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 Abstract:  In this paper a new wavelet formula is derived based on the definition of the convolution between 

the Haar and CAS wavelets, while finding the integrals of the proposed formula analytically. An outline of the 

proposed method is written with the collocation points for solving partial differential equations. From the 
comparison of the numerical results of the proposed methods with the exact solution to solve three problems, we 

concluded that the suggested method is more accurate, better, and nearer to an exact solution.  
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 INTRODUCTION 
Wavelet analysis is a new numerical concept that allows one to represent a function in terms of basic 

functions, called wavelets, that are identified in space. Wavelets were introduced relatively recently in the early 
1980s. It has attracted great interest from the mathematical community and from members of many disciplines 

in which wavelets have had promising applications. Among the results of this interest is the emergence of many 

books on this topic and a large amount of research articles [11]. 

Wavelet decomposition analysis is most often used in the processing of the wavelet signal. It is  utilized in 

sign compression in addition to in sign identification. The transform of wavelet to a function, such as the Fourier 

transform, is an effective tool for studying additives of stationary phenomena. However, the wavelet transform 

has the advantage of being able to analyze unstable phenomena where the Fourier transform fails [14, 15, 3].  

 When the expansion parameter a and the translation parameter b change continuously, we have the 

following set of continuous wavelets: 

Ψa,b (t) =  |a|
−1
2 Ψ(

t − b

a
) . a, b ∈ R, a ≠ 0                                                                     (1) 

 If we restrict the parameters a and b to discrete values which are  

𝑎 =  𝑎0
−𝑘 , 𝑏 = 𝑛𝑏0 𝑎0

−𝑘 , 𝑎0 > 1, 𝑏0  > 0 

Where n and k are positive integers, Then we have the next family of separate wavelets 

𝛹𝑘,𝑛 (𝑡) =  |𝑎0|
𝑘
2  𝛹 (𝑎0 

𝑘  𝑡 − 𝑛 𝑏0)                                                                                                       (2) 
Where 𝛹𝑘,𝑛 (𝑡) is a basis of wavelet for 𝐿2(𝑅 ). In particular, when  

 𝑎0 = 2, 𝑏0 = 1, 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚  𝛹𝑘,𝑛 (𝑡) is an orthonormal basis [2] 

 In recent years, the wavelet method has become more and more popular in the field of numerical methods. 

Various wavelet types and approximate functions were used for this. 

 Siddu C. S. and Lata are Solved the Stochastic integral equations by using Haar wavelet and CAS wavelet 

schemes and generated the operational matrix of integration of these wavelets [19,17]. where In [18] Siddu C. S. 

and R. A. M. are introduced wavelet full-approximation scheme to solve nonlinear Voltera-Frodholm integral 

equations and obtained good accuracy numerical results. CAS wavelet function method are solve nonlinear 

fractional order Volterra integral equation in [6], general two-dimensional PDEs of higher order in [8], Haar 
wavelet method are solved three dimensional and time depending PDEs in [10], nonlinear two – dimensional 

BBM-BBM system are solved and obtained the accuracy of numerical solutions is very high even if the number 

of calculated points is small in [7], and an operational matrix of integrations based on the Haar wavelet method 

is applied for finding the numerical solutions of non-linear third –order boussinesq system in [9].  

 The paper is organized in the following structure. In section 2, Haar wavelets and their integrals are 

reported. CAS wavelets with their integrals are introduced in section 3. In section 4, new convolution wavelet 

are derived and their integrals. The steps of proposed method for solving PDEs is performed in section 5. Then 

in section 6 some numerical examples are given and solved. Finally, conclusion of numerical results is presented 

and future research are offered.  

2. Haar wavelets and the integrals  

 The Haar wavelets family for 𝑥 ∈ [0,1) is defined as follows [ 4,5,12 ] 
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ℎ𝑖(𝑥) = {
1    𝑓𝑜𝑟 𝑥 ∈ [𝜉1(𝑖), 𝜉2(𝑖) )      

−1      𝑓𝑜𝑟 𝑥 ∈ [𝜉2(𝑖), 𝜉3(𝑖) )       
0         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                         

                                                                                     (3) 

 where  

𝜉1(𝑖) =  
𝑘 

2𝑗
, 𝜉2(𝑖) =

𝑘+0.5 

2𝑗
, 𝜉3(𝑖) =  

𝑘+1 

2𝑗
                                                                                      (4) 

 The interval [ 0,1 ) is participated into 2M subintervals of equal length, the length of each subinterval is 

∆𝑥 = 1/(2𝑀). Integer j = 0,1,2,…., J, indicates the wavelet plane ; 

k= 0,1,2,…., 2 j -1 is the translation Parameter. The maximal accuracy level is J. The formula of index i is 
calculated from i= 2 j +k+1. Within the case of smallest values 2 j =1, k=0, we’ve got i=2, and i= 2M = 2J+1 is the 

greatest value of i. It is assumed that for i=1 the scaling function is h1(x)=1 in [0,1). 

