mathrm{C}$ and $\frac{C}{\operatorname{Core}(C \cup M)}$ is abelian for all maximal subalgebras M and L, L is solvable.

Keywords: Lie algebra, Completion, Maximal subalgebra

1. Introduction

Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set $I(M)$ of all completions of M is called the index complex of M in L. This is analogous to the concept of the index complex of a maximal subgroup of a finite group as introduced by Deskins in (Deskins, 1954); this concept has since been further studied by a number of authors, including Ballester-Bolinches and Ezquerro (1992), Bei- dleman and Spencer (1972), Deskins (1990), Mukherjee (1975), andMukherjee and Bhattacharya (1988). The objective of this paper is to investigate relationships between the properties of maximal subalgebras of L and the members of $P(M)$ and solvability and supersolvability in Lie algebras. that corresponds to simi- lar relationships in the group-theory.

It is easy to see that the sum of all ideals of L that are proper subalgebras of C is itself a proper subalgebras of L. We define the strict core (resp.core) of a subalgebra $B f=0$ to be the sum of all ideals of L that are proper subalgebras (resp.subalgebras) of B , and denote it by $\mathrm{k}(\mathrm{B})$ or $k_{L}(B)$ (resp. B_{L}). The subalgebra C is then a completion of the maximal subalgebra M of $\mathrm{L}($ that is, $C \in I(M))$ if $L=\langle M, C>$ and $k(C) \subseteq M$.

In section two, we study completions that are members of $P(M)$ and show that if M is a maximal subalgebra of L and N is a maximal ideal of L, such that If
$C \in P(M)$ and $N \leq K(C)$, then $\frac{C}{N} \in I\left(\frac{M}{N}\right) ;$ and $K\left(\frac{C}{N}\right)=\frac{K(C)}{N}$.
In the last section, maximal completions that are θ-subLiealgebras are shown that over an algebrically closed field, with characteristic zero, a Lie algebra is supersolvable if for each maximal subalgebra M of composite index in L there exists a maximal θ-subalgebra C for M that $L=C+M$ and $\frac{C}{\operatorname{Core} M \cap C(L)}$ is cyclic. This is analogous to that of Deskins for groups.

2. Maximal subalgebras and maximal comple- tions

Definition 2.1. Let M be a maximal subalgebra of L, then set $P(M)=\{C \in I(M) \mid C$ is maximal in $I(M)$ and $L=$ $C+M\}$.

Lemma 2.2. Let M be a maximal subalgebra of L and N be a maximal ideal of L. If $C \in P(M)$ and $N \leq K(C)$, then
(i) $\frac{C}{N} \in I\left(\frac{M}{N}\right)$
(ii) $K\left(\frac{C}{N}\right) \in \frac{K(C)}{N}$.

Proof. It is clear that $\frac{C}{N} \in I\left(\frac{M}{N}\right)$. We only proof (ii). Since $C \in P(M)$, We have $K(C)<C$ and $K(C) \leq \operatorname{Core}(M)$. Hence $\frac{K(C)}{N}<\frac{C}{N}$, and $\frac{K(C)}{M} \leq \frac{M}{N}$, therefore, $K\left(\frac{C}{N}\right) \geq \frac{K(C)}{N}$. In addition, $\frac{C}{N} \in I\left(\frac{M}{N}\right)$ implies that $K\left(\frac{C}{N}\right)<\frac{C}{N}$. If $\left(\frac{C}{N}\right)<\frac{H}{N}$, then $H \triangleleft L$ and $H<C$. From the definition of $K(C)$, it is deduced that $H \leq K(C)$. Therefore, $\left(\frac{C}{N}\right)<\frac{C}{N}$.

Lemma 2.3. Let M be a maximal subalgebra of L and $C \in P(M)$. If CoreM $\$ C$, then there exists an ideal completion H of M in L such that $\frac{H}{K(H)}$ isomorph with a subalgebra of a quotient algebra of $\frac{C}{K(C)}$.

