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Abstract: We investigate relationships between the properties of maximal sub- algebras of L and the members of P(M) and 
solvability and supersolv- ability in Lie algebras. that corresponds to similar relationships in the group-theory. Further, we show 
that if L be a Lie algebra and algebri- caly closed field of zero characteristic, there exists a θ-subalgebra C such that L=M+C and 

𝐶

𝐶𝑜𝑟𝑒(𝐶∪𝑀)
 is abelian for all maximal subalgebras M and L, L is solvable.  
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1. Introduction  

Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C 

is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set I(M) of all 

completions of M is called the index complex of M in L. This is analogous to the concept of the index complex of a 

maximal subgroup of a finite group as introduced by Deskins in (Deskins, 1954); this concept has since been further 

studied by a number of authors, including Ballester-Bolinches and Ezquerro (1992), Bei- dleman and Spencer (1972), 

Deskins (1990), Mukherjee (1975), and Mukherjee and Bhattacharya (1988). The objective of this paper is to investigate 

relationships between the properties of maximal subalgebras of L and the members of P(M) and solvability and 

supersolvability in Lie algebras. that corresponds to simi- lar relationships in the group-theory. 

It is easy to see that the sum of all ideals of L that are proper subalgebras of C is itself a proper subalgebras of 

L. We define the strict core (resp.core) of a subalgebra B ƒ= 0 to be the sum of all ideals of L that are proper subalge- 

bras (resp.subalgebras) of B, and denote it by k(B) or kL(B) (resp.BL). The subalgebra C is then a completion of the 

maximal subalgebra M of L (that is, 𝐶 ∈ 𝐼(𝑀)) if L =< M, C > and k(C) ⊆ M . 

 In section two, we study completions that are members of P(M) and show that if M is a maximal subalgebra of L 

and N is a maximal ideal of L, such that If  

C ∈ P (M) and N ≤ K(C), then 
𝐶

𝑁
∈ I(

𝑀

𝑁
); and K(

𝐶

𝑁
) =

𝐾(𝐶)

𝑁
. 

In the last section, maximal completions that are θ-subLiealgebras are shown that over an algebrically closed field, 

with characteristic zero, a Lie algebra is supersolvable if for each maximal subalgebra M of composite index in L there 

exists a maximal θ-subalgebra C for M that L = C + M and 
𝐶

𝐶𝑜𝑟𝑒 𝑀∩𝐶(𝐿)
 is cyclic. This is analogous to that of 

Deskins for groups. 

2. Maximal subalgebras and maximal comple- tions 

Definition 2.1. Let M be a maximal subalgebra of L, then set P(M)= {C ∈ I(M) | C is maximal in I(M) and L = 

C + M }.  

Lemma 2.2. Let M be a maximal subalgebra of L and N be a maximal ideal of L. If C ∈ P(M) and N ≤ K(C), 

then  

(i) 
𝐶

𝑁
∈ 𝐼 (

𝑀

𝑁
) 

(ii)  K(
𝐶

𝑁
) ∈

𝐾(𝐶)

𝑁
. 

Proof. It is clear that 
𝐶

𝑁
∈ 𝐼 (

𝑀

𝑁
) . We only proof (ii). Since C ∈ P (M), We have K(C) < C and K(C) ≤ Core(M). 

Hence 
𝐾(𝐶)

𝑁
<

𝐶

𝑁
, and 

𝐾(𝐶)

𝑀
≤

𝑀

𝑁
, therefore, K(

𝐶

𝑁
) ≥

𝐾(𝐶)

𝑁
. In addition, 

𝐶

𝑁
 ∈ 𝐼 (

𝑀

𝑁
) implies that K(

𝐶

𝑁
) <

𝐶

𝑁
. If (

𝐶

𝑁
) <

𝐻

𝑁
, 

then H ⊲L and H < C. From the definition of K(C), it is deduced that H ≤ K(C). Therefore, (
𝐶

𝑁
) <

𝐶

𝑁
 . 