The collocation points are:  

𝑥𝑙 = (𝑙 −
1

2
) ∆𝑥, 𝑙 = 1,2,… , 2𝑀                                                                                              (5)  

It is convenient to introduce the Haar matrices 𝐻(𝑖, 𝑙 ) = ℎ𝑖(𝑥𝑙) which has the dimension 2M*2M.  

We find the integrals for the Haar wavelets defined in equation (3) analytically, and these integrals in turn 

can be used in the numerical solution of higher order differential equations. We'll use these integrals to compute 

the numerical solution of one- dimensional linear system. If we integrate equation (3) from (0) to (x), we obtain 

the operational matrix of integration p, 

𝑝𝑖,1 (𝑥) =  ∫ ℎ𝑖 (𝑥
′)𝑑𝑥′

𝑥

0

 

𝑝𝑖,1 (𝑥) = {
𝑥 − 𝜉1(𝑖)                        , 𝑥 ∈ [𝜉1(𝑖), 𝜉2(𝑖) ),

2 𝜉2(𝑖) − 𝑥 − 𝜉1(𝑖)         , 𝑥 ∈ [𝜉2(𝑖), 𝜉3(𝑖) )

0                                                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

                                                      (6 ) 

𝑝𝑖,2 (𝑥) =

{
  
 

 
 
 
(𝑥 − 𝜉1(𝑖))

2 

2
                             , 𝑥 ∈ [𝜉1(𝑖), 𝜉2(𝑖) )                                                      

1

4𝑚2
−
( 𝜉3(𝑖)−𝑥)

2 

2
           , 𝑥 ∈ [𝜉2(𝑖), 𝜉3(𝑖) )                                                      (7)

1

4𝑚2
                                     , 𝑥 ∈ [𝜉3(𝑖), 1 )                                                                   

0                                          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                                          

 

In general  

𝑝𝑖,𝑣+1 (𝑥) =  ∫ 𝑝𝑖,𝑣 (𝑥
′)𝑑𝑥′ , 𝑣 = 1, 2,….                                                                              ( 8 )

𝑥

0

 

 The general from of v- times of integrals [13]  

𝑝𝑖,𝑣 (𝑥)  =  

{
 
 
 

  
 

0                           , 𝑓𝑜𝑟 𝑥 <  𝜉1(𝑖)                                                                                             
1

𝑣!
 [ 𝑥 − 𝜉1(𝑖)]

 𝑣                         , 𝑓𝑜𝑟 𝑥 ∈ [𝜉1(𝑖), 𝜉2(𝑖) )                                                             

1

𝑣!
 {[ 𝑥 − 𝜉1(𝑖)]

 𝑣 − 2[𝑥 − 𝜉2(𝑖)]
 𝑣 }                    , 𝑓𝑜𝑟 𝑥 ∈ [𝜉2(𝑖), 𝜉3(𝑖))                       (9)

1

𝑣!
 {[ 𝑥 − 𝜉1(𝑖)]

 𝑣 − 2[𝑥 − 𝜉2(𝑖)]
 𝑣 + [𝑥 − 𝜉3(𝑖) ] 

𝑣 }            , 𝑓𝑜𝑟 𝑥 > 𝜉3(𝑖)                   

 

 and In the case 𝑖 = 1, we have 𝜉1 = 0, 𝜉2 = 𝜉3 = 1 These formulas hold for 𝑖 > 1 ;  

 𝑝1,𝑣 (𝑥) =  
1

𝑣!
 (𝑥) 𝑣 , ∀ 𝑥 ∈  [0, 1]                                                                                                                           (10)  

  

3. CAS Wavelets and the integrals  

 In this section, we give some essential definitions and mathematical preliminaries of Cosine and Sine (CAS) 

wavelets, and we introduce function approximation via CAS wavelets and block pulse function. 

