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Abstract: We investigate relationships between the properties of maximal sub- algebras of L and the members of P(M) and
solvability and supersolv- ability in Lie algebras. that corresponds to similar relationships in the group-theory. Further, we show
that if L be a Lie algebra and algebri- caly closed field of zero characteristic, there exists a 6-subalgebra C such that L=M+C and

is abelian for all maximal subalgebras M and L, L is solvable.
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1. Introduction

Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C
is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set I(M) of all
completions of M is called the index complex of M in L. This is analogous to the concept of the index complex of a
maximal subgroup of a finite group as introduced by Deskins in (Deskins, 1954); this concept has since been further
studied by a number of authors, including Ballester-Bolinches and Ezquerro (1992), Bei- dlemanand Spencer (1972),
Deskins(1990), Mukherjee (1975),and Mukherjeeand Bhattacharya (1988). The objective of this paperisto investigate
relationships between the properties of maximal subalgebras of L and the members of P(M) and solvability and
supersolvability in Lie algebras. that corresponds to simi- lar relationships in the group-theory.

It is easy to see that the sum of all ideals of L that are proper subalgebras of C is itself a proper subalgebras of
L. We define the strict core (resp.core) of a subalgebra B f= 0 to be the sum of all ideals of L that are proper subalge-
bras (resp.subalgebras) of B, and denote it by k(B) or k.(B) (resp.BL). The subalgebra C is then a completion of the
maximal subalgebra M of L (thatis, C € I(M)) if L=<M, C >and k(C) € M.

In section two, we study completions that are members of P(M) and show that if M is a maximal subalgebra of L
and N is a maximal ideal of L, such thatIf

K©)
o

C € P (M) and N < K(C), then = € I(%); and K(5) =

Inthe lastsection, maximal completions thatare 8-subLiealgebrasare shown that over an algebrically closed field,
with characteristic zero, a Lie algebra is supersolvable if for each maximal subalgebra M of composite index in L there
exists a maximal #-subalgebra C for M that L = C + M and is cyclic. This is analogous to that of

Deskins for groups.

Core MNC(L)

2. Maximal subalgebras and maximal comple- tions

Definition 2.1. Let M be a maximal subalgebra of L, then set P(M)= {C € I(M) | C is maximal in I(M) and L =
C+ M}

Lemma 2.2. Let M be a maximal subalgebra of L and N be a maximal ideal of L. If C € P(M) and N < K(C),
then

o fe)
(i) K(%)e%

Proof. Itis clear that% el (%) . Weonly proof (ii). Since C € P (M), Wehave K(C) < C and K(C) <Core(M).

K@ 5, KO < M, therefore, K(E) > X9 | addition, e (%) implies that K(E) <<f (5) < 5,
N N M N N N N N N N N N

then H <L and H < C. From the definition of K(C), it is deduced that H < K(C). Therefore, (%) < %

Hence and

Lemma 2.3. Let M be a maximal subalgebraof L and C € P (M). If CoreM <« C, then there exists an ideal

completion H of M in L such that %isomorph with a subalgebra of a quotient algebra of %
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Proof. Since CoreM « C, we have C < C + CoreM . The maximality of C in I(M) leads to the conclusion that
C + CoreM is not in I(M). Hence, the collection S={T < L | T « CoreM, T < C + CoreM } is nonempty. LetH
be minimal in this partially ordered set S. Then H € I(M), H + CoreM > CoreM and H + CoreM < C + CoreM.
(CoreM) N H <Hand (CoreM NH) <L imply that (CoreM NH) <K(H). On the other hand, itis clear that K(H)
< (CoreM nH). Hence, K(H) = CoreM nH. Therefore,

H H ~H+CoreM<C+CoreM
K(H) CoreMNnH ~ CoreM ~ CoreM

C+CoreM _
CoreM ~— CoreMnC

From K(C) < (€ n CoreM), we can conclude that
completes theproof.