Proof. Since CoreM $\not \leq C$, we have $C<C+C o r e M$. The maximality of C in $\mathrm{I}(\mathrm{M})$ leads to the conclusion that $C+$ CoreM is not in $\mathrm{I}(\mathrm{M})$. Hence, the collection $S=\{T \triangleleft L \mid T \nsubseteq$ CoreM, $T<C+$ Core $M\}$ is nonempty. Let H be minimal in this partially ordered set S . Then $H \in I(M), H+C o r e M>C o r e M$ and $H+C o r e M \leq C+C o r e M$. $($ CoreM $) \cap H<H$ and $(\operatorname{CoreM} \cap H) \triangleleft L$ imply that $(\operatorname{CoreM} \cap H) \leq K(H)$. On the other hand, it is clear that $K(H)$ $\leq(\operatorname{CoreM} \cap H)$. Hence, $K(H)=\operatorname{Core} M \cap H$. Therefore,

$$
\frac{H}{K(H)}=\frac{H}{\operatorname{CoreM} \cap H} \cong \frac{H+\operatorname{Core} M}{\operatorname{CoreM}} \leq \frac{C+\operatorname{CoreM}}{\operatorname{CoreM}}
$$

From $K(C) \leq(C \cap$ CoreM $)$, we can conclude that $\frac{C+\text { CoreM }}{\text { CoreM }} \cong \frac{C}{\text { CoreM } \cap C}$ is a quotient algebra of $\frac{C}{K(C)}$. This completes the proof.

Theorem 2.4. Let M be a maximal subalgebra of L, N be a minimal ideal subalgebra of L, and $N \leq M$. If there exists a C in $P(M)$ with $\frac{C}{K(C)}$ cyclic, then there exists a $\frac{C_{1}}{N}$ in $P\left(\frac{M}{N}\right)$ such that $\frac{\frac{C_{1}}{N}}{K\left(\frac{C_{1}}{N}\right)}$ is cyclic.

Proof. Assume that $N \leq K(C)$; then it follows from Lemma 2.2 that $\frac{C}{N} \in I\left(\frac{M}{N}\right)$ and $K\left(\frac{C}{N}\right)=\frac{K(C)}{N}$. If $\frac{C}{N}$ is a maximal element of $I\left(\frac{M}{N}\right)$, then $\frac{C}{N} \in P\left(\frac{M}{N}\right)$ and $\frac{\frac{C}{N}}{K\left(\frac{C}{N}\right)} \cong \frac{C}{K\left(\frac{C}{N}\right)}$ is cyclic. So we can assume that $\frac{C}{N}$ is not maximal in I(M). According to this assumption, there exists $\frac{C_{1}}{N} \in I\left(\frac{M}{N}\right)$ such that $\frac{C}{N}<\frac{C_{1}}{N}$. We have $<C_{1}$. The maximality of C in $\mathrm{I}(\mathrm{M})$ leads to the conclusion that C_{1} is not in $\mathrm{I}(\mathrm{M})$. Hence, the set $\mathrm{S}=\left\{T \triangleleft L \mid T \nsubseteq M . T<C_{1}\right\}$, is nonempty. Choose H as the minimal element in S. This means that $H \in I(M)$. If $N+H<C_{1}$, then $\frac{N+H}{N}<\frac{C_{1}}{N}$ and $\frac{N+H}{N} \nsubseteq \frac{M}{N}$, which is in contradiction to $\frac{C_{1}}{N} \in I(M)$. Hence, $C_{1}=N+H \triangleleft L$, consequently $C_{1} \in P\left(\frac{M}{N}\right)$.

