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Abstract: This paper studies exponential stability results for Caputo fractional order impulsive differential equations. 
We derive some new sufficient conditions for the given system using Convex Lyapunov function and matrix 
inequality approach. In addition we have incorporated the discussion of exponential synchronization for the error 
system derived from the given drive system and its response system. The obtained results are validated through 
fractional order Lorenz system 
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1. INTRODUCTION 

In the recent years, the nonlinear fractional differential equations (NFDEs) remarkably received 
notable attention due to its application in electronics, bio engineering, epidemiology, physics, en- 
gineering, biology, etc. In fact, the nonlinear fractional differential equations exhibit chaos, for 
example, Lorenz system[22], Lu system[23], Chen system[24], etc. Therefore, the investigation of 
stability of nonlinear differential equations of fractional order is unavoidable. 

 
On the contrary, controllers play an vital role in the chaotic fractional differential equations. Al- ready 
some valuable results have been obtained for stability and synchronization based in numerous 
controllers. In[9] using a convex and positive definite Lyapunov function with fractional order 
derivative as negative definite, it is revealed that the fractional order system is Mittag Leffler stable. 
[25] and [26] proposes certain stability conditions through matrix inequality for fractional order 
systems.[27] and [28] discusses the designing of feedback controllers for stabilization of fraction order 
systems using LMI conditions. In [17] the synchronization is investigated and based on Lyapunov 
stability a different fractional order controller for synchronization which is hyper chaotic is studied. 
In [18] the synchronization is investigated among fractional order hyper-chaotic systems and hyper 
chaotic integer order systems through a sliding mode type of controller and through proper drive, 

response system and parameters. 
 
However, the impulse effects widely exist while investigating nonlinear differential equations whose 
order is fractional. Impulses can make sudden changes in the nature of the systems and many 
researchers contribute to initiate their research in this area. Recently, impulsive effects have been used 
as control point of view, for example neural networks[11], epidemic models[12], biological 
models[14], financial models [13], economic models etc. It is a recently developed branch of control 
theory and is important in secure communication[8]. In [29] uses impulsive controller to stabilize 
chaotic behavior of fractional order system. In [20] re-evaluates some of the important conclusions 
made on the stability of impulsive systems. In [30] by applying Lyapunov stability and LMI, the 

impulsive synchronization of different and same structure chaotic fractional order system is studied. 
  

 
Inspired from the above mentioned results this paper focus a computationally strong approach to  

construct an impulsive stabilizing and an impulsive synchronizing controller for nonlinear fractional  
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impulsive differential equation. The central features of this work are summarized as follows 

(i) By using Lyapunov convex function and matrix inequality approach, we derive some new 
sufficient conditions for exponential stability and exponential synchronization for nonlinear 
fractional order impulsive differential equations. 

(ii) The derived results are new and better than past literature[17][27][28]. 

 
The rest of this paper is as follows through some notations, definitions and lemmas in the preliminary 
section 2. In section 3, we prove exponential stability and exponential synchronization of fractional 
order impulsive differential equation. In section 4, proposed results are validated by an illustrative 
example that is Lorenz system. We end the paper by conclusion 
 
Notations  

   ℝ+ ={x  ∈ ℝ : x ≥ 0} where R is the the set of real numbers, + = {1, 2, 3, ...}, ℝn is the Euclidean 

space. ℝn×nis the set of all real matrices, ǁ.ǁ2 is the 2-norm where ǁ.ǁ2 : ℝn  →  ℝ 

  
  

2. PRELIMINARIES  

Definition1.The Caputo fractional derivative of order α∈ ℝ+on the half axis ℝ+ is defined as 

Dt
α 

t0
c (g(t)) =

1

Γ(n − a)
∫

g(n)(τ)

(t − τ)(α−n+1)

t

t0

dτ 

 

with n =  min { k ∈ N|k >  α >  0 }, where g(n)(t) is the n-order derivative of g(t) and Γ(. ) 

is the Gamma function[9]. 