- . C -
is a quotient algebra of G} This

Theorem 2.4. Let M be a maximal subalgebra of L, N be a minimal ideal subalgebra of L, and N <M. If
C1
there exists a C in P(M) W|th — cycllc then there exists a—|n P( ) such that (cl) is cyclic.
N

K(C) Cc

Proof. Assume that N< K(C); then it follows from Lemma 2.2 that —€ I(—) and K( ) Ifﬁ is a
C
maximal element ofI( ), then— € P( ) and K( A = m is cyclic. So we can assume that— is not maximal in I(M).
N
According to this assumption, there eX|sts le I(—) such that < F . We have < (;. The maximality of C in I(M)

leads to the conclusion that C, is not in I(M) Hence, the set S AT < L|T £« M.T < C1 },is nonempty Choose

H as the minimal element in S. This means that H € I(M). If N + H < (4, then M < — and M $ , which is

in contradiction to L€ I(M). Hence, C; = N + H < L, consequently C; € P( ).

The mlnlmallty of N leads to the conclusion NN H=1 (if NNnH=N, then (; =N+H=H, in
contradiction to that H < C;) and C; = N + H If there exists a subalgebra C, of C; such that C < C, < Cy, then,
for any proper subalgebra H; of C,, which isideal inL, N+ H, @« Land N + H, < C, < C;. Since N + H=C; N
N+H =NHNN+H ,HNN+H <Hand HNN+H, <L, we have HNN+H, <M, and H, <
N+H =N+ (H N (N + Hl)) < M. Hence, C, € I(M), in contradiction to the maximality of C in I(M). It
follows that C is a maximal subalgebra of C;. If K(H) < C, then K(H) < C (ifnot, C = K(H) < M).So K(H) <
K(C),and K(C) = (N + K(H)). Noticing that K(C) = N + (K(C) n H) (K(C) N H) < Hand K(C) NH <1 L,
we have K(C) NH< K(H) and K(C) =

K(C) K(C)

(%) + (%) = %an (K(C)) N (K(C)) = 1 imply that [L:M]=dim (i). On the other hand, from C € P(M)

we have . (ﬁ) +(== (C)) ﬁ It follows that dim (@) > [L:M] = K(C)
we can assume that K(H) <« C, and therefore C + K(H) = C,. Since K(C)NnH < L and K(C)NH < H, we
have K(C) N H < K(H)and K(C) n H < C N K(H) It follows that

K(C) =N+ (K(C)nH)<N+ (C nK(H)) =C n (N + K(H)).

Hence,

( C, C+KH) _ c
(N + K(H)) N+KH) N+KH) € n(N+KH))

C1
, we have ((C) N < K(C), which results in CoreM « C.

N

N+K(H)

is cyclic. Noticing K( b >

It follows from Lemma 2.3 that there exists an ideal completion H of M such that % is cyclic. If N <K (H),

H
then clearly € P( ), and by using Lemma 2.2, it is deduced that -+ G ) 5 iscyclic. IfN £ K(H),then N <

(5 o

4577



Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 4576-4580
Research Article

N+H

H. The minimality of N leads to the conclusion that N n H = 1. Clearly, NNLH € P(%) and @% is cyclic.
N+H K(H)+N gl ' o
Noticing that K(T) > ————, we have K(;,V+N) is cyclic. Now the proof is complete.
N

3. Solvability and supersolvability in Lie algebras

Defition 3.1. For a maximal subalgebra M of a fnite subalgebra L, a 8 — subalgebra for M is any subalgebra C
of L such that C & M and Core . (MNC) is maximal among proper ideal subalgebras of L contained in C.