The minimality of N leads to the conclusion $N \cap H=1$ (if $N \cap H=N$, then $C_{1}=N+H=H$, in contradiction to that $H<C_{1}$) and $C_{1}=N+H$ If there exists a subalgebra C_{2} of C_{1} such that $C<C_{2}<C_{1}$, then, for any proper subalgebra H_{1} of C_{2}, which is ideal in L, $N+H_{1} \triangleleft L$ and $N+H_{1} \leq C_{2}<C_{1}$. Since $N+H=C_{1} \cap$ $N+H_{1}=N\left(H \cap N+H_{1}, H \cap N+H_{1}<H\right.$ and $H \cap N+H_{1} \triangleleft L$, we have $H \cap N+H_{1} \leq M$, and $H_{1} \leq$ $N+H_{1}=N+\left(H \cap\left(N+H_{1}\right)\right) \leq M$. Hence, $C_{2} \in I(M)$, in contradiction to the maximality of C in $\mathrm{I}(\mathrm{M})$. It follows that C is a maximal subalgebra of C_{1}. If $K(H) \leq C$, then $K(H)<C$ (if not, $\left.C=K(H) \leq M\right)$. So $K(H) \leq$ $K(C)$, and $K(C) \geq(N+K(H))$. Noticing that $K(C)=N+(K(C) \cap H),(K(C) \cap H)<H$ and $K(C) \cap H \triangleleft L$, we have $K(C) \cap H \leq K(H)$ and $K(C)=N+K(H)$. It follows that $\frac{C_{1}}{K(C)}$ is a minimal ideal of $\frac{L}{K(C)}$ and $\frac{C}{K(C)}$ is maximal in $\frac{C_{1}}{K(C)}$. We have $\frac{C_{1}}{K(C)}$ is a solvable algebra, and therefore $\frac{C_{1}}{K(C)}$ is an elementary abelian Lie algebra. $\left(\frac{C_{1}}{K(C)}\right)+\left(\frac{M}{K(C)}\right)=\frac{L}{K(C)}$ and $\left(\frac{C_{1}}{K(C)}\right) \cap\left(\frac{M}{K(C)}\right)=1$ imply that $[\mathrm{L}: \mathrm{M}]=\operatorname{dim}\left(\frac{C_{1}}{K(C)}\right)$. On the other hand, from $C \in P(M)$ we have $\cdot\left(\frac{M}{K(C)}\right)+\left(\frac{C}{K(C)}\right)=\frac{L}{K(C)}$. It follows that $\operatorname{dim}\left(\frac{C}{K(C)}\right) \geq[\mathrm{L}: \mathrm{M}]=\operatorname{dim}\left(\frac{C_{1}}{K(C)}\right)$. which is a contradiction. So we can assume that $K(H) \nsubseteq C$, and therefore $C+K(H)=C_{1}$. Since $K(C) \cap H \triangleleft L$ and $K(C) \cap H<H$, we have $K(C) \cap H \leq K(H)$ and $K(C) \cap H \leq C \cap K(H)$ It follows that

$$
K(C)=N+(K(C) \cap H) \leq N+(C \cap K(H))=C \cap(N+K(H)) .
$$

Hence,

$$
\frac{\left(\frac{C_{1}}{N}\right)}{\left(\frac{N+K(H)}{N}\right)} \simeq \frac{C_{1}}{N+K(H)}=\frac{C+K(H)}{N+K(H)} \simeq \frac{C}{(C \cap(N+K(H)))}
$$

is cyclic. Noticing $K\left(\frac{C_{1}}{N}\right) \geq \frac{N+K(H)}{N}$, we have $\frac{\left(\frac{C_{1}}{N}\right)}{K\left(\frac{C_{1}}{N}\right)} N \nsubseteq K(C)$, which results in CoreM $\nsubseteq C$.
It follows from Lemma 2.3 that there exists an ideal completion H of M such that $\frac{H}{K(H)}$ is cyclic. If $\mathrm{N} \leq K(H)$, then clearly $\frac{H}{N} \in P\left(\frac{M}{N}\right)$, and by using Lemma 2.2, it is deduced that $\frac{\left(\frac{H}{N}\right)}{K\left(\frac{H}{N}\right)} \simeq \frac{H}{K(H)}$ is cyclic. If $N \nsubseteq K(H)$, then $N \nsubseteq$
H. The minimality of N leads to the conclusion that $\mathrm{N} \cap \mathrm{H}=1$. Clearly, $\frac{N+H}{N} \in P\left(\frac{M}{N}\right)$ and $\frac{\left(\frac{N+H}{N}\right)}{\left(\frac{K(H)+N}{N}\right) \approx \frac{H}{K(H)}}$ is cyclic. Noticing that $K\left(\frac{N+H}{N}\right) \geq \frac{K(H)+N}{N}$, we have $\frac{\left(\frac{N+H}{N}\right)}{K\left(\frac{H+N}{N}\right)}$ is cyclic. Now the proof is complete.

3. Solvability and supersolvability in Lie algebras

Defition 3.1. For a maximal subalgebra M of a fnite subalgebra L, a θ - subalgebra for M is any subalgebra C of L such that $C \nsubseteq M$ and $\operatorname{Core}_{L}(\mathrm{M} \cap \mathrm{C})$ is maximal among proper ideal subalgebras of L contained in C.