CAS wavelet 𝛹𝑛,𝑚 (𝑥) =  𝛹(𝑘, ň, 𝑚, 𝑥 ) have four arguments ; 𝑛 = 0,1,2,… . . , 2𝑘 − 1, k  

can assume any positive integer, m is any integer, and x is the normalized time. 

 The orthonormal CAS wavelets are defined on the interval [ 0, 1) by [16]:  

𝛹𝑛,𝑚 (𝑥) =  {
2
𝑘
2  𝐶𝐴𝑆𝑚 ( 2

𝑘  𝑥 − 𝑛 )              , 𝑓𝑜𝑟 
𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
 

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

                                                          (11) 

 Where  

 𝐶𝐴𝑆𝑚(𝑥) = cos(2𝑚𝜋𝑥) + sin(2𝑚𝜋𝑥),                                                                                                              (12)  
 and 𝑚 ∈ { −𝑀,−𝑀 + 1… ,𝑀 }. The CAS wavelets are orthonormal with appreciate to the weight function 

w(x)=1.  
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 Now, We integrate the CAS wavelets in equation ( 11 ) analytically. The CAS Wavelets described in 

phrases of trigonometric functions whose integration is periodical. A general form for n of the integrals to these 

wavelets can be computed.  

 If we integrate equation (11) from (0) to (x), we obtain 

 𝑃2𝑘(2𝑀+1),1 (𝑥) =  ∫𝛹𝑛,𝑚 
𝐶𝐴𝑆(𝑥′)𝑑𝑥′

𝑥

0

 

𝑃2𝑘(2𝑀+1),1 (𝑥) =

{
 
 
 

 
 
 0                                                          , 0 ≤ 𝑥 <

𝑛

2𝑘
                                                                         

{
2
𝑘
2

1

2𝑘+1𝜋𝑚
[sin(2𝜋𝑚(2𝑘𝑥 − 𝑛)) − cos(2𝜋𝑚(2𝑘𝑥 − 𝑛))]                                                 

−2
𝑘
2

−1

2𝑘+1𝜋𝑚
                              ,

𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
                                                              (13) 

2
𝑘
2

1

2𝑘+1𝜋𝑚
[sin(2𝜋𝑚) − cos(2𝜋𝑚)] − 2

𝑘
2

−1

2𝑘+1𝜋𝑚
                      ,

𝑛 + 1

2𝑘
≤ 𝑥 < 1               

 

 𝑃2𝑘(2𝑀+1),2 (𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 0                                                                     , 0 ≤ 𝑥 <

𝑛

2𝑘
                                                                      

{
 
 

 
 2

𝑘
2

(−1)

(2𝑘+1𝜋𝑚)𝟐
[cos(2𝜋𝑚(2𝑘𝑥 − 𝑛)) + sin(2𝜋𝑚(2𝑘𝑥 − 𝑛))]                                           

−[2
𝑘
2

(−1)

(2𝑘+1𝜋𝑚)𝟐
+2

𝑘
2

(−1)

(2𝑘+1𝜋𝑚)
(𝑥 −

𝑛

2𝑘
)]                ,

𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
                               

                                                                                                                                                          (14) 

{
 
 

 
 [1 + (𝑥 −

𝑛 + 1

2𝑘
)] [[2

𝑘
2

(−1)

(2𝑘+1𝜋𝑚)𝟐
(cos(2𝜋𝑚) + sin(2𝜋𝑚))]                                                

−(2
𝑘
2

(−1)

(2𝑘+1𝜋𝑚)𝟐
+ 2

𝑘
2

(−1)

(2𝑘+1𝜋𝑚)
(
1

2𝑘
))]                                ,

𝑛 + 1

2𝑘
≤ 𝑥 < 1                       

 

 

Repeating the integration v times, we find [8]  

𝑃𝑖,𝑣(𝑥) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 0                                                , 0 ≤ 𝑥 <

𝑛

2𝑘
                                                                                              

{
 
 
 

 
 
 2

𝑘
2

(−1)𝑐𝑣

(2𝑘+1𝜋𝑚)𝒗
cos(2𝜋𝑚(2𝑘𝑥 − 𝑛))                                                                                                         

+2
𝑘
2

(−1)𝑑𝑣

(2𝑘+1𝜋𝑚)𝒗
sin(2𝜋𝑚(2𝑘𝑥 − 𝑛))                                                                                                        

− ∑ 2
𝑘
2
1

𝑗𝑗 !