Lemma 2.3. Let M be a maximal subalgebra of L and C ∈ P (M). If CoreM ≰ C, then there exists an ideal 

completion H of M in L such that 
𝐻

𝐾(𝐻)
isomorph with a subalgebra of a quotient algebra of 

𝐶

𝐾(𝐶)
.  
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Proof. Since CoreM ≰ C, we have C < C + CoreM . The maximality of C in I(M) leads to the conclusion that 

C + CoreM is not in I(M). Hence, the collection S = {T ⊲ L | T ≰ CoreM, T < C + CoreM } is nonempty. Let H 

be minimal in this partially ordered set S. Then H ∈ I(M), H + CoreM > CoreM and H + CoreM ≤ C + CoreM. 

(CoreM) ∩ H < H and (CoreM ∩ H) ⊲ L imply that (CoreM ∩ H) ≤ K(H). On the other hand, it is clear that K(H) 

≤ (CoreM ∩H). Hence, K(H) = CoreM ∩H. Therefore,  

𝐻

𝐾(𝐻)
=

𝐻

𝐶𝑜𝑟𝑒𝑀 ∩ 𝐻
≅

𝐻 + 𝐶𝑜𝑟𝑒𝑀

𝐶𝑜𝑟𝑒𝑀
≤

𝐶 + 𝐶𝑜𝑟𝑒𝑀

𝐶𝑜𝑟𝑒𝑀
 

From K(C) ≤  (𝐶 ∩ 𝐶𝑜𝑟𝑒𝑀 ), we can conclude that 
𝐶+𝐶𝑜𝑟𝑒𝑀

𝐶𝑜𝑟𝑒𝑀
≅

𝐶

𝐶𝑜𝑟𝑒𝑀∩𝐶
 is a quotient algebra of 

𝐶

𝐾(𝐶)
. This 

completes the proof. 

Theorem 2.4. Let M be a maximal subalgebra of L, N be a minimal ideal subalgebra of L, and N ≤ M. If 

there exists a C in P(M) with 
𝐶

𝐾(𝐶)
 cyclic, then there exists a 

𝐶1

𝑁
in P(

𝑀

𝑁
) such that 

𝐶1
𝑁

𝐾(
𝐶1
𝑁

)
 is cyclic. 

Proof. Assume that N≤ K(C); then it follows from Lemma 2.2 that 
𝐶

𝑁
∈ 𝐼(

𝑀

𝑁
) and 𝐾 (

𝐶

𝑁
) =

𝐾(𝐶)

𝑁
. If 

𝐶

𝑁 is a 

maximal element of 𝐼(
𝑀

𝑁
), then 

𝐶

𝑁
∈ 𝑃(

𝑀

𝑁
) and 

𝐶

𝑁

𝐾(
𝐶

𝑁
)

≅  
𝐶

𝐾(
𝐶

𝑁
)
 is cyclic. So we can assume that 

𝐶

𝑁
 is not maximal in I(M). 

According to this assumption, there exists 
𝐶1

𝑁
∈ 𝐼(

𝑀

𝑁
) such that 

𝐶

𝑁
<

𝐶1

𝑁
 . We have < 𝐶1. The maximality of C in I(M) 

leads to the conclusion that 𝐶1 is not in I(M). Hence, the set S ={𝑇 ⊲ 𝐿 | 𝑇 ≰  𝑀. 𝑇 < 𝐶1 }, is nonempty. Choose 

H as the minimal element in S. This means that 𝐻 ∈ 𝐼(𝑀). If 𝑁 + 𝐻 < 𝐶1, then 
𝑁+𝐻

𝑁
<

𝐶1

𝑁
 and 

𝑁+𝐻

𝑁
≰

𝑀

𝑁
, which is 

in contradiction to 
𝐶1

𝑁
∈ 𝐼(𝑀). Hence, 𝐶1 = 𝑁 + 𝐻 ⊲ 𝐿, consequently 𝐶1 ∈ 𝑃(

𝑀

𝑁
). 