Lemma 3.2. Assume that $\mathrm{N} \unlhd \mathrm{L}$ and that $\frac{U}{N}$ is the unique minimal ideal of $\frac{L}{N}$. Let M be a maximal subalgebra of L containing N but not containing U , and let C be a maximal member of $\mathrm{I}(\mathrm{M})$. Furthermore, suppose that $\frac{U}{\mathrm{~N}}$ is not involved in $\frac{C}{\mathrm{~K}(\mathrm{C})}$. Then,
(i) $\mathrm{N}=\mathrm{K}(\mathrm{C})$
(ii) C is a maximal subalgebra of $\mathrm{U}+\mathrm{C}$

Proof. Due to $K(C) \leq \operatorname{Cor}_{L}(M)$, and the hypothesis implies that $N=\operatorname{Core}_{L}(M)$, we see that $K(C) \leq N$. If $K(C)<N$, then $N \nsubseteq C$ and $C+N>C . C+N$ is not in $\mathrm{I}(\mathrm{M})$ because C is maximal in $\mathrm{I}(\mathrm{M})$, and consequently $\operatorname{Core}_{L}(C+N) \nsubseteq M$. Since $N \subseteq M$ and $N \subseteq \operatorname{Core}_{L}(C+N)$, it follows that $N<\operatorname{Core}_{L}(C+N)$, and consequently $U \subseteq C+N$ as $\frac{U}{N}$ is the unique minimal ideal of $\frac{L}{N}$. It follows that $\frac{U}{N}$ is involved in $\frac{C}{\mathrm{~K}(\mathrm{C})}$. contrary to the hypothesis.

This proves (i).
If $C \supseteq U$, then $\frac{U}{N}$ is a subalgebra of $\frac{C}{N}=\frac{C}{\mathrm{~K}(\mathrm{C})}$. This means that $\frac{U}{N}$ is involved in $\frac{C}{\mathrm{~K}(\mathrm{C})}$, contrary to the hypothesis. Thus, $C<U+C$. Let B be a subalgebra of $U+C$ such that $C<B \leq U+C$. As in the proof of (i), we have B is not in $\mathrm{I}(\mathrm{M})$, and hence $N \subseteq \operatorname{Core}_{L}(B) \nsubseteq M$ and it follows that $U \subseteq \operatorname{Cor}_{L}(B)$. We thus conclude that $B=C+U$, which proves (ii).

Theorem 3.3. Let L be a lie algebra. Assume that for each maximal sub-algebra M of composite index in L, there exists a maximal member C in $I(M)$ such that $\frac{C}{\mathrm{~K}(\mathrm{C})}$ is cyclic of order more than or equal to the index of M in L. Then, L is solvable and every maximal subalgebra of L either has prime index of 4.

Proof. By $\frac{C}{K(C)}$, then L is solvable. Suppose that L is nonsupersolvable and let M be a maximal subalgebra of L composite index. We must show that $[L: M]=4$. Let $N=\operatorname{Core}_{M}(L)$ and let $\frac{U}{N}$ be a chief factor of L. Then $U+M$ $=L$ and $U \cap M=N$ because $\frac{U}{N}$ is abelian. Also, $C_{\frac{U}{N}}(\mathrm{M}) \triangleleft L$, and thus $C_{\frac{U}{N}}(\mathrm{M})=N$. It follows that $C_{\frac{U}{N}}(L)=U$, and this implies that $\frac{U}{N}$ is the unique minimal ideal of $\frac{L}{N}$. Since $[L: M]=[U: N]$, we only need to show that $\operatorname{dim}\left(\frac{U}{N}\right)=4$.

By hypothesis, we may assume that C be maximal in $\mathrm{I}(\mathrm{M})$, where $\frac{C}{\mathrm{~K}(\mathrm{C})}$ is cyclic and $\operatorname{dim}\left(\frac{C}{\mathrm{~K}(\mathrm{C})}\right) \geq[L: M]$. Since $\frac{U}{N}$ is noncyclic, it cannot be involved in the cyclic Lie algebra $\frac{C}{K(C)}$. Applying Lemma 3.2, we see that $K(C)=N$ and C is maximal in $E=U+C$. Also, $\operatorname{dim}\left(\frac{C}{\mathrm{~N}}\right) \geq[L: M]=\operatorname{dim}\left(\frac{U}{N}\right)$, and consequently $\operatorname{dim}(C) \geq \operatorname{dim}(U)$. We claim that $C \triangleleft E$. Thus, $\operatorname{dim}\left(\frac{C}{\mathrm{~N}}\right) \neq \operatorname{dim}\left(\frac{U}{N}\right)$, and we conclude that $\operatorname{dim}(C) \geq \operatorname{dim}(U)$. Let B be a conjugate of C in E and $B \neq$ C. Then $\operatorname{dim}(B>\operatorname{dim}(C))$ and

