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1. INTRODUCTION  

Fractional calculus is a mathematical field which studies about integrals and derivatives of arbitrary order. It has 

applications in science and engineering fields like mathematical biology, analytical science, electrochemistry, 

electromagnetics, physics, economics, fluid mechanics, signal processing, viscoelasticity, image processing, 

Robotics, mechanic and dynamic systems, telecommunication etc. (Debnath, 2003), (Yang Q. C., 2016), (Manoj 

Kumar, 2016), (Sun, 2018), (Matlob, 2019). 

Mathematical models that are based on fractional calculus has the ability to describe the real-world systems more 

accurately than models based on integer order calculus. (Wajdi M Ahmad, 2004), (Hammouch, 2015), (Rivero, 

2013) outlines some of the major research works that were carried out in the area of stability analysis of fractional 

order systems. The stability of nonlinear systems can be studied by using Lyapunov direct method, which is an 

efficient tool to analyze the system stability without solving the system. In (Liu K. a., 2016) and (Weisheng Chen, 

2017) nonlinear Caputo type fractional order dynamic systems are looked upon to analyze the stability by using 

fractional Lyapunov method. 

Neural networks are parallel computing devices which are basically an at- tempt to make a computer model of brain. 

Neural networks have widespread applications in different fields such as cybersecurity, optimization problems, 

system identification & control, signal and image processing, data mining, pattern recognition etc. These broad 

areas of applications make it an active research area. 

Over the past few years, some researchers incorporated fractional calculus to neural networks to frame fractional 

order neural network models. Proper- ties of fractional calculus like long-term memory, nonlocality, weak 

singularity characteristics and its potential to depict the memory and hereditary properties of the neural network 

enables fractional order neural models describe numerous phenomena more accurately. A great deal of literatures 

on exponential stability and synchronization of neural networks are on integer order networks than fractional order. 

A dynamic analysis of fractional-order neural networks is given in (Chen, 2013).  

In majority of systems impulsive effects are common phenomenon due to instantaneous perturbations at certain 

moments. Impulsive control is used for stabilization and synchronization of systems that cannot be controlled 

using continuous control. Lyapunov stability of impulsive fractional-order nonlinear systems is investigated in 

(Song X. Y., 2017) . Methods such as active control (Khan, 2018), global synchronization , adaptive control 

(Jajarmi, 2017) , linear and nonlinear control etc. are used for synchronization. The impulsive synchronization 

is explored on fractional-order neural works in (Yang, 2018) and on fractional-order discrete-time chaotic 

systems (i.e., systems that are sensitive to initial conditions), in (Megherbi, 2017). Exponential synchronization 

of chaotic system along with its application in the area of secure communication is examined in (Naderi, 2016). 

Exponential synchronization is being employed in domains such as associative memory, image encryption and 

combinational optimization also. 

LMI Conditions are formulated for global stability of fractional order neural networks in (Shuo Zhang, 2017) 

and a generalized projective synchronization method is also drawn from it. In (Stamova, 2014)  global Mittag-

Leffler stability of an impulsive Caputo fractional-order cellular neural networks with time-varying delays is 

studied by applying fractional Lyapunov method. The synchronization of fractional chaotic networks by 

employing non-impulsive linear controller was also considered. (Wu, 2016)  has investigated global Mittag-

Leffler stability for fractional-order Hopfield neural networks with impulse effects in terms of LMIs . Global 

exponential stability of complex-valued neural networks is analyzed in (Song Q. e., 2016) via Lyapunov 

functional method by adopting matrix inequality method. Fixed-time Synchronization of Neural Networks 
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with discrete delay is studied in (Liu S. C., 2020). 

Motivated by above discussion , in this paper we consider a fractional order impulsive Neural Networks and analyze 

its exponential stability using Lyapunov function .Further the exponential synchronization of this system is also 

discussed. 

This paper is structured as follows: Section 2 states some definitions and Lemmas that are fundamental for our 

research. A model for fractional order impulsive Neural Networks is also proposed . In section 3 conditions under 

which system achieves exponential stability and synchronization are discussed. Section 4 consists of 

examples. 