The minimality of N leads to the conclusion 𝑁 ∩ 𝐻 = 1  (if 𝑁 ∩ 𝐻 = 𝑁 , then 𝐶1 = 𝑁 + 𝐻 = 𝐻 , in 

contradiction to that 𝐻 < 𝐶1) and 𝐶1 = 𝑁 + 𝐻 If there exists a subalgebra 𝐶2 of 𝐶1 such that 𝐶 < 𝐶2 < 𝐶1, then, 

for any proper subalgebra 𝐻1 of 𝐶2, which is ideal in L, 𝑁 + 𝐻1 ⊲ 𝐿 and 𝑁 + 𝐻1 ≤ 𝐶2 < 𝐶1. Since 𝑁 + 𝐻=𝐶1 ∩
𝑁 + 𝐻1 = 𝑁(𝐻 ∩ 𝑁 + 𝐻1 , 𝐻 ∩ 𝑁 + 𝐻1 < 𝐻  and 𝐻 ∩ 𝑁 + 𝐻1 ⊲ 𝐿 , we have 𝐻 ∩ 𝑁 + 𝐻1 ≤ 𝑀 , and 𝐻1 ≤

 𝑁 + 𝐻1 = 𝑁 + (𝐻 ∩ (𝑁 + 𝐻1)) ≤ 𝑀. Hence, 𝐶2 ∈ 𝐼(𝑀), in contradiction to the maximality of C in I(M). It 

follows that C is a maximal subalgebra of 𝐶1. If 𝐾(𝐻) ≤ 𝐶, then 𝐾(𝐻) < 𝐶 (if not, 𝐶 = 𝐾(𝐻) ≤ 𝑀). So 𝐾(𝐻) ≤
𝐾(𝐶), and 𝐾(𝐶) ≥ (𝑁 + 𝐾(𝐻)). Noticing that 𝐾(𝐶) = 𝑁 + (𝐾(𝐶) ∩ 𝐻), (𝐾(𝐶) ∩ 𝐻) < 𝐻 and 𝐾(𝐶) ∩ 𝐻 ⊲ 𝐿, 

we have 𝐾(𝐶) ∩ 𝐻 ≤ 𝐾(𝐻) and 𝐾(𝐶) = 𝑁 + 𝐾(𝐻). It follows that 
𝐶1

𝐾(𝐶)
 is a minimal ideal of 

𝐿

𝐾(𝐶)
 and 

𝐶

𝐾(𝐶)
 is 

maximal in 
𝐶1

𝐾(𝐶)
. We have 

𝐶1

𝐾(𝐶)
 is a solvable algebra, and therefore 

𝐶1

𝐾(𝐶)
 is an elementary abelian Lie algebra. 

(
𝐶1

𝐾(𝐶)
) + (

𝑀

𝐾(𝐶)
) =

𝐿

𝐾(𝐶)
 and (

𝐶1

𝐾(𝐶)
) ∩ (

𝑀

𝐾(𝐶)
) = 1 imply that [L:M]= dim (

𝐶1

𝐾(𝐶)
). On the other hand, from 𝐶 ∈ 𝑃(𝑀) 

we have . (
𝑀

𝐾(𝐶)
) + (

𝐶

𝐾(𝐶)
) =

𝐿

𝐾(𝐶)
. It follows that dim (

𝐶

𝐾(𝐶)
) ≥ [L: M] =  dim (

𝐶1

𝐾(𝐶)
). which is a contradiction. So 

we can assume that 𝐾(𝐻) ≰ 𝐶 , and therefore 𝐶 + 𝐾(𝐻) =  𝐶1 . Since 𝐾(𝐶) ∩ 𝐻 ⊲ 𝐿  and 𝐾(𝐶) ∩ 𝐻 < 𝐻 , we 

have 𝐾(𝐶) ∩ 𝐻 ≤ 𝐾(𝐻) and 𝐾(𝐶) ∩ 𝐻 ≤ 𝐶 ∩ 𝐾(𝐻) It follows that  

K(C) = N + (K(C) ∩ H) ≤ N + (C ∩ K(H)) = C ∩ (N + K(H)). 