$$
\frac{\operatorname{dim}(B)+\operatorname{dim}(C)}{\operatorname{dim}(B \cap C)}=\operatorname{dim}(B+C) \leq \operatorname{dim}(E)=\frac{\operatorname{dim}(U)+\operatorname{dim}(C)}{\operatorname{dim}(U \cap C)}
$$

so $\operatorname{dim}(B \cap C)>\operatorname{dim}(U \cap C)$. It follows that $B \cap C$ is not contained in U , and thus this intersection does not centralize $\frac{U}{N}$ because $C_{L}\left(\frac{U}{N}\right)=U$. Let $\frac{X}{N}=C_{\frac{L}{N}}(B \cap C)$. Then $U \nsubseteq X$, and since $\frac{U}{N}$ is the unique minimal ideal of $\frac{L}{N}$, $\frac{X}{N}$ is also core free, we deduce that $X \in I(M)$. But $\frac{B}{N}$ and $\frac{C}{N}$ are abelian, and thus X contains both C and B. By the maximality of C , we have $T=X \supseteq B$, which is not the case. Thus $C \triangleleft E$, as claimed.

Let $T=U \cap C$. Now C is maximal and ideal in E , so $\operatorname{dim}[U: T]=\operatorname{dim}[E: C]$ is prime. Since $\frac{T}{N}$ is cyclic and is contained in $\frac{U}{N}$, its order divides p , and we conclude that $\left|\frac{U}{N}\right|=p^{2}$. What remains is to show that $p=2$.

We have $\operatorname{dim}(C) \geq \operatorname{dim}(U)>\operatorname{dim}(T)$, and thus $E>U$. Let V be a subalgebra of E containing U such that $[V: U$] $=p$. Then $V \cap C>T$ and $\frac{(V \cap C)}{N}$ iscyclic.

Thus, $\frac{V}{N}$ is an algebra of order p^{3} and exponent p^{2}. Let $Q=V \cap M$, so that $\frac{Q}{N}$ is a subalgebra of order p in $\frac{V}{N}$, and thus $\frac{V}{N}$ has more than p^{2} elements of order dividing p. If $p>2$, only Lie algebras of dim p^{3} having this property have exponent p , and thus we deduce that $p=2$.

Finally
$[L: M]=\operatorname{dim}\left(\frac{U}{N}\right)=p^{2}=4$.
Lemma 3.4. If C is a maximal θ-subalgebra for a maximal subalgebra M of L and $N \unlhd L, N \leq \operatorname{Cor}_{L}(M \cap C)$, then $\frac{C}{N}$ is a maximal θ-subalgebra for $\frac{M}{N}$. Conversely, if $\frac{C}{N}$ is a maximal θ-subalgebra for $\frac{M}{N}$, then C is a maximal θ-subalgebra for M.

Proof. Suppose that C is a maximal θ - subalgebra for M. It follows that $\frac{C}{N} \in \theta\left(\frac{M}{N}\right)$. If $\frac{C}{N}$ is not a maximal θ subalgebra in $\theta\left(\frac{M}{N}\right)$, then $\frac{C}{N}<\frac{H}{N}, \frac{H}{N} \in \theta\left(\frac{M}{N}\right)$, implies that $C<H$. Now we see that H is a θ-algebra for M, violating the maximality of C in $\theta(M)$.

Conversely, it is easy to see that if $\frac{C}{N}$ is a maximal θ-subalgebra for $\frac{M}{N}$, then C is a θ-subalgebra for M. If C is not a maximal θ-subalgebra, suppose that
$C<H, H \in \theta(M)$. This implies that $\frac{C}{N}<\frac{H}{N}$. Since $N \leq \operatorname{Core}_{L}(M \cap C) \leq \operatorname{Core}_{L}(M \cap H)$, we have $\frac{H}{N} \in \theta\left(\frac{M}{N}\right)$, violating the maximality of $\frac{C}{N} \in \theta\left(\frac{M}{N}\right)$.