Notations: In this manuscript ℝ+ =  {𝑥 ∈  ℝ | 𝑥 >  0}, ℝ n denotes n- dimensional Euclidean space 

ℝ𝑛 𝑥 𝑛  denotes the set of real n × n matrices,   ||.|| denotes Euclidean norm. 

2.PRELIMINARIES 

 

 Definition 2.1. The Caputo fractional order derivative of order α ∈ ℝ+ on the half axis R+ is defined as 

follows 

𝐷𝑡
𝛼  𝑓(𝑡) =  

1

Γ(𝑛 − 𝛼)𝑡0
𝐶 ∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏

𝑡

𝑡0

 

for 𝑡 > 𝑡0  with 𝑛 = min{𝑘𝜖𝑁 | 𝑘 > 𝛼 > 0} , where 𝑓(𝑛)(𝑡)  is the n-order derivative of 𝑓(𝑡) , and Γ(. )  is the 

Gamma function. 

 

Definition 2.2. . The Reimann-Liouville fractional derivative of order 𝛼 of function 𝑓(𝑡) is defined as 

𝐷𝑡
𝛼  𝑓(𝑡) =  

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛𝑡0
𝑅𝐿 ∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏

𝑡

𝑡0

 

where 𝑛 − 1 ≤ 𝛼 < 𝑛, 𝑛𝜖ℤ+, Γ(. ) denotes the Gamma function. 

 
 
Definition 2.3.  A function 𝑓 defined on 𝐷 ⊆  ℝ+ is said to satisfy the Lipschitz condition if there is a constant 

𝐿 such that  
‖𝑓(𝑦) − 𝑓(𝑦𝑛)‖ ≤ 𝐿‖𝑦 − 𝑦𝑛‖     ∀ 𝑦, 𝑦𝑛 𝜖 𝐷  

 
 

 

Model description 

Let us consider the Caputo fractional order impulsive neural networks of the following form: 

𝐷𝑡
𝛼𝒚(𝑡) = −𝐴𝒚(𝑡) +𝑡0

𝐶 𝐵𝒇(𝒚(𝑡)) + 𝐼 ; 𝑡 ≠ 𝑡𝑘 

                                                              y(𝑡𝑘
+) = Bk y(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 

                                                          y(t0) = y0,                                                                                    (1) 

where: 𝛼𝜖(0,1), 𝒚(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)𝑇𝜖 ℝ𝑛, 𝐴 = 𝑑𝑖𝑎(𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 = (𝑏𝑖𝑗)𝑛×𝑛.  For 

𝑖, 𝑗 = 1,2, … , 𝑛, 𝑦𝑖(𝑡) is the state of the 𝑖𝑡ℎ neuron , 𝑓𝑖(𝑦𝑖(𝑡)) is the activation function of the 𝑖𝑡ℎ neuron, 

𝑎𝑖 > 0 is the charging rate for the 𝑖𝑡ℎ neuron. 𝐼 = (𝐼1, 𝐼2, … , 𝐼𝑛)𝑇, a constant vector, is the external input. 

𝐵𝑘  𝜖 ℝ𝑛×𝑛  is impulsive gain matrix, 𝑡1 < 𝑡2 < 𝑡3 … < 𝑡𝑘  with lim
𝑘→+∞

𝑡𝑘 =  +∞.  Assume  that 𝒚(𝑡) is 

right continuous at 𝑡 = 𝑡𝑘 and 𝒚(𝑡𝑘) = 𝒚(𝑡𝑘
+). 