(−1)𝑐𝑣

(2𝑘+1𝜋𝑚)𝒗−𝒋𝒋
(𝑥 −

𝑛

2𝑘
)
𝑗𝑗

                        ,
𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
                                 (15)

 

𝑣−1

𝑗𝑗=0

{
 
 

 
 ∑

1

𝑗 !
(𝑥 −

𝑛 + 1

2𝑘
)𝑗 .                                                     

𝑛 + 1

2𝑘
≤ 𝑥 < 1                                                  

𝑣−1

𝑗𝑗=0

. ((2
𝑘
2

(−1)𝑐𝑣

(2𝑘+1𝜋𝑚)𝒗
cos(2𝜋𝑚) + 2

𝑘
2

(−1)𝑑𝑣

(2𝑘+1𝜋𝑚)𝒗
sin(2𝜋𝑚) − ∑ 2

𝑘
2
1

𝑗𝑗 !

(−1)𝑐𝑣

(2𝑘+1𝜋𝑚)𝒗−𝒋𝒋
(
1

2𝑘
)𝑗𝑗),

𝑣−1

𝑗𝑗=0

 

 where  

𝑐𝑣 = {
0 𝑖𝑓 𝑣 = 3,4,7,8,11,12,…… .
1 𝑖𝑓 𝑣 = 1,2,5,6,9,10,…… . .

  

 and  

 𝑑𝑣 = {
0 𝑖𝑓 𝑣 = 1,4,5,8,9,12,…… .
1 𝑖𝑓 𝑣 = 2,3,6,7,10,11,…… . .

 

 

 

4. New wavelet with the integrals  

Definition:[1]  

Let f and g be two functions defined on R. Then the convolution of f and g is defined by the symbol ℎ = 𝑓 ∗

𝑔 by 𝑓 ∗ 𝑔 (𝑥) = ∫ 𝑓(𝑡) 𝑔(𝑥 − 𝑡)𝑑𝑡
𝑅

 whenever the integration is logical. 

The following theorem presents a technique for establishing a new wavelet from a given one.  

Theorem:-[1] 

If 𝛹 is a wavelet and 𝜑 is bounded integrate function, then the convolution function 𝛹 ∗  𝜑 is also a wavelet . 
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Now, we derive a new wavelet formula which obtain from the convolution between the two wavelets, Haar 

and CAS wavelets where CAS wavelets are defined in terms of trigonometric functions whose integration is 

periodical and bounded. 

Let 𝛹𝑛,𝑚 = 𝐶𝐴𝑆 𝑤𝑎𝑣𝑒𝑙𝑒𝑡, 𝑎𝑛𝑑 𝐻𝑖 = 𝐻𝑎𝑎𝑟 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 since the convolution is Commutative we have 

𝑊𝑛,𝑚
𝑁𝑒𝑤(𝑥) = (𝛹𝑛,𝑚 ∗ 𝐻𝑖 )(𝑥) = ∫𝛹𝑛,𝑚 (𝑡).

𝑥

0

𝐻𝑖 (𝑥 − 𝑡)𝑑𝑡                                                                  (16) 

𝑊𝑛,𝑚
𝑁𝑒𝑤(𝑥) =

{
 
 

 
 

{
 
 

 
 2

−𝑘
2
−1

𝜋 𝑚
[cos(2𝑚𝜋(2𝑘𝑥 − 𝑛)) − sin(2𝑚𝜋(2𝑘𝑥 − 𝑛)) + 2 sin(𝑚𝜋)

−2 cos(𝑚𝜋) + 1 ]                                   ,
𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
                     

 

0                                     , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                               

                       (17) 

Where 𝑚 ∈ {−𝑀,−𝑀 + 1,… ,𝑀} 
Any function 𝑓(𝑥) ∈ 𝐿2[0,1) may be expanded using 𝑊𝑛,𝑚

𝑁𝑒𝑤 wavelets as :  

 𝑓(𝑥) =  ∑∑𝐶𝑛,𝑚 𝑊𝑛,𝑚
𝑁𝑒𝑤(𝑥),

𝑚∈𝑧

∞

𝑛=1

                                                                                                            (18) 

𝐶𝑛,𝑚 = < 𝑓(𝑡),𝑊𝑛,𝑚
𝑁𝑒𝑤 >. Where 

 If the infinite series in equation (18) is truncated, then equation (18) can be written as  