Theorem 3.5. Let L be a finite Lie algebra over a field F, where F has characteristic zero, suppose that for each maximal subalgebra M of composite index in L, there exists a maximal θ-subalgebra C for M such that $L=C+M$ and $\frac{C}{\operatorname{Core}_{M \cap C}(L)}$ is cyclic. Then L is supersolvable.

Proof. Assume that L is not supersolvable, and N is a minimal ideal of L .
(i) $\frac{L}{N}$ is supersolvable by induction.

First of all, we note that if M is a maximal subalgebra of $\mathrm{L}, H=\operatorname{Core}_{L}(M)$ and $\frac{K}{H}$ is a chief factor of L , then it is easy to see that K is a maximal element of $\theta(M)$.

To show that $\frac{L}{N}$ satisfies the hypothesis and consequently is supersolvable, let $\frac{M}{N}$ be a maximal subalgebra of composite index. From Lemma 3.4, we must find a maximal element A of $\theta(M)$ such that A contains $\mathrm{N}, A+M=$ L and $\frac{A}{\operatorname{Core}_{L}(A \cap M)}$ is cyclic. To do this, let C be a maximal element of $\theta(M)$ and suppose that $C+M=L$ and $\frac{C}{\operatorname{Core}_{L}(C \cap M)}$ is cyclic. If C contain N , we are done by taking $A=C$. Otherwise, write $H=\operatorname{Core}_{L}(M)$ and note that L is not contained in C so that $C<H+C$ and hence $H+C$ is not in $\theta(\mathrm{M})$. Also, note that $H=\operatorname{Core}_{L}(H+C \cap M)$ and consequently there exists a subalgebra A , which is ideal in L with $H<A<H+C$. We may choose A such that $\frac{A}{H}$ is a chief factor of L . So, A is a maximal element of $\theta(M)$ and certainly A contains N . Since M is maximal and does not contain the ideal A, wehave $A+M=L$. Finally, $H=\operatorname{Core}_{L}(A \cap M)$ and we need only to show that $\frac{A}{H}$ is cyclic. This follows because $\frac{C+H}{H}$ is cyclic, because $\frac{C}{(C \cap H)}$ is a homomorphic image of $\frac{C}{\operatorname{Core}_{L}(C \cap H)}$, which is cyclic.
(ii) N is solvable.

We may assume that N is the unique minimal ideal of L . Since L is not supersolvable and $\frac{L}{N}$
is supersolvable, there exists a maximal subalgebra M of composite index and we know that it does not contain N. It follows that

$$
\theta(M)=\{N\} \cup\{X \subseteq L \mid X \nsubseteq \text { Mand } N \nsubseteq X\} .
$$

Since $\operatorname{Core}_{L}(C \cap M)=1$, by hypothesis, there exists a maximal θ-subalgebra C of this set such that $C+M=L$ and C is cyclic. If $C=N$, then certainly N is solvable. So we can assume that C does not contain N . By the
maximality of C as an element of $\theta(M)$, we know that every subalgebra of L is strictly larger than C containing in N . Suppose Y that is any subalgebra of N that is ideal in C but not contained in $C \cap N$. Then $C<Y+C$ and it follows that $N \subseteq Y+C$ and $N=Y+(N \cap C)$. Thus Y is ideal in N and $\frac{N}{Y}$ is cyclic and consequently $N^{\prime} \subseteq Y$. But $N^{\prime}=N$, or else $N^{\prime}=1$ and we are done, and thus $Y=N$. C is cyclic and $Y \unlhd C$ then Y is cyclic. Where is $Y=N$ and N is abelian, then there is nilpotent. Thus N is solvable. This is a contradiction.

Theorem 3.6. Let L be a finite Lie algebra over a field F, where F has characteristic zero. Suppose that for each maximal subalgebra M in L, there exists a maximal θ-subalgebra C for M such that $L=C+M$ and $\frac{C}{\text { Core }_{M \cap C}(L)}$ is cyclic. Then L is solvable.

Proof. Suppose that for each maximal subalgebra M in L, there exists a maximal θ-subalgebra C for M such that $L=C+M$ and $\frac{C}{\operatorname{Core}_{M \cap C}(L)}$ is cyclic.