 

Assumption 1. The function 𝑓 is continuous on ℝ and satisfy the Lipschitz condition in ℝ, there exist a linear 

matrix 𝐿 = 𝑑𝑖𝑎{𝑙1, 𝑙2, … , 𝑙𝑛} > 0, such that: 

‖𝑓(𝑥) − 𝑓(𝑦)‖
2

≤ 𝐿 ‖𝑥 − 𝑦‖
2

    ∀ 𝑦, 𝑥𝜖 ℝ𝑛  

 

Lemma 2.1. For the given vectors 𝒚, 𝒙 𝜖 ℝ𝑛 and any positive constant 𝜀 > 0 , the following inequality holds 

2𝒚𝑇𝒙 ≤  𝜀 𝒚𝑇𝒚 + 𝜀−1𝒙𝑇𝒙 

 

Lemma 2.2. Let Ω𝜖ℝ𝑛. If 𝑉(𝑦(𝑡)): Ω → ℝ and 𝑦(𝑡): [0, ∞) → Ω are two continuous and differentiable functions 

and 𝑉(𝑦(𝑡)) is convex over Ω, then  
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𝐷𝑡
𝛼𝑉(𝑦(𝑡)) ≤𝑡0

𝐶 (
𝜕𝑉

𝜕𝑦
)

𝑇

𝐷𝑡
𝛼(𝑦(𝑡)) , ∀ 𝛼 𝜖 (0,1), ∀ 𝑡 ≥ 0𝑡0

𝐶  

Specially, for any 𝑃 > 0 when 𝑉(𝑦(𝑡)) = 𝑦𝑇(𝑡)𝑃𝑦(𝑡), then the following well known holds: 

𝐷𝑡
𝛼(𝑦𝑻(𝑡)𝑃𝑦(𝑡) ≤ 2𝑦𝑇(𝑡)𝑡0

𝐶 𝑃  𝑡0
𝐶 (𝑦(𝑡)) 

 

Lemma 2.3. For all 𝑎 𝜖 ℝ and a real valued continuous function 𝐺(𝑡) on [𝑎, ∞), if there exist a constant 𝜃 such 

that  

𝐷𝑡
𝛼𝐺(𝑡)) ≤𝑡0

𝐶 𝜃𝐺(𝑡);  𝛼 𝜖 (0,1] 

Then 

𝐺(𝑡) ≤ 𝐺(𝑎)𝑒∫
𝜃

Γ𝛼
(𝑡−𝜏)𝛼−1𝑡

𝑎 𝑑𝜏 

= 𝐺(𝑎)𝑒
𝜃

Γ(𝛼+1)
(𝑡−𝑎)𝛼

 

 

3.MAIN RESULTS 

In this section we examine exponential stability and synchronization results for fractional order impulsive Neural 

Networks via convex Lyapunov function. 
 

3.1 Exponential Stability 

Theorem 3.1.  Let 𝑃 be a positive definition matrix. If there exist constants  𝛾, 𝜇 > 0 𝑎𝑛𝑑 𝜁𝑘 > 1 such that the 

following conditions  

(i) −𝑃𝐴 − 𝐴𝑇𝑃 + 𝜀𝑃𝐵𝐵𝑇𝑃 + 𝜀−1𝐿2 ≤ −𝛾𝑃 

(ii) 𝐵𝑘
𝑇𝑃𝐵𝑘 <  𝑒−𝜇𝑃 

(iii)𝜁𝑘𝑒−𝜇𝑘𝑒
−𝛾

Γ(𝛼+1)
(𝑡𝑘−𝑡𝑘−1)𝛼

< 1 

are satisfied. Then the system (1) is exponentially stable. 

Proof. Let us assume the solution of equation (1) is piece-wise right continuous function. Consider the convex 

Lyapunov function: 

𝑊(𝑡) = 𝒚𝑇 (𝑡)𝑃𝒚(𝑡), 

Taking Caputo derivative and using Lemma 2.2 when 𝑡𝜖(𝑡𝑘 , 𝑡𝑘+1) for 𝑘𝜖ℤ+ 

𝐷𝑡
𝛼𝑊(𝑡) ≤ 2𝒚𝑇(𝑡)𝑃{ 𝐷𝑡

𝛼(𝒚(𝑡))}
𝑡0

𝐶

𝑡0

𝐶
 

                                  = 2𝒚𝑇(𝑡)𝑃[−𝐴𝒚(𝑡) + 𝐵𝑓(𝒚(𝑡))] 