Definition2.The Riemann Liouville Fractional derivative of order α of function g(t) is defined as 

 

Dt
α 

t0
R (g(t)) =

1

Γ(n − a)
 

dn

dtn
∫ t − τ(α−n−1) g(τ)

t

t0

dτ 

 

Where,n − 1 ≤  α < n ; n ∈  ℤ+ . 

 

Model Description  

Consider the fractional order impulsive control Caputo fractional differential equation of the following form 

                          𝐷𝑡
𝛼

𝑡0
𝐶  x(t)= Ax(t) + Bf(x(t)); t≠tk , t≥t0     

                                                     x(tk
-)=  Bk (x(tk

- )); t = tk, k ∈ ℤ+                                                (1) 

                                  x(t0) =  x0,                                              

where 𝛼 ∈ (0,1) and A,B ∈ ℝnxn  are constant matrices, f(x(t)):ℝn → ℝ is the non-linear function vector, Bk 𝜖 

ℝnxn is impulsive gain matrix, t1< t2 < t3<……..< tk with lim
𝑘→∞

tk= + ∞. We assume that x(t) is right 

continuous at t = tk  and x(tk
+) = x(tk

-). 

Assumption 1: f(x(t)) is continuous and satisfied Lipschitz condition on ℝn. 
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Lemma 1:[16] For the given vectors x,y 𝜖 ℝn and any positive constant ℰ > 0, the following inequality 
holds: 

                             2xT(t)y(t) ≤ 𝜀𝑥T(t)x(t) + 𝜀-1yT(t)y(t) 

 

Lemma 2:[9]Let 𝜔 ∈ ℝn. If V(h(t)) : 𝜔 → ℝ and h(t) : [0,∞)→ 𝜔 are two continuous and differentiable 
functions and V(h(t)) is convex over 𝜔, then 

                             𝐷𝑡
𝛼

𝑡0
𝐶  V(h(t)) ≤  

𝜕𝑉

𝜕ℎ

𝑇
𝐷𝑡

𝛼
𝑡0

𝐶  (h(t)), ∀ 𝛼 ∈ (0,1), ∀ t ≥ 0 

 

.Specially for any  P  > 0, when   

                           h(t) =  hT(t)Ph(t) 

then the following well known inequality holds; 

                         𝐷𝑡
𝛼

𝑡0
𝐶  (hT(t)Ph(t)) ≤  2hT(t)P 𝐷𝑡

𝛼
𝑡0

𝐶  (h(t)). 

 

Lemma 3: For all a ∈ ℝ and a real valued continuous function G(t) on [a, ∞), if there exist a constant θ 

such that Dt
α 

t0
C (G(t))  < θ G(t);  0 <  α ≤ 1 then, 

G(t) ≤  G(a)e∫
θ

Γα
(t− τ)α−1t

a  dτ  

= G(a)e
θ

Γα−1
(t−a)α

 

3.MAIN RESULT 

Using convex Lyapunov function, exponential stability of nonlinear Caputo fractional order system is 
studied. 

 
Exponential stability results 

Theorem 3.1: Let Q be a positive definite matrix. If there exists ϵ, γ, µ > 0 and ζk > 1 such that the 
following conditions  

I. 𝑄𝐴 + 𝐴𝑇𝑄 +  𝜖𝑄𝐵𝐵𝑇𝑄 + 𝜖−1𝐿2  ≤  −𝛾𝑄 , 

 

II.                                        𝐵𝑘 
𝑇 𝑄𝐵𝑘  <  𝑒−𝜇𝑄  , 

 

III.             𝜁𝑘  𝑒−𝜇𝑘  𝑒
−

𝜂

⌈𝛼+1
(𝑡𝑘−𝑡𝑘−1)𝛼

< 1 , 

 

are satisfied. Then the system ( 1) is exponentially stable. 