Hence, 

(
𝐶1

𝑁
)

(
𝑁 + 𝐾(𝐻)

𝑁
)

≃
𝐶1

𝑁 + 𝐾(𝐻)
=

𝐶 + 𝐾(𝐻)

𝑁 + 𝐾(𝐻)
≃

𝐶

(𝐶 ∩ (𝑁 + 𝐾(𝐻)))
 

is cyclic. Noticing 𝐾(
𝐶1

𝑁
)  ≥

𝑁+𝐾(𝐻)

𝑁
, we have 

(
𝐶1
𝑁

)

𝐾(
𝐶1
𝑁

) 
𝑁 ≰ 𝐾(𝐶), which results in CoreM ≰ 𝐶. 

It follows from Lemma 2.3 that there exists an ideal completion H of M such that 
𝐻

𝐾(𝐻)
 is cyclic. If N ≤ 𝐾(𝐻), 

then clearly 
𝐻

𝑁
∈ 𝑃(

𝑀

𝑁
), and by using Lemma 2.2, it is deduced that 

(
𝐻

𝑁
)

𝐾(
𝐻

𝑁
)

≃
𝐻

𝐾(𝐻)
 is cyclic. If 𝑁 ≰ 𝐾(𝐻), then 𝑁 ≰
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N 

N 

𝐻. The minimality of N leads to the conclusion that N ∩ H = 1. Clearly, 
𝑁+𝐻

𝑁
∈ 𝑃(

𝑀

𝑁
) and 

(
𝑁+𝐻

𝑁
)

(
𝐾(𝐻)+𝑁

𝑁
)≃

𝐻

𝐾(𝐻)

 is cyclic. 

Noticing that 𝐾(
𝑁+𝐻

𝑁
)  ≥

𝐾(𝐻)+𝑁

𝑁
, we have 

(
𝑁+𝐻

𝑁
)

𝐾(
𝐻+𝑁

𝑁
)
 is cyclic. Now the proof is complete. 

3. Solvability and supersolvability in Lie algebras 

Defition 3.1. For a maximal subalgebra M of a fnite subalgebra L, a 𝜃 − subalgebra for M is any subalgebra C 

of L such that C ≰ M and CoreL(M∩C) is maximal among proper ideal subalgebras of L contained in C. 

Lemma 3.2. Assume that N ⊴L and that 
𝑈

𝑁
 is the unique minimal ideal of 

𝐿

𝑁
. Let M be a maximal subalgebra of 

L containing N but not containing U, and let C be a maximal member of I(M). Furthermore, suppose that 
𝑈

𝑁
 is not 

involved in 
𝐶

K(C) 
. Then, 

(i) N=K(C) 

(ii) C is a maximal subalgebra of U + C  

Proof. Due to K(C) ≤ CoreL(M), and the hypothesis implies that N = CoreL(M), we see that K(C) ≤ N . If 

K(C) < N, then N ⊈ C and C + N > C. C + N is not in I(M) because C is maximal in I(M), and consequently 

CoreL(C + N) ⊈ M. Since N ⊆ M and N ⊆ CoreL(C +N), it follows that N < CoreL(C + N), and consequently 

U ⊆ C + N as 
𝑈

𝑁
 is the unique minimal ideal of 

𝐿

𝑁
 . It follows that 

𝑈

𝑁
 is involved in 

𝐶

K(C) 
. contrary to the hypothesis. 

This proves (i).  