                                              = −2𝒚𝑻(𝑡)𝑃𝐴𝒚(𝑡) + 2𝒚𝑇(𝑡)𝑃𝐵𝑓(𝒚(𝑡)) 

                                                                       ≤ −𝒚𝑇(𝑡)𝑃𝐴𝒚(𝑡)−𝒚𝑇(𝑡)𝐴𝑇𝑃𝒚(𝑡) + 2𝒚𝑇(𝑡)𝑃𝐵𝐵𝑇𝑓(𝒚(𝑡)) 

By Lemma 2.1 

𝐷𝑡
𝛼𝑊(𝑡) ≤ −𝒚𝑇(𝑡)𝑃𝐴𝒚(𝑡) − 𝒚𝑇𝐴𝑇𝑃𝒚(𝑡) + 𝜀

𝑡0

𝐶
𝒚𝑇(𝑡)𝑃𝐵𝐵𝑇𝒚(𝑡) + 𝜀−1𝑓𝑇(𝒚(𝑡))𝑓(𝒚(𝑡)) 

By assumption (1), if follows that 

𝐷𝑡
𝛼𝑊(𝑡) ≤

𝑡0

𝐶
− 𝒚𝑇(𝑡)𝑃𝐴𝒚(𝑡)−𝒚𝑇(𝑡)𝐴𝑇𝑃𝒚(𝑡) + 𝜀𝒚𝑇(𝑡)𝑃𝐵𝐵𝑇𝑃𝒚(𝑡) + 𝜀−1𝐿𝒚𝑇(𝑡)𝐿𝒚(𝑡) 

    = −𝒚𝑇(𝑡)𝑃𝐴𝒚(𝑡) − 𝒚𝑇(𝑡)𝐴𝑇𝑃𝒚(𝑡) + 𝜀𝒚𝑇(𝑡)𝑃𝐵𝐵𝑇𝑃𝒚(𝑡) + 𝜀−1𝐿2𝒚(𝑡) 

                                 = 𝒚𝑇(𝑡)[−𝑃𝐴 − 𝐴𝑇𝑃 + 𝜀𝑃𝐵𝐵𝑇𝑃 + 𝜀−1𝐿2]𝒚(𝑡) 

Let  −𝑃𝐴 − 𝐴𝑇𝑃 + 𝜀𝑃𝐵𝐵𝑇𝑃 + 𝜀−1𝐿2 ≤ −𝛾𝑃 

Thus,  

𝐷𝑡
𝛼𝑊(𝑡) ≤

𝑡0

𝐶
𝒚𝑇(𝑡)(−𝛾𝑃)𝒚(𝑡) 

                                                                              ≤ −𝛾𝒚𝑇𝑃𝒚(𝑡) 



Turkish Journal of Computer and Mathematics Education                    Vol.12 No.13 (2021), 4337-4342 

4340 

 

 

 

Research Article  

That is                                                  𝐷𝑡
𝛼𝑊(𝑡) ≤

𝑡0

𝐶
− 𝛾𝑊(𝑡) for 𝑡 ≠ 𝑡𝑘. 

When 𝑡 = 𝑡𝑘, it follows from second equation of (1) that 

𝑊(𝑡𝑘) = 𝒚𝑇(𝑡𝑘)𝑃𝒚(𝑡𝑘) 

                          = (𝐵𝑘𝒚(𝑡𝑘
−))𝑇𝑃(𝐵𝑘𝒚(𝑡𝑘

−)) 

                               =  𝒚𝑇(𝑡𝑘
−)(𝐵𝑘)𝑇𝑃(𝐵𝑘)𝒚(𝑡𝑘

−), 

Now take 𝐵𝑘
𝑇𝑃𝐵𝑘 < 𝑒−𝜇𝑃 Then 

𝑊(𝑡𝑘) ≤  𝒚𝑇(𝑡𝑘
−)𝑒−𝜇𝑃𝒚(𝑡𝑘

−) 

Thus 𝑊(𝑡𝑘) ≤ 𝑒−𝜇𝑊(𝑡𝑘
−) 

By using Lemma 2.3, we can write for any 𝑡𝜖(𝑡0, 𝑡1) 