𝑓(𝑥) =  ∑  ∑ 𝐶𝑛,𝑚 𝑊𝑛,𝑚
𝑁𝑒𝑤(𝑥)

𝑀

𝑚=−𝑀

2𝑘−1

𝑛=0

= 𝐶𝑇  𝑊𝑛,𝑚
𝑁𝑒𝑤(x),                                                                           (19) 

 where C and 𝑊𝑛,𝑚
𝑁𝑒𝑤 are 2𝑘  (2𝑀 + 1) × 1 matrices given by  

𝐶 = ⌊𝑐0,(−𝑀), 𝑐0,(−𝑀+1), … . . , 𝑐0,𝑀 , 𝑐1,(−𝑀),… , 𝑐1,(𝑀), 𝑐2𝐾−1,(−𝑀),…… , 𝑐2𝐾−1,(𝑀) ⌋
𝑇
                                         (20)  

 𝑊𝑛,𝑚
𝑁𝑒𝑤(𝑥) = ⌊𝑊0,(−𝑀)(𝑥),𝑊0,(−𝑀+1)(𝑥), . . ,𝑊0,𝑀(𝑥),𝑊1,(−𝑀)(𝑥), . . ,𝑊2𝐾−1,(−𝑀)(𝑥), . . ,𝑊2𝐾−1,𝑀(𝑥)⌋

𝑇
  (21) 

 For convenience, in numerical solution, we rewrite equation (19) as follows:  

 Let 𝑖 = 𝑛(2𝑀 + 1) −𝑀 +𝑚, then                                                                                                        

 𝑓(𝑥) = ∑ 𝐶𝑖  𝑊2𝑘(2𝑀+1),𝑖
𝑁𝑒𝑤 (𝑥),

2𝑘(2𝑀+1)

𝑖=1

                                                                                                                      (22) 

 
 Now, If we want to solve a second order PDE we need the two integrals, If we integrate equation (17) from 

(0) to (x), we obtain New operational matrix (NP). 

 

 𝑁𝑃2𝑘(2𝑀+1),1 (𝑥) =  ∫(𝛹𝑛,𝑚 ∗ 𝐻𝑖 )(𝑥
′)𝑑𝑥′

𝑥

0

  

Then  

 𝑁𝑃2𝑘(2𝑀+1),1 (𝑥) = 

=

{
 
 
 
 
 

 
 
 
 
 0                                                                           , 0 ≤ 𝑥 <

𝑛

2𝑘
                                                                                       

{
 
 

 
 

 

2
−3𝑘
2
−2

𝜋2𝑚2
[sin(2𝑚𝜋(2𝑘𝑥 − 𝑛)) − 4𝜋𝑚(2𝑘𝑥 − 𝑛) 𝑐𝑜𝑠(𝜋𝑚)                                                                              

+ cos(2𝑚𝜋(2𝑘𝑥 − 𝑛)) + 2𝑚𝜋( 2𝑘𝑥 − 𝑛) + 4𝜋𝑚 (2𝑘𝑥 − 𝑛) sin(𝜋𝑚) − 1]        ,
𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
     

 

 

{
 
 

 
 2

−3𝑘
2
−2

𝜋 2𝑚2
[sin(2𝜋𝑚) − 4𝜋𝑚 cos(𝜋𝑚)                                                                                                              (23) 

+ cos(2𝜋𝑚) + 4𝜋𝑚 sin(𝜋𝑚) + 2𝜋𝑚 − 1]                                                   ,
𝑛 + 1

2𝑘
≤ 𝑥 < 1                          
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 𝑁𝑃2𝑘(2𝑀+1),2 (𝑥) =

=

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 0                                                                                                   , 0 ≤ 𝑥 <

𝑛

2𝑘
                                                                    

{
 
 
 
 

 
 
 
 

 

2
−5𝑘
2
−3

𝜋3𝑚3
[sin(2𝜋𝑚(2𝑘𝑥 − 𝑛)) − cos(2𝜋𝑚(2𝑘𝑥 − 𝑛)) + 2−𝑘(2𝑘𝑥 − 2𝑛) 𝑥𝑠𝑖𝑛(𝑚𝜋)                                             