If C ⊇ U, then 
𝑈

𝑁
 is a subalgebra of 

𝐶

𝑁
= 

𝐶

K(C) 
. This means that 

𝑈

𝑁
 is involved in 

𝐶

K(C) 
, contrary to the hypothesis. 

Thus, C < U + C. Let B be a subalgebra of U + C such that C < B ≤U + C. As in the proof of (i), we have B is not 

in I(M), and hence N ⊆CoreL(B) ⊈ M and it follows that U ⊆ CoreL(B). We thus conclude that B = C + U, which 

proves (ii). 

Theorem 3.3. Let L be a lie algebra. Assume that for each maximal sub- algebra M of composite index in 

L, there exists a maximal member C in I(M) such that 
𝐶

K(C) 
 is cyclic of order more than or equal to the index 

of M in L. Then, L is solvable and every maximal subalgebra of L either has prime index of 4. 

Proof. By 
𝐶

K(C) 
, then L is solvable. Suppose that L is nonsupersolvable and let M be a maximal subalgebra of L 

composite index. We must show that [L : M ] = 4. Let N = CoreM (L) and let 
𝑈

𝑁
 be a chief factor of L. Then U + M 

= L and U ∩ M = N because 
𝑈

𝑁
 is abelian. Also, 𝐶𝑈

𝑁

(M)⊲L, and thus 𝐶𝑈

𝑁

(M)= N. It follows that 𝐶𝑈

𝑁

(L) = U, and this 

implies that 
𝑈

𝑁
 is the unique minimal ideal of 

𝐿

𝑁
 . Since [L : M ] = [U : N ], we only need to show that dim(

𝑈

𝑁
) = 4. 

By hypothesis, we may assume that C be maximal in I(M), where 
𝐶

K(C) 
 is cyclic and dim(

𝐶

K(C) 
) ≥ [L : M ]. Since 

𝑈

𝑁
 

is noncyclic, it cannot be involved in the cyclic Lie algebra 
𝐶

K(C) 
. Applying Lemma 3.2, we see that K(C) = N and 

C is maximal in E = U + C. Also, dim(
𝐶

N 
) ≥ [L : M ] = dim(

𝑈

𝑁
), and consequently dim(C) ≥ dim(U). We claim that 

C ⊲ E. Thus, dim(
𝐶

N 
) ≠ dim(

𝑈

𝑁
), and we conclude that dim(C) ≥ dim(U). Let B be a conjugate of C in E and B ≠ 

C. Then dim(B> dim(C)) and  

𝑑𝑖𝑚(𝐵) + 𝑑𝑖𝑚(𝐶)

𝑑𝑖𝑚(𝐵 ∩ 𝐶) 
= 𝑑𝑖𝑚(𝐵 + 𝐶) ≤ 𝑑𝑖𝑚(𝐸) =

𝑑𝑖𝑚(𝑈) + 𝑑𝑖𝑚(𝐶)

𝑑𝑖𝑚(𝑈 ∩ 𝐶) 
 

so dim(B ∩ C) > dim(U ∩ C). It follows that B ∩ C is not contained in U, and thus this intersection does not 

centralize 
𝑈

𝑁
 because CL(

𝑈

𝑁
) = U . Let 

𝑋

𝑁

 
= 𝐶𝐿

𝑁

 (B ∩ C). Then U ⊈ X, and since 
𝑈

𝑁
 is the unique minimal ideal of 

𝐿

𝑁
, 

𝑋

𝑁
 is also core free, we deduce that X ∈ I(M). But 

𝐵

𝑁
 and 

𝐶

𝑁
 are abelian, and thus X contains both C and B. By the 

maximality of C, we have T = X ⊇ B, which is not the case. Thus C ⊲ E, as claimed. 