Proof. By assumption 1, the solution of equation (1) is piece-wise right continuous function. Consider 

the convex Lyapunov function  

 

 W(t) = yT(t)Qy(t)   

Taking Caputo derivative and by using Lemma 2, when t ∈ (tk, tk+1) for k ∈ Z+  
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              𝐷𝑡
∝

𝑡0

𝐶
 (W(t)) ≤ 2yT(t)Q{ 𝐷𝑡

∝

𝑡0

𝐶
(y(t))  = 2yT(t)Q[Ay(t)+Bf(y(t))] 

                                                                     = 2yT(t)QAy(t)+ 2yT(t)QBf(y(t)) 

                                                                      ≤ yT(t)QAyT(t)+ y(t)ATQy(t) + 2yT (t)QBf(y(t))  

 Dt
∝

                                                             t0

C
(W(t)) ≤  yT(t)QAy(t) + yT(t)AT Qy(t) +  yT(t)QBBT Qy(t) + e−1fT(y(t))f(y(t))  

 

By assumption 1, it follows that  

 

                          Dt
∝

t0

C
(W(t))  = yT (t)QAy(t) + y T(t)AT  Qy(t) +  yT (t)QBBT  Qy(t) +  e-1 Ly T(t)Ly(t) 

                                              = yT (t)QAy(t) + yT
 (t)AT Qy(t) + yT(t)QBBTQy(t) + e-1yT(t)Ly(t) 

                                              = yT(t)[QA+ATQ+QBBTQ+e-1L2]y(t) 

                                        

Now take QA + AT Q +  QBBT Q + e-1 L2  ≤ −γQ  
 

Thus  

                                  Dt
∝

t0

C
(W(t)) ≤ yT(−𝛾Q)y(t)  

                                                            ≤ −𝛾yT Qy(t) 

 

That is 

                                         Dt
∝

t0

C
(W(t)) ≤ −γW(y(t)) 

 

By using lemma 3, we have  

                                                  W(t) ≤ W(tk) 𝑒
−𝜂

𝛤(∝+1)
(𝑡−𝑡𝑘)∝

   , t ∈ (tk,tk+1)                             

 

When t = tk  it follows from second equation of system (1) that 

 

                                                                                                             W(tk ) = yT (tk )Qy(tk )  
                                                              = [(Bk )y(𝑡𝑘

−)]T   Q(Bk )y(𝑡𝑘
−)  

                                                              = yT (𝑡𝑘
−)(Bk )T  Q(Bk )y(𝑡𝑘

−) 

                     
 

Now by taking (𝐵𝑘)𝑇𝑄(𝐵𝑘) < 𝑒−𝜇𝑄 

Then                                          𝑾(𝒕𝒌) ≤ 𝒚𝑻(𝒕𝒌
−)𝒆−𝝁𝑸𝒚(𝒕𝒌

−) 

                                                               = 𝒆−𝝁𝒚𝑻(𝒕𝒌
−)𝑸𝒚(𝒕𝒌

−)      
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Thus    

𝑾(𝒕𝒌) ≤ 𝒆−𝝁𝑾(𝒕𝒌
−) 

Now by using lemma 3 we can write for any 𝒕𝝐(𝒕𝟎, 𝒕𝟏), we have 

𝑾(𝒕) ≤ 𝑾(𝒕𝟎)𝒆
−𝜸

𝜞(𝜶+𝟏)
(𝒕−𝒕𝟎)𝜶

, 

which leads to: 

𝑾(𝒕𝟏
−) ≤ 𝑾(𝒕𝟎)𝒆

−𝜸

𝜞(𝜶+𝟏)
(𝒕𝟏−𝒕𝟎)𝜶

 

Next for any 𝒕𝝐(𝒕𝟏, 𝒕𝟐), 

                                𝑾(𝒕) ≤ 𝑾(𝒕𝟏)𝒆
−𝜸

𝜞(𝜶+𝟏)
(𝒕−𝒕𝟏)𝜶

 

             ≤ 𝑾(𝒕𝟎)𝒆−𝝁𝒆
−𝜸

𝜞(𝜶+𝟏)
[(𝒕−𝒕𝟏)𝜶+(𝒕𝟏−𝒕𝟎)𝜶]

 

Similarly, for any 𝒕𝝐(𝒕𝒌, 𝒕𝒌+𝟏) we have, 

                              𝑾(𝒕) ≤ 𝑾(𝒕𝒌)𝒆
−𝜸

𝜞(𝜶+𝟏)
(𝒕−𝒕𝒌)𝜶

 