𝑊(𝑡) ≤ 𝑊(𝑡0)𝑒
−𝛾

Γ(𝛼+1)
(𝑡−𝑡0)𝛼

 

Similarly, for any 𝑡𝜖(𝑡1, 𝑡2) 

𝑊(𝑡) ≤ 𝑊(𝑡0)𝑒−𝜇𝑒
−𝛾

Γ(𝛼+1)
[(𝑡−𝑡1)𝛼+(𝑡1−𝑡0)𝛼]

 

Similarly, for any  𝑡 𝜖(𝑡𝑘, 𝑡𝑘+1) 

𝑊(𝑡) ≤ 𝑊(𝑡0) ∏ 𝑒−𝜇𝑖𝑒
−𝛾

Γ(𝛼+1)
(𝑡𝑖−𝑡𝑖−1)𝛼

× 𝑒
−𝛾

Γ(𝛼+1)
(𝑡−𝑡𝑘)𝛼

𝑘

𝑖=1

 

From condition (iii) , we get  

𝑊(𝑡) ≤ 𝑊(𝑡0)
1

𝜁𝑘
𝑒

−𝛾

Γ(𝛼+1)
(𝑡−𝑡𝑘)𝛼

 

Where 
1

𝜁𝑘 → 0 as 𝑘 → ∞, then 𝑊(𝑡) ≤ 0. Then system (1) is exponentially stable. 

 

3.2 Exponential Synchronization 

  Consider the drive system: 

                                                     𝐷𝑡
𝛼  𝒚(𝑡) = −𝐴 𝒚(𝑡) +𝑡0

𝐶 𝐵𝒇(𝒚(𝑡))  ; 𝑡 ≠ 𝑡𝑘 ,𝑡 ≥ 𝑡0 

                                                             y(𝑡𝑘
+) =  C y(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 , 𝑘𝜖ℤ+, 

                                                                                              𝒚(𝑡0) =  𝑦0                                                            (4) 

The corresponding Response system can be described as follows : 

𝐷𝑡
𝛼𝒛(𝑡) = −𝐴 𝒛(𝑡) +𝑡0

𝐶 𝐵𝒇(𝒛(𝑡))  ; 𝑡 ≠ 𝑡𝑘 ,𝑡 ≥ 𝑡0 

                                                     z(𝑡𝑘
+) =  C z(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 , 𝑘𝜖ℤ+ 

                                                                  𝒛(𝑡0) =  𝒛𝟎                                                                       (5) 

Define error variable as 𝜽(𝑡)  =  𝒛(𝑡) − 𝒚(𝑡). Then we obtain error system from (5)-(4) , it is defined as : 

𝐷𝑡
𝛼𝜽(𝑡) = −𝐴 𝜽(𝑡) +𝑡0

𝐶 𝐵𝒇(𝜽(𝑡))  ; 𝑡 ≠ 𝑡𝑘 ,𝑡 ≥ 𝑡0 

                                                       θ(𝑡𝑘
+)   = C θ(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 , 𝑘𝜖ℤ+ 

                                                       θ(t0) = θ0                                                              (6) 

where 𝒇(𝜽(𝑡))  =  𝒇((𝒛(𝑡)  +  𝒚(𝑡))  −  𝒇(𝒚(𝑡)) 

 

Theorem 3.2.  Let 𝑃 be a positive definition matrix. If there exist constants  𝛾, 𝜇 > 0 𝑎𝑛𝑑 𝜁𝑘 > 1 such that the 

following conditions  
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(iv) −𝑃𝐴 − 𝐴𝑇𝑃 + 𝜀𝑃𝐵𝐵𝑇𝑃 + 𝜀−1𝐿2 ≤ −𝛾𝑃 

(v) 𝐵𝑘
𝑇𝑃𝐵𝑘 <  𝑒−𝜇𝑃 

(vi) 𝜁𝑘𝑒−𝜇𝑘𝑒
−𝛾

Γ(𝛼+1)
(𝑡𝑘−𝑡𝑘−1)𝛼

< 1 

are satisfied. Then the system (6) is exponentially synchronized 

 

Proof. The proof is similar to Theorem 3.1, so we omit it. 
 