Let T = U ∩ C. Now C is maximal and ideal in E, so dim[U : T ] = dim[E : C] is prime. Since 
𝑇

𝑁
 is cyclic and is 

contained in 
𝑈

𝑁
, its order divides p, and we conclude that | 

𝑈

𝑁

 
| = p2. What remains is to show that p = 2. 
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We have dim(C) ≥ dim(U) > dim(T), and thus E > U. Let V be a subalgebra of E containing U such that [V : U 

] = p. Then V ∩ C > T and 
(𝑉∩𝐶)

𝑁
 is cyclic. 

Thus, 
𝑉

𝑁
 is an algebra of order p3 and exponent p2. Let Q = V ∩ M, so that 

𝑄

𝑁
 is a subalgebra of order p in 

𝑉

𝑁
, and 

thus 
𝑉

𝑁
 has more than p2 elements of order dividing p. If p > 2, only Lie algebras of dim p3 having this property 

have exponent p, and thus we deduce that p = 2.  

Finally 

[L : M ] = dim(
𝑈

𝑁
) = p2 = 4. 

Lemma 3.4. If C is a maximal θ-subalgebra for a maximal subalgebra M of L and N ⊴L, N≤ CoreL(M ∩ C), 

then 
𝐶

𝑁
 is a maximal θ-subalgebra for 

𝑀

𝑁
 . Conversely, if 

𝐶

𝑁
 is a maximal θ-subalgebra for 

𝑀

𝑁
, then C is a maximal 

θ-subalgebra for M. 

Proof. Suppose that C is a maximal θ- subalgebra for M. It follows that 
𝐶

𝑁
 ∈ θ(

𝑀

𝑁
). If 

𝐶

𝑁 is not a maximal θ-

subalgebra in θ(
𝑀

𝑁
), then 

𝐶

𝑁
<

𝐻

𝑁
, 

𝐻

𝑁 ∈θ(
𝑀

𝑁
), implies that C < H. Now we see that H is a θ-algebra for M, violating the 

maximality of C in θ(M). 

Conversely, it is easy to see that if 
𝐶

𝑁
 is a maximal θ-subalgebra for 

𝑀

𝑁
, then C is a θ-subalgebra for M. If C is 

not a maximal θ-subalgebra, suppose that 

C < H, H ∈ θ(M). This implies that 
𝐶

𝑁
 < 

𝐻

𝑁
 . Since N ≤ CoreL(M ∩ C) ≤ CoreL(M ∩ H), we have 

𝐻

𝑁
 ∈ θ(

𝑀

𝑁
), 

violating the maximality of 
𝐶

𝑁
 ∈ θ(

𝑀

𝑁
). 

Theorem 3.5. Let L be a finite Lie algebra over a field F, where F has characteristic zero, suppose that 

for each maximal subalgebra M of composite index in L, there exists a maximal θ-subalgebra C for M such 

that L = C + M and 
𝐶

𝐶𝑜𝑟𝑒𝑀∩𝐶(𝐿)
 is cyclic. Then L is supersolvable. 

Proof. Assume that L is not supersolvable, and N is a minimal ideal of L. 

(i)  
𝐿

𝑁
 is supersolvable by induction. 

First of all, we note that if M is a maximal subalgebra of L, H = CoreL(M) 

and 
𝐾

𝐻
 is a chief factor of L, then it is easy to see that K is a maximal element of θ(M). 

To show that 
𝐿

𝑁
 satisfies the hypothesis and consequently is supersolvable, let 

𝑀

𝑁
 be a maximal subalgebra of 

composite index. From Lemma 3.4, we must find a maximal element A of θ(M) such that A contains N, A + M = 

L and 
𝐴

𝐶𝑜𝑟𝑒𝐿(𝐴∩𝑀)
 is cyclic. To do this, let C be a maximal element of θ(M) and suppose that C + M = L and 