                                        ≤  𝑾(𝒕𝟎) ∏ 𝒆−𝝁𝒊𝒆
−𝜸

𝜞(𝜶+𝟏)
(𝒕𝒊−𝒕𝒊−𝟏)𝜶

× 𝒆
−𝜸

𝜞(𝜶+𝟏)
(𝒕−𝒕𝒌)𝜶

𝒌
𝒊=𝟏  

 

Now by taking  𝜁𝑘  𝑒−𝜇𝑘  𝑒
−

𝜂

⌈𝛼+1
(𝑡𝑘−𝑡𝑘−1)𝛼

< 1 , 

we get 

𝑾(𝒕) ≤ 𝑾(𝒕𝟎)
𝟏

𝜻𝒌
𝒆

−𝜸

𝜞(𝜶+𝟏)
(𝒕−𝒕𝒌)𝜶

 

Where  
𝟏

𝜻𝒌 → 𝟎 as 𝒌 → ∞, then 𝑾(𝒕) ≤ 𝟎. 

Then system 1 is exponentially stable. 

 

3.2 Exponential Synchronization 

  Consider drive system  

                            𝐷𝑡0
𝐶  𝑥(𝑡)𝑡

𝛼  = A x(t) + B f(x(t)) ; t = 𝑡𝑘 , t ≥ 𝑡0 

                                 x(𝑡𝑘⁺)  = C x(𝑡𝑘 ⁻) ; t = 𝑡𝑘 

                                   x(𝑡0)  =   𝑥0                                                                            (4) 
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 The corresponding response system can be described as follows  

                          𝐷𝑡0
𝐶  𝑦(𝑡)𝑡

𝛼  = A y(t) + B f(y(t)) ; t = 𝑡𝑘 , t ≥ 𝑡0 

                               y(𝑡𝑘⁺)  = C y(𝑡𝑘 ⁻) ; t = 𝑡𝑘 

                                 y(𝑡0)  =   𝑦0                                                                             (5) 

         

Define the error variable as 𝜃(t) = y(t) – x(t). Then we obtained error system                             

from (5) – (4), it defined as                     

                               𝐷𝑡0
𝐶  𝜃(𝑡)𝑡

𝛼  = A 𝜃(t) + B f(𝜃(t)) ; t = 𝑡𝑘 , t ≥ 𝑡0 

                                    𝜃(𝑡𝑘⁺)  = C 𝜃(𝑡𝑘 ⁻) ; t = 𝑡𝑘 

                                      𝜃(𝑡0)  =   𝜃0                                                                       (6) 

where f(𝜃(t)) = f(𝜃(𝑡) + x(t)) – f(x(t)). 

 

Theorem 3.2:  Let Q be a positive definite matrix. If there exists 𝛾, 𝜇𝑘 > 0 and 𝜁𝑘 > 1  

 such that the following conditions  

I. 𝑄𝐴 + 𝐴𝑇𝑄 +  𝜖𝑄𝐵𝐵𝑇𝑄 + 𝜖−1𝐿2  ≤  −𝛾𝑄 , 

 

II.                                        𝐵𝑘 
𝑇 𝑄𝐵𝑘  <  𝑒−𝜇𝑄  , 

 

III.                   𝜁𝑘  𝑒−𝜇𝑘  𝑒
−

𝜂

⌈𝛼+1
(𝑡𝑘−𝑡𝑘−1)𝛼

< 1 , 

 

  are satisfied. Then the system (6) is exponentially synchronized. 

PROOF: The proof is similar to Theorem 3.1, thus we omit it. 

 

      4. NUMERICAL EXAMPLES 

   In this section, we give two illustrative examples to verify the effectiveness of    exponential stability and     

exponential synchronization results obtained in the previous section.  