−2−𝑘(2𝑘𝑥 − 2𝑛)𝑥𝑐𝑜𝑠(𝑚𝜋) +
𝑥2

2
−
𝑛𝑥

2𝑘
−

𝑥

𝑚𝜋2𝑘+1
]  − 

2
−5𝑘
2
−3

𝜋3𝑚3
[−1 − (

𝑛

2𝑘
)2𝑠𝑖𝑛(𝑚𝜋)                                       

 

+( 
𝑛

2𝑘
)2𝑐𝑜𝑠(𝑚𝜋) −

𝑛2

22𝑘+1
−

𝑛

𝑚𝜋2𝑘+1
]                                                     ,

𝑛

2𝑘
≤ 𝑥 <

𝑛 + 1

2𝑘
                                        

 

 

{
 
 
 
 

 
 
 
 2

−5𝑘
2
−2

𝜋2𝑚2
[𝑠𝑖𝑛(2𝜋𝑚) + 𝑐𝑜𝑠(2𝜋𝑚) + 4𝜋𝑚𝑠𝑖𝑛(𝜋𝑚) − 4𝜋𝑚𝑠𝑖𝑛(𝜋𝑚) + 2𝜋𝑚 − 1]                                 (24) 

+ 
2
−5𝑘
2
−3

𝜋3𝑚3
[𝑠𝑖𝑛(2𝜋𝑚) − 𝑐𝑜𝑠(2𝜋𝑚) +

1 − 2𝑛2

22𝑘
𝑐𝑜𝑠(𝜋𝑚) +

1

22𝑘+1
−

1

𝑚𝜋22𝑘+1
 ]                                                     

 
 

− 
2
−5𝑘
2
−3

𝜋3𝑚3
 [−1 − (

𝑛

2𝑘
)2𝑠𝑖𝑛(𝑚𝜋)]                                                                 ,

𝑛 + 1

2𝑘
≤ 𝑥 < 1                                       

 

 

5. The suggestion algorithm  

     We solve partial differential equation using new wavelet method. 

The general form for PDE is  

𝐹(𝑥 , 𝑡, 𝑢, 𝐷𝑢,𝐷
2𝑢, … ,𝐷𝜇+𝛾𝑢) = 𝑓(𝑥 , 𝑡),                                 

                                                    𝐷𝜇+𝛾𝑢 =
𝜕(𝜇+𝛾)𝑢(𝑥 ,𝑡)

𝜕𝑡𝜇𝜕𝑥 
𝛾 ,                                                                                                     (25)  

Where  𝑓(𝑥, 𝑡) is known function  

We intend to do 𝐽 levels of resolutions, hence we let 2𝑀 = 2𝐽+1. The interval [𝑎, 𝑏] will be divided into 2𝑀 

subintervals as a result ∆𝑥 =
𝑏−𝑎

2𝑀
 and the matrices are of dimensions 2𝑀 × 2𝑀. 

  

This new procedure is given in the following six steps.  

  

Step(1): In the differential equation(25),Expand the derivative in its wavelet series.  

𝜕(𝜇+𝛾)𝑢(𝑥∗ , 𝑡)

𝜕𝑡𝜇𝜕𝑥∗ 
𝛾 = ∑ 𝑎𝑖

𝑚−1

𝑖=0

𝑤𝑖
𝑛𝑒𝑤(𝑥)                                                                                                                                      (26) 

𝑎𝑖   are the wavelet coefficients . 

Step (2):Integrate the expansion in step (1) repeatedly to t from (𝑡𝑠)𝑡𝑜 (𝑡), and x from (0)𝑡𝑜 (𝑥), we obtain 

𝑢(𝑥, 𝑡) =
(𝑡 − 𝑡𝑠)

𝜇

(𝜇)!
∑ 𝑎𝑖 𝑝 𝛾,𝑖

𝑛𝑒𝑤(𝑥) + 𝜗(𝑥, 𝑡)   ,            

𝑚−1

𝑖=0

                                                                  (27) 

𝜗(𝑥, 𝑡) is calculated from the initial and boundary conditions         

 
Step (3): Substitute the expansion of the solution and its derivatives obtained in step(2) in to the equation (25) 

we get 

∑ 𝑎𝑖 [𝑤𝑖
𝑛𝑒𝑤(𝑥𝑙) + 

 𝑚−1

𝑖=0

𝛿1(𝑥𝑙)𝑝1,𝑖 
𝑛𝑒𝑤(𝑥𝑙) + 𝛿2(𝑥𝑙)𝑝 2,𝑖

𝑛𝑒𝑤(𝑥𝑙) = R(X)                                                           (28) 

where R(X)  = 𝑓(𝑥𝑙) − 𝛿1(𝑥𝑙)𝛾 − 𝛿2(𝑥𝑙)[𝑥𝑙γ− ϑ]                                                                                     (29) 
Step(4): replace 𝑢(𝑥, 𝑡)  and all its derivatives in relation to  t  and  x  into  the problem  .  