4.EXAMPLES 

In this section, we give two examples to verify the effectiveness of exponential stability and exponential 

synchronization results  that we obtained. 

Example 1: In system (1) consider the following impulsive neural network with α=0.98, , 𝒚(𝑡) = (𝑦1, 𝑦2 , 𝑦3)𝑇  

𝒇(𝒚) = (𝑡𝑎𝑛ℎ(𝑦1), 𝑡𝑎𝑛ℎ(𝑦2), 𝑡𝑎𝑛ℎ(𝑦3))𝑇 , 𝐼 = (0,0,0)𝑇 , 𝑨 = 𝑑𝑖𝑎𝑔(1,1,1),    B = 

2 −1.2 0
1.8 1.71 1.15

−4.75 0 1.1
   Bk = 

0.1 0 0
0 0.5 0
0 0 0.7

  . 

Under parameters ε =0.1,γ=0.1, μk =0.1 and Lipschitz constant 𝐿 = 𝑑𝑖𝑎𝑔(0.1,0.1,0.1), with P =  
2 1 0
1 2 0
0 0 1

      the 

LMI conditions of  Theorem (3.1) are satisfied. Thus, by Theorem (3.1) this neural network is exponentially stable. 

 

Example 2 : Consider the Drive system: 

                                                     𝐷𝑡
𝛼  𝒚(𝑡) = −𝐴 𝒚(𝑡) +𝑡0

𝐶 𝐵𝒇(𝒚(𝑡))  ; 𝑡 ≠ 𝑡𝑘 ,𝑡 ≥ 𝑡0 

                                                             y(𝑡𝑘
+) =  C  y(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 , 𝑘𝜖ℤ+ 

                                                               y(t0) = y0   ; t=t0 

 

The corresponding Response system can be described as : 

𝐷𝑡
𝛼𝒛(𝑡) = −𝐴𝒛(𝑡) +𝑡0

𝐶 𝐵𝑓(𝒛(𝑡))  ; 𝑡 ≠ 𝑡𝑘 ,𝑡 ≥ 𝑡0 

                                                        z(𝑡𝑘
+) =  C z(𝑡𝑘

−) ; 𝑡 = 𝑡𝑘 , 𝑘𝜖ℤ+ 

                                                         z(t0) = z0 ; t=t0 

Where α=0.98 , 𝒚(𝑡) = (𝑦1 , 𝑦2, 𝑦3)𝑇 , 𝒇(𝒚) = (𝑡𝑎𝑛ℎ(𝑦1), 𝑡𝑎𝑛ℎ(𝑦2), 𝑡𝑎𝑛ℎ(𝑦3))𝑇 , 𝒛(𝑡) = (𝑧1, 𝑧2, 𝑧3)𝑇 , 𝒇(𝒛) =

(𝑡𝑎𝑛ℎ(𝑧1), 𝑡𝑎𝑛ℎ(𝑧2 ), 𝑡𝑎𝑛ℎ(𝑧3))𝑇 ,  A=diag(1,1,1),   𝑩 =   
2 −1.2 0

1.8 1.71 1.15
−4.75 0 1.1

     𝑪 =    
0.1 0 0
0 0.5 0
0 0 0.7

  . 

Under parameters 𝜀 = 0.1, 𝛾 = 0.1, 𝜇𝑘 = 0.1 and Lipschitz constant 𝐿 = 𝑑𝑖𝑎𝑔(0.1,0.1,0.1),  with 𝑃 =

     
2 1 0
1 2 0
0 0 1

      the LMI conditions of  Theorem (3.2) are satisfied. Thus, by Theorem (3.2) the given system 

achieves exponential synchronization. 

5.CONCLUSION 

In this paper we have considered a Caputo fractional order impulsive Neural Networks. By using convex Lyapunov 

function, the exponential stability conditions for the fractional order impulsive neural networks are derived and the 

results are formulated in terms of linear matrix inequalities (LMIs).  
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