Example 1: Consider the three- dimensional Lorenz system 

                                   𝐷𝑡0
𝐶  𝑥1(𝑡)𝑡

𝛼  = 10(𝑥2 − 𝑥1) , 

                                          𝐷𝑡0
𝐶  𝑥2(𝑡)𝑡

𝛼  = −28𝑥1   − 𝑥2 − 𝑥1𝑥3  

                                          𝐷𝑡0
𝐶  𝑥3(𝑡)𝑡

𝛼  = 𝑥1𝑥2 −
8

3
𝑥3  

 

 

 The above system can be represented as a fractional order impulsive control as follows  

                                  𝐷𝑡0
𝐶  𝑥(𝑡)𝑡

𝛼  = A x(t) + B f(x(t)) ; t = 𝑡𝑘 , t ≥ 𝑡0 

                                       x(𝑡𝑘⁺)  = C x(𝑡𝑘 ⁻) ; t = 𝑡𝑘 
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                                         x(𝑡0)  =   𝑥0 𝜖 ℝ3                                                                (7) 

 

 where 0 < 𝛼 < 1,𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))𝜖 ℝ3, and  

                                      A = [

−10 10 0
−28 −1 0

0 0
8

3

] ,  f(x(t)) = [
0

−𝑥1𝑥3

𝑥1𝑥2

]  , 

                                 

                                     B = [
1 0 0
0 1 0
0 0 1

] ,    C = [
0.3 0 0
0 0.2 0
0 0 0.1

] 

Note that, the initial conditions are chosen as 𝑥0 =  [0.1 0.1 0.1]𝑇 . By using Theorem 3.1, we found that 

the matrix inequality conditions are satisfied with Lipschitz constant L= 0.5, 𝜖 = 0.01, µk = 0.5, γ = 0.01 and 

we get 

                         P = [
0.0697 0.0221 0
0.0221 0.1855 0

0 0 0.1263
]  

 

Therefore, the systems (7) achieves exponential stability and similarly achieve exponential synchronization 

by Theorem 3.2. 

5. Conclusion 

In this paper, we have obtained exponential stability and exponential synchronization results for nonlinear 

fractional order impulsive differential equations. By using the convex Lyapunov function and matrix 

inequality approach we achieved the desired conditions for given system 

References  

1. Pu, Yifei, et al. “A recursive two-circuits series analog fractance circuit for any order fractional 
calculus”. ICO20:  Optical Information Processing. Vol. 6027. International Society for Optics and 
Photonics, 2006. 

2. Magin, R. L., and M. Ovadia.”Modeling the cardiac tissue electrode interface using fractional 
calculus.” Journal of Vibration and Control 14.9-10 (2008): 1431-1442. 

3. Pooseh, Shakoor, Helena Sofia Rodrigues, and Delfim FM Torres. ”Fractional derivatives in 
dengue epidemics.” AIP Conference Proceedings. Vol. 1389. No. 1. American Institute of Physics, 
2011.  

4. Tenreiro Machado, J. A., et al. ”Some applications of fractional calculus in engineering.” 

5. Mathematical problems in engineering 2010 (2010). 

6. Hilfer, Rudolf, ed. ”Applications of fractional calculus in physics.” World scientific, 2000 

7. Mainardi, Francesco. ”Fractional calculus.” Fractals and fractional calculus in continuum me- 
chanics. Springer, Vienna, 1997. 291-348. 

8. Zhang, Qunjiao, and Jun-an Lu. ”Chaos synchronization of a new chaotic system via nonlinear 
control.” Chaos, Solitons and Fractals 37.1 (2008): 175-179. 

9. Yang, Tao, and Leon O. Chua. ”Impulsive control and synchronization of nonlinear dynamical 
systems and application to secure communication.” International Journal of Bifurcation and Chaos 7.03 
(1997): 645-664. 



Turkish Journal of Computer and Mathematics Education                                Vol.12.No.12(2021)4680-4688   

 

 

 4335 

 

 

Research Article  

10. Chen, Weisheng, et al.”Convex Lyapunov functions for stability analysis of fractional order 
systems.” IET Control Theory and Applications 11.7 (2017): 1070-1074. 

11. Craiem, D. O., et al. ”Fractional calculus applied to model arterial viscoelasticity.” Latin 
American applied research 38.2 (2008): 141-145. 

12. Li, Xiaodi, and Shiji Song. ”Impulsive control for existence, uniqueness,  and global stability 
of periodic solutions of recurrent neural networks with discrete and continuously distributed delays.” 
IEEE Transactions on neural networks and learning systems 24.6 (2013): 868-877. 