to the collocation points  𝑥𝑙 =
𝑙−0.5

𝑚
, 𝑙 = 1,2,… ,2𝑚.   And also to the collocation points  𝑡𝑠 =

(𝑠−1)

𝑁
, s = 1,2,… , N 

 for a given resolution M,where M =
𝑚

2
,and get 

 a system of linear equation. 

 ∑ 𝑎𝑖 [𝑤𝑖(𝑥𝑙) + 

 𝑚−1

𝑖=0

𝛿1(𝑥𝑙)𝑝1,𝑖 (𝑥𝑙) + 𝛿2(𝑥𝑙)𝑝2,𝑖 (𝑥𝑙) = 𝑓(𝑥𝑙) − 𝛿1(𝑥𝑙)𝛾 − 𝛿2(𝑥𝑙)[𝑥𝑙γ− ϑ(𝑥, 𝑡)]                      (30) 

Step(5): Solve the system of algebraic equations obtained in step (4), for the coefficients of  
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wavelet 𝑎𝑖. 
Step(6): Evaluate the numerical solution for 𝑢(𝑥, 𝑡)   by using the coefficients 𝑎𝑖  in the wavelet series 

expansion of the solution .  

 

6. Numerical Experiments  

 To show the efficiency of the proposed method, we will apply Haar and CAS wavelet method with the new 

wavelet method to obtain the approximate solution of the following examples. All of the computations have 

been performed using MATLAB .  

Example(1): Consider the one-dimensional diffusion equation  .  

   𝒖𝒕 = 𝒖𝒙𝒙      ,  𝑥 ∈ [0,1)    , 𝑡 > 0   

With the initial  condition  𝑢(𝑥, 0) = sin(𝜋𝑥)    ,  
and the boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 , 𝑡 > 0   

The exact solution is    𝒖(𝒙, 𝒕) = 𝐞−𝝅
𝟐𝒕𝒔𝒊𝒏 (𝝅𝒙)  

Results obtained using Haar, CAS wavelets and new wavelet methods are compared in table (1) for the 

amplitude of the matrix is m=16.  

Table (1 ): Shows the approximate solution with the exact solution using a Haar, CAS wavelets and new wavelet 
for m = 16   ,  at  t = 0.001   of example (1) 

Exact solution New wavelet  CAS wavelet  Haar wavelet  (x/32) 

0.09705451 

0.28743377 

0.46676712 

0.62816287 
0.76541867 

0.87325986 

0.94754217 

0.98541096 

0.98541096 

0.94754217 

0.87325986 

0.76541867 

0.62816287 

0.46676712 

0.28743377 
0.09705451 

0.09771317 

 0.28837030 

 0.46781865 

 0.62924357 
 0.76650463 

 0.87437159 

 0.94869376 

 0.98658395 

 0.98657215 

 0.94867097 

 0.87436777 

 0.76653906 

 0.62930775 

 0.46791909 

 0.28857339 
 0.09818162 

0.09770275 

0.28830811 

0.46772453 

0.62915494 
0.76642851 

0.87428093 

0.94857124 

0.98644582 

0.98644965 

0.94858281 

0.87430060 

0.76645776 

0.62919868 

0.46779825 

0.28845907 
0.09807644 

0.09780735 

0.28859259 

0.46797801 

0.62938789 
0.76665295 

0.87450334 

0.94881016 

0.98686352 

0.98754979 

0.94986189 

0.87559688 

0.76775438 

0.63049408 

0.46909272 

0.28975516 
0.09939298 
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Figure (1): Compared the numerical solutions with the exact solution of example (1) at  t = 0.001 

 

From table (1) and Figure (1), we see that the solution of suggestion wavelet is better and nearer to the exact 

solution. 

Example (2): Consider the wave equation  .  