Lemma 3.2. Assume that N <L and that% is the unique minimal ideal of % Let M be a maximal subalgebra of
L containing N but not containing U, and let C be a maximal member of I(M). Furthermore, suppose that % is not

involved in ——. Then,
K(C)

(i)  N=K(C)
(i) Cisamaximal subalgebra of U + C

Proof. Due to K(C) < Core. (M), and the hypothesis implies that N = Core (M), we see that K(C) < N . If
K(C) <N, then NZ€ Cand C+ N > C. C+ Nisnotin I(M) because C is maximal in I(M), and consequently
Core (C +N) £ M. Since N =M and N < Core (C +N), it follows that N < Core.(C + N), and consequently

UcC+Nas % is the unique minimal ideal of% . It follows that% is involved in % contrary to the hypothesis.
This proves (i).
If C 2 U, then % is a subalgebra of %: % This means that% is involved in % contrary to the hypothesis.
Thus, C < U + C. Let B be a subalgebra of U + C such that C < B <U + C. As in the proof of (i), we have B is not

in I(M), and hence N cCore.(B) € M and it follows that U < Core.(B). We thus conclude that B = C + U, which
proves (ii).

Theorem 3.3. Let L be a lie algebra. Assume that for each maximal sub- algebra M of composite index in
L, there exists a maximal member C in (M) such that K(LC) is cyclic of order more than or equal to the index

of M in L. Then, L is solvable and every maximal subalgebra of L either has prime index of 4.

Proof. By K(LC) then L is solvable. Suppose that L is nonsupersolvable and let M be a maximal subalgebra of L
composite index. We must showthat [L : M ] = 4. Let N = Corewm (L) and Iet%be a chief factor of L. Then U + M
=Land U N M = N because % is abelian. Also, C%(M)<1L, and thus C%(M): N. It follows that C%(L) = U, and this

implies that% is the unique minimal ideal of% .Since [L: M]=[U:N], we only need to show that dim(%) =4,

By hypothesis, we may assume that C be maximal in (M), where K(LC) iscyclic and dim(%) =>[L:M].Since %
is noncyclic, it cannot be involved in the cyclic Lie algebra % Applying Lemma 3.2, we see that K(C) = N and
C is maximal in E = U +C. Also, dim(ﬁ) >[L:M]= dim(%), and consequently dim(C) = dim(U). We claim that

C < E. Thus, dim(ﬁ) * dim(%), and we conclude that dim(C) > dim(U). Let B be a conjugate of C in E and B #
C. Then dim(B> dim(C)) and
dim(B) + dim(C) dim(U) + dim(C)

aim@B ey - dmB+0) = dimE) = —7 T

so dim(B nC) > dim(U nC). It follows that B n C is not contained in U, and thus this intersection does not
centralize % because CL(%) =U. Let% =C1 (BNC). Then U £X, and since % is the unique minimal ideal of %
N

% is also core free, we deduce that X € I(M). But % and % are abelian, and thus X contains both C and B. By the
maximality of C, we have T = X 2 B, which is not the case. Thus C < E, as claimed.

Let T =U NC. Now C is maximal and ideal in E, so dim[U : T] = dim[E : C] is prime. Since % is cyclic and is
contained in%, its order divides p, and we conclude that | % | = p2. What remains is to show that p = 2.
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We have dim(C) = dim(U) > dim(T), and thus E > U. Let V be a subalgebra of E containing U such that [V : U
]=p.ThenVNC=>Tand (VNLC) iscyclic.

Thus, Zi
N

thus % has more than p? elements of order dividing p. If p > 2, only Lie algebras of dim p® having this property
have exponent p, and thus we deduce that p = 2.

s an algebra of order p? and exponent p2. Let Q =V N M, so that% is a subalgebra of order p in % and

Finally
[L:M]:dim(%):p2:4.

Lemma 3.4. If C is a maximal 6-subalgebra for a maximal subalgebra M of L and N =L, N< Core (M n C),
then % is a maximal #-subalgebra for % . Conversely, if % is a maximal 8-subalgebra for % then C is a maximal
6-subalgebra for M.

Proof. Suppose that C is a maximal 6- subalgebra for M. It follows that% € 0(%). If% is not a maximal 6-
C HH

subalgebra in 0(%), then <y ee(%), implies that C < H. Now we see that H is a #-algebra for M, violating the

maximality of C in 6(M).