13. Wang,  Limin,  Lansun Chen,  and Juan J. Nieto. ”The dynamics of an epidemic model for pest 
control with impulsive effect.” Nonlinear Analysis: Real World Applications 11.3 (2010): 1374-
1386. 

14. Sun, Jitao, Fei Qiao, and Qidi Wu. ”Impulsive control of a financial model.” Physics Letters 
A 335.4 (2005): 282-288. 

15. Stamova, Ivanka, and Gani Stamov. ”Functional and impulsive differential equations of frac- 
tional order: qualitative analysis and applications.” CRC Press, 2017. 

16. Mahmoud, Gamal M., Mansour E. Ahmed, and Tarek M. Abed-Elhameed. ”Active control 
technique of fractional-order chaotic complex systems.” The European Physical Journal Plus 131.6 
(2016): 1-11. 

17. Zhang, Shuo, Yongguang Yu, and Junzhi Yu. textit”LMI conditions for global stability of 
fractional-order neural networks.” IEEE transactions on neural networks and learning systems 28.10 
(2016): 2423-2433. 

18. Li, Tianzeng, Yu Wang, and Yong Yang. ”Synchronization of fractional-order hyperchaotic 
systems via fractional-order controllers.” Discrete Dynamics in Nature and Society 2014 (2014). 

19. Wu, Yan-Ping, and Guo-Dong Wang. ”Synchronization between fractional-order and integer- order 
hyperchaotic systems via sliding mode controller.” Journal of Applied Mathematics 2013  (2013). 

20. Ding, Yongsheng, Zidong Wang, and Haiping Ye. ”Optimal control of a fractional-order HIV- 
immune system with memory.” IEEE Transactions on Control Systems Technology 20.3 (2011): 763-
769. 

21. Liu, Bin, et al. ”Review of some control theory results on uniform stability of impulsive systems.” 
Mathematics 7.12 (2019): 1186. 

22. Yang, Shuai, et al. ”Exponential stability of fractional-order impulsive control systems with 
applications in synchronization.” IEEE transactions on cybernetics 50.7 (2019): 3157-3168. 

23. L. Chen, Y. Chai, R. Wu, J. Yang, Stability and stabilization of a class of nonlinear fractional- 
order systems with caputo derivative, IEEE. Transactions on Circuits and Systems II: Express 
Briefs 59 (9) (2012) 602606. 

24. J. G. Lu, Chaotic dynamics of the fractional-order l system and its synchronization, Physics 
Letters A 354 (4) (2006) 305311. 

25. T. Li, Y. Wang, Stability of a class of fractional-order nonlinear systems, Discrete Dynamics 
in Nature and Society 

26. Moze, Mathieu, Jocelyn Sabatier, and Alain Oustaloup. LMI tools for stability analysis of 
fractional systems. International Design Engineering Technical Conferences  and  Computers and 
Information in Engineering Conference.Vol. 47438. 2005. 

27. Moze, Mathieu, Jocelyn Sabatier, and Alain Oustaloup. LMI characterization of fractional 
systems stability. Advances in Fractional Calculus.Springer, Dordrecht, 2007.419-434. 



Turkish Journal of Computer and Mathematics Education                                Vol.12 No.13 (2021), 4328-4336    
 

4336 

 

 

 

Research Article  

28. Wei, Yiheng, et al. General output feedback stabilization for fractional order systems: an LMI 
approach. Abstract and Applied Analysis.Vol.2014.Hindawi, 2014. 

29. Faieghi, Mohammadreza, et al. LMI-based stabilization of a class of fractional-order chaotic 
systems. Nonlinear Dynamics 72.1 (2013):301-309. 

30. Danca, Marius-F., Michal Fekan, and Guanrong Chen.Impulsive stabilization of chaos in 
fractional-order systems. Nonlinear Dynamics 89.3 (2017): 1889-1903. 

31. Li, Dong, and Xingpeng Zhang. Impulsive synchronization of fractional order chaotic systems with 
time-delay. Neurocomputing 216 (2016): 39-44 
 

 