𝐶

𝐶𝑜𝑟𝑒𝐿(𝐶∩𝑀)
 is cyclic. If C contain N, we are done by taking A = C. Otherwise, write H = CoreL(M) and note that L 

is not contained in C so that C < H + C and hence H + C is not in θ(M). Also, note that H = CoreL(H + C ∩M) and 

consequently there exists a subalgebra A, which is ideal in L with H < A < H + C. We may choose A such 

that 
𝐴

𝐻
 is a chief factor of L. So, A is a maximal element of θ(M) and certainly A contains N. Since M is maximal 

and does not contain the ideal A, we have A + M = L. Finally, H = CoreL(A∩ M) and we need only to show that 
𝐴

𝐻
 is cyclic. This follows because 

𝐶+𝐻

𝐻
 is cyclic, because 

𝐶

(𝐶∩𝐻)
 is a homomorphic image of 

𝐶

𝐶𝑜𝑟𝑒𝐿(𝐶∩𝐻)
, which is 

cyclic. 

(ii) N is solvable. 

We may assume that N is the unique minimal ideal of L. Since L is not supersolvable and 
𝐿

𝑁
 

is supersolvable, there exists a maximal subalgebra M of composite index and we know that it does not contain 

N. It follows that 

θ(M) = {N } ∪ {X ⊆ L | X ⊈ MandN ⊈ X}. 

Since CoreL(C∩M) = 1, by hypothesis, there exists a maximal θ-subalgebra C of this set such that C + M = L 

and C is cyclic. If C = N, then certainly N is solvable. So we can assume that C does not contain N. By the 
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maximality of C as an element of θ(M), we know that every subalgebra of L is strictly larger than C containing in 

N. Suppose Y that is any subalgebra of N that is ideal in C but not contained in C ∩ N . Then C < Y + C and it 

follows that N ⊆ Y + C and N = Y + (N ∩ C). Thus Y is ideal in N and 
𝑁

𝑌
 is cyclic and consequently 𝑁 ′ ⊆ Y . 

But 𝑁 ′ = 𝑁, or else 𝑁 ′ = 1 and we are done, and thus Y = N. C is cyclic and Y ⊴C then Y is cyclic. Where is Y = N 

and N is abelian, then there is nilpotent. Thus N is solvable. This is a contradiction. 

Theorem 3.6. Let L be a finite Lie algebra over a field F, where F has characteristic zero. Suppose that 

for each maximal subalgebra M in L, there exists a maximal θ-subalgebra C for M such that L = C + M and 
𝐶

𝐶𝑜𝑟𝑒𝑀∩𝐶(𝐿)
 is cyclic. Then L is solvable. 

Proof. Suppose that for each maximal subalgebra M in L, there exists a maximal θ-subalgebra C for M such 

that L = C + M and 
𝐶

𝐶𝑜𝑟𝑒𝑀∩𝐶(𝐿)
 is cyclic. 

Now, it is revealed that C is an ideal in L. 

∀c ∈ C, then c + CoreL(M ∩ C) ∈
𝐶

𝐶𝑜𝑟𝑒𝐿(𝑀∩𝐶)
∙  

𝐶

𝐶𝑜𝑟𝑒𝐿(𝑀∩𝐶) 
is abelian, then [c+CoreL(M ∩C)] = 0 𝐶

𝐶𝑜𝑟𝑒𝐿(𝑀∩𝐶)

=

𝐶𝑜𝑟𝑒𝐿(𝑀 ∩ 𝐶). Therefore [c, l]+[CoreL(M ∩C), l] = CoreL(M ∩ C). Since CoreL(M ∩ C) is ideal, and [CoreL(M 

∩ C), l] ∈CoreL(M ∩ C) then [c, l] + CoreL(M ∩ C) = CoreL(M ∩ C). Further [c, l] ∈ CoreL(M∩ C) ≤C. Finally 

[c, l] ∈C. Hence, it was revealed that C is an ideal in L. Therefore 

[C, M ∩ C] ⊆ [C, C] ⊆ C2 ⊆ CoreL(M ∩ C) ∩ C ⊆ M ∩ C ⊆ ML. 

M ∩ C is an ideal in L thus M a c − ideal of L, then L is solvable. 
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