Now, it is revealed that C is an ideal in L .
$\forall c \in C$, then $c+\operatorname{Core}_{L}(M \cap C) \in \frac{C}{\operatorname{Core}_{L}(M \cap C)} \cdot \frac{C}{\operatorname{Core}_{L}(M \cap C)}$ is abelian, then $\left[c+\operatorname{Core}_{L}(M \cap C)\right]=0 \frac{C}{\operatorname{Core}_{L}(M \cap C)}=$ $\operatorname{Core}_{L}(M \cap C)$. Therefore $[c, l]+\left[\operatorname{Cor}_{L}(M \cap C), l\right]=\operatorname{Core}_{L}(M \cap C)$. Since $\operatorname{Core}_{L}(M \cap C)$ is ideal, and $\left[\operatorname{Core}_{L}(M\right.$ $\cap C), l] \in \operatorname{Core}_{L}(M \cap C)$ then $[c, l]+\operatorname{Core}_{L}(M \cap C)=\operatorname{Core}_{L}(M \cap C)$. Further $[c, l] \in \operatorname{Core}_{L}(M \cap C) \leq C$. Finally $[c, l] \in C$. Hence, it was revealed that C is an ideal in L . Therefore

$$
[C, M \cap C] \subseteq[C, C] \subseteq C^{2} \subseteq \operatorname{Core}_{L}(M \cap C) \cap C \subseteq M \cap C \subseteq M_{L}
$$

$M \cap C$ is an ideal in L thus $\mathrm{Ma} c-i d e a l$ of L , then L is solvable.

References

1. Amayo, R. K., \& Stewart, I. Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974. Zentralblatt MATH, 302.
2. Ballester-Bolinches, A., \& Ezquerro, L. M. (1992). On the Deskins index complex of a maximal subgroup of a finite group. Proceedings of the American Mathematical Society, 114(2), 325-330.
3. Ballester-Bolinches, A., \& Xiuyun, G. (1999). On the Deskins index complex of a maximal subgroup of a finite group. JOURNAL OF PURE AND APPLIED ALGEBRA, 136(3), 211-216.
4. Ballester-Bolinches, A., Wang, Y., \& Xiuyun, G. (2000). C-supplemented subgroups of finite groups. Glasgow Mathematical Journal, 42(3), 383-389.
5. Barnes, D. W. (1967). On the cohomology of soluble Lie algebras. Mathematische Zeitschrift, 101(5), 343-349.
6. Beidleman, J. C., \& Spencer, A. E. (1972). The normal index of maximal subgroups in finite groups. Illinois Journal of mathematics, 16(1), 95-101.
7. Deskins, W. E. (1990). A note on the index complex of a maximal subgroup. Archiv der Mathematik, 54(3), 236-240.
8. Deskins, W.E. (1954). On maximal subgroup, Proc. Sympos. Pure Math, Vol.1. Amet. Math. soc, Pronidence, R. 1, 100-104.
9. Mukherjee, N. P. (1975). A note on normal index and maximal subgroups in finite groups. Illinois Journal of mathematics, 19(2), 173-178.
10. Mukherjee, N., \& Bhattacharya, P. (1988). The normal index of a finite group. Pacific Journal of Mathematics, 132(1), 143-149.
11. Shirong, L. (1999). The Deskins index complex and the supersolvability of finite groups. Journal of Pure and Applied Algebra, 144(3), 297-302.
12. Towers, D. (1981). Lie algebras all of whose maximal subalgebras have codimension one. Proceedings of the Edinburgh Mathematical Society, 24(3), 217-219.
13. Towers, D. A. (1973). A Frattini theory for algebras. Proceedings of the London Mathematical Society, 3(3), 440-462.
14. Towers, D. A. (2009). C-ideals of Lie algebras. Communications in Algebra®, 37(12), 4366-4373.
15. Wang, Y. (1996). C-normality of groups and its properties. Journal of algebra, 180(3), 954-965.
16. Xiuyun, G. (1998). On Deskins's conjecture. Journal of Pure and Applied Algebra, 124(1-3), 167-171.
17. Yaoqing, Z. (1996). On the index complex of a maximal subgroup and the supersolvability of a finite group. Communications in algebra, 24(5), 1785-1791.
18. Yaoqing, Z. (1998). On Deskins's conjecture concerning the supersolvability of a finite group. Journal of Pure and Applied Algebra, 124(1-3), 325-328.