Conversely, it is easy to see that if% is a maximal 6-subalgebra for % then C is a #-subalgebra for M. If C is
not a maximal #-subalgebra, suppose that

C <H, H € 6(M). This implies that = <= Since N < Core.(M n C) < Core (M n H), we have = € 6(>),
violating the maximality of% € 9(%).
Theorem 3.5. Let L be a finite Lie algebra over a field F, where F has characteristic zero, suppose that

for each maximal subalgebra M of composite index in L, there exists a maximal -subalgebra C for M such

thatL=C + M and CO; is cyclic. Then L is supersolvable.

remnc(L)

Proof. Assume that L is not supersolvable, and N is a minimal ideal of L.
(i) % is supersolvable by induction.
First of all, we note that if M is a maximal subalgebra of L, H = Core. (M)

and % is a chief factor of L, then it is easy to see that K is a maximal element of 6(M).

To show that % satisfies the hypothesis and consequently is supersolvable, let % be a maximal subalgebra of
composite index. From Lemma 3.4, we must find a maximal element A of (M) such that A contains N, A+ M =
Land —2—is cyclic. To do this, let C be a maximal element of (M) and suppose that C + M = L and

Corer,(ANM)
CoreL@niD) is cyclic. If C contain N, we are done by taking A = C. Otherwise, write H = Core. (M) and note that L
L

is not contained in C so that C < H + C and hence H + C is not in (M). Also, note that H = Core (H + C NM) and
consequently there exists a subalgebra A, which is ideal in L with H < A < H + C. We may choose A such

that% is a chief factor of L. So, A is a maximal element of (M) and certainly A contains N. Since M is maximal
and does not contain the ideal A, wehave A+ M = L. Finally, H = Core.(AnM) and we need only to show that
A . . . C+H . . C . .. C . .
—is cyclic. This follows because — is cyclic, because —— isahomomorphic image of ———, which is
H H (CnH) Corer(CNH)
cyclic.

(if) N is solvable.

We may assume that N is the unique minimal ideal of L. Since L is not supersolvable and %

is supersolvable, there exists a maximal subalgebra M of composite index and we know that it does not contain
N. It follows that

O(M)={N} U {X S L|X & MandN & X}.

Since Core (CnM) = 1, by hypothesis, there exists a maximal §-subalgebra C of this set such that C + M = L
and C is cyclic. If C = N, then certainly N is solvable. So we can assume that C does not contain N. By the
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maximality of C as an element of (M), we know that every subalgebra of L is strictly larger than C containing in
N. Suppose Y that is any subalgebra of N that is ideal in C but not contained in CNn N . ThenC <Y + Cand it

follows that N Y+ Cand N=Y + (NN C). Thus Y is ideal in N and g is cyclic and consequently N' € Y .
But N' = N, or else N' = 1 and we are done, and thus Y = N. C is cyclic and Y =C then Y is cyclic. WhereisY = N
and N is abelian, then there is nilpotent. Thus N is solvable. This is a contradiction.

Theorem 3.6. Let L be a finite Lie algebra over a field F, where F has characteristic zero. Suppose that
for each maximal subalgebra M in L, there exists a maximal 6-subalgebra C for M such that L = C + M and

————— is cyclic. Then L is solvable.
Corepmnc(L)

Proof. Suppose that for each maximal subalgebra M in L, there exists a maximal 6-subalgebra C for M such

thatL=C+ M and ———is cyclic.
Corepnc(L)

Now, it is revealed that C is an ideal in L.

C . .
. i lian, then [c+Core (M N = =
COT'eL(MﬁC) COT'eL(MﬂC) Sabe a 7t € [C CO eL( C)] Om

Core, (M n C). Therefore [c, I]+[Core (M NC), I] = Core (M NC). Since Core. (M NC) is ideal, and [Core (M
NC), 1] eCore(M n C) then [c, I] + Core.(M n C) = Core(M n C). Further [c, I] € Core . (Mn C) <C. Finally
[c, 1] €C. Hence, it was revealed that C is an ideal in L. Therefore

[C,MNC]<S[C,ClSC2c Core(MNC)NCESMnCC M.

vc e C,thenc+ Coree(M N C) €

M n Cisanideal in L thus M a ¢ — ideal of L, then L is solvable.
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