  

𝒖𝒕𝒕 = 𝒂
𝟐 𝒖𝒙𝒙      , 𝟎 < 𝒙 < 𝟏   , 𝒕 > 𝟎                      

With the initial  conditions  𝑢(𝑥, 0) = 𝑢0  sin(𝜋𝑥) , 𝑢𝑡(𝑥, 0) = 0 ,0 < 𝑥 < 1       ,  
and the boundary conditions    𝑢(0, 𝑡) = 0  ,   𝑢(1, 𝑡) = 0       , 𝑡 > 0    

The exact solution is  

𝒖(𝒙, 𝒕) = 𝒖𝟎  𝒄𝒐𝒔 (𝝅𝒂𝒕) . 𝒔𝒊𝒏 (𝝅𝒙)  
Also we use Haar, CAS and new wavelets method to obtain the results which are in table (2) and we plotted Fig 

(2) to illustrate the numerical and exact solutions for the amplitude of the matrix m=16.  

 

Table (2 ): shows the approximate solution with the exact solution using a Haar, CAS wavelets and new 

wavelet for m = 16 ,  at  t = 0.02   of example (2) 

Exact solution New wavelet  CAS wavelet  Haar wavelet  (x/32) 

0.09628099  0.07809324  0.07811496  0.07808598  1 

0.28514294 0.26616909 0.26617697 0.26620014 3 

0.46304700 0.44329388 0.44329475 0.44330237 5 

0.62315643 0.60268485 0.60268779 0.60269110 7 

0.75931831 0.73823213 0.73823816 0.73824006 9 
0.86630001 0.84473577 0.84473892 0.84474020 11 

0.93999029 0.91810193 0.91809791 0.91809828 13 

0.97755727 0.95550414 0.95549616 0.95554444 15 

0.97755727 0.95550115 0.95549654 0.95544883 17 

0.93999029 0.91809586 0.91809904 0.91809924 19 

0.86630001 0.84473294 0.84474084 0.84474019 21 

0.75931831 0.73823606 0.73824104 0.73824006 23 

0.62315643 0.60269365 0.60269237 0.60269110 25 

0.46304700 0.44330800 0.44330392 0.44330238 27 

0.28514294 0.26620317 0.26620077 0.26619906 29 

0.09628099 0.07819003 0.07818992 0.07819367 31 

 

 
 

Figure (2): Compared the numerical solutions with the exact solution of example (2) at  t = 0.02    
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Example(3): Consider the one-dimensional wave –like equation  . 

   𝒖𝒕𝒕 −
𝒙𝟐

𝟐
𝒖𝒙𝒙 = 𝟎      , 𝟎 < 𝒙 < 𝟏   , 𝒕 > 𝟎                                                         

with the initial  conditions 𝑢(𝑥, 0) = 𝑥   ,       𝑢 ̇ (𝑥, 0) = 𝑥2    ,  

and the boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 1 + sinh(𝑡)           , 𝑡 > 0   

The exact solution is  

 𝒖(𝒙, 𝒕) = 𝒙 + 𝒙𝟐𝒔𝒊𝒏𝒉 (𝒕)  
 

Results obtained using Haar, CAS and new wavelets method are compared in table (3), and Figure(3) shows the 

numerical solutions plot this example by using presented methods with m=16. 

 

Table (3 ) shows the approximate solution with the exact solution using a Haar, CAS wavelets and new wavelet 

for m = 16,  at  t = 0.02    of example (3) 

Exact solution New wavelet  CAS wavelet  Haar wavelet  (x/32) 

0.03126953 

0.09392579 

0.15673831 

0.21970710 

0.28283214 
0.34611344 

0.40955100 

0.47314482 

0.53689491 

0.60080125 

0.66486386 

0.72908272 

0.79345785 

0.85798923 

0.92267688 

0.98752078 

0.03127924  

 0.09401353 

0.15698223 

 0.22018534 

 0.28362287 
 0.34729481 

 0.41120116 

 0.47534192 

 0.53971710 

 0.60432669 
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Figure (3): Compared the numerical solutions with the exact solution of example (3) at  t = 0.02     

 

 

CONCLUSIONS  

 In this paper, we drive a new wavelet from the convolution between Haar and CAS wavelets. the suggestion 
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and CAS wavelets methods with the exact solution from three examples. Figure 1-3 show the numerical solution 

of new method, Haar, CAS wavelets methods and the exact solution of the PDEs proposed in examples 1-3 

respectively. The obtained results shows that the new technique is better and nearer to the exact solution. In this 

paper only linear problems were solved, but the suggestion method is applicable for nonlinear PDEs. 
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