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Abstract

In this article, We study an existence and uniqueness of solutions for an impulsive fractional
neutral differential equations via Atangana-Baleanu fractional derivative with dependence on the
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An example is given to illustrate the main results.
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1 Introduction

Recently, fractional differential equations involving the Atangana-Baleanu fractional derivative have
been paid more and more attentions like the RiemannLiouville fractional derivative and the Caputo
fractional derivative. Fractional differential equations have applied in numerous fields in the past
few decades such as chemistry, physics, engineering, control theory, aerodynamics, electrodynamics of
complex medium and control of dynamical systems and so on. In consequence, fractional differential
equations is obtaining much significance and attention. For details, we refer readers to [19, 25, 26, 30]

Impulsive fractional differential equations are used to describe many practical dynamical systems
including evolutionary processes characterized by abrupt changes of the state at certain instants.
Nowadays, the theory of impulsive fractional differential equations has received great attention, de-
voted to many applications in mechanical, engineering, medicine, biology, ecology and etc [11-16].
This paper is motivated from some recent papers treating the problem of the existence of solutions
for impulsive differential equations with fractional derivative. By directly computation it is easy to
see that the concepts of piecewise continuous solutions used in many papers are not appropriate.

We investigate the existence and uniqueness of solutions of the Atangana-Baleanu fractional neutral
differential equation in the sense of Caputo to the following abstract form

(ABC
0 Dα)(u(t)− g(t, u(t), u′(t, u(t))) = f(t, u(t), u′(t, u(t))), 1 < α ≤ 2, (1)

u|[−τ∗,0] = u0. (2)

∆u(tk) = u(t+k )− u(t−k )
= I∗ku(t−k ), t ∈ J∗

∗Corresponding author. E-mail: ukarthikraja@yahoo.co.in
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with u(t), (ABC
a Dα)(u − g) ∈ C[0, 1], f(t, u(t),Du(t)) : J × PC1 × J → <n is continuous on

PC1([−τ∗, 0],<n) is the piecewise continuous functions ρ : [−τ∗, 0],<n.

The ut(s) = u(t+s) for −τ∗ ≤ s ≤ 0 where u(t+k ) = limδ→0+ u(uk+δ) and u(t−k ) = limδ→0− u(uk+
δ). I∗ : <n → <n, 0 = t0 < t1 < ....... < tm < tm+1 = T , J∗ = {J − t1, t2, ...., tm : J = [0, 1]}. Consider
Du(t) = u′(t, u(t)). Then (1) becomes

(ABC
0 Dα)(u(t)− g(t, u(t),Du(t)) = f(t, u(t),Du(t)), 1 < α ≤ 2, (3)

u|[−τ∗,0] = u0. (4)

∆u(tk) = I∗ku(t−k ), t ∈ J∗

The rest of this paper is organized as follows: In Section 2, we review some useful properties,
definitions, propositions and lemmas of fractional calculus. The existence and uniqueness of solutions
for AB-fractional neutral derivative results are proved in Section 3. In section 4, we investigte the
fractional derivative with non-local condition. In the final sectionm is devoted to illustrate an example
numerically solved.

2 Preliminaries

In this section, we presents some definitions, lemmas and proposotions of fractonal calculus, which
will be used throughout this paper.

The definition of Riemann-Liouville fractional integral and derivatives are given as follows:

• For α > 0, the left R-L fractional integral of order α is given as [27]

(0Iαu)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds. (5)

• For 0 < α < 1, the left R-L fractional derivative of order α is given as [27]

(0Dαu)(t) =
d

dt

(
1

Γ(1− α)

∫ t

0

(t− s)−αu(s)ds

)
(6)

• For 0 ≤ α ≤ 1, the Caputo fractional derivative of order α is given as [27]

(C
0 Dαu)(t) =

1
Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds. (7)

Definition 2.1 [7] Let u ∈ H1(0, 1) and α in [0,1]. The Caputo Atangana-Baleanu fractional deriva-
tive of u of order α is defined by

(ABC
0 Dαu)(t) =

B(α)
(1− α)

∫ t

0

u′(s)Eα

[
−α

(t− s)α

1− α

]
ds. (8)

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑∞

n=0
zn

Γ(nα+1) [34, 41] and B(α) > 0
is a normalizing function satisfying B(0) = B(1) = 1. The Riemann Atangana-Baleanu fractional
derivative of u of order α is defined by

(ABC
0 Dαu)(t) =

B(α)
1− α

d

dt

∫ t

0

u(s)Eα

[
−α

(t− s)α

1− α

]
ds. (9)
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The associative fractional integral is defined by

(AB
0 Iαu)(t) =

1− α

B(α)
u(t) +

α

B(α)
(0Iαu)(t) (10)

where 0I
α is the left Riemann-Liouville fractional integral given in (13).

Lemma 2.2 [7] Let u ∈ H1(a, b) and α ∈ [0, 1]. Then the following relation holds.

(ABC
0 Dαu)(t) = (ABR

0 Dαu)(t)− B(α)
1− α

u(0)Eα

(
− α

1− α
tα

)
. (11)

Theorem 2.3 (Ascoli-Arzela Theorem)([23]) Let S be a compact metric spaces.Then M ⊂ C(Ω) is
relatively compact iff M is uniformly bounded and uniformly equicontinuous.

Theorem 2.4 (Krasnoselskii Fixed Point Theorem)([23]) Let S be a closed, bounded and convex
subset of a real Banach space X and let T1 and T2 be operators on S satisfying the following conditions

• T1(s) + T2(s) ⊂ S

• T1 is a strict contraction on S, i.e., there exist a k ∈ [a, b) such that
‖T1(u)− T1(v)‖ ≤ k‖u− v‖ ∀ u, v ∈ S

• T2 is continuous on S and T2(s) is a relatively compact subset of X.

Then, there exist a u ∈ S such that T1u + T2u = u

Proposition 2.6 ([4]) For 0 ≤ α ≤ 1, we conclude that

(AB
0 Iα(ABC

0 Dαu))(t) = u(t)− u(0)Eα(λtα)− α

1− α
u(0)Eα,α+1(λtα)

= u(t)− u(0).

Proposition 2.7 ([29, 37]) f ′(u) ∈ D satisfy the Lipschitz condition.
i.e.,There exist a constant k > 0 such that

‖f ′(u)− f ′(v)‖ ≤ k (‖u− v‖), u, v ∈ D. (12)

3 Existence and Uniqueness

In this section, we prove the existence and uniqueness of (3) and (4).

We need the following assumptions to prove the existence and uniqueness results for the problem
(3) and (4) by using the Banach contraction principle.

A1 Let u ∈ C[0, 1] and g ∈ (J×PC1×J, J) is piecewise continuous function and there exist a positive
constants M1,M2 and M such that

‖g(t, u1, v1)− g(t, u2, v2)‖ ≤ M1(‖u1 − u2‖+ ‖v1 − v2‖)

for all u1, v1, u2, v2 in Y , M2 = maxt∈J ‖g(t, 0, 0)‖ and M = max{M1,M2}. Let Y = C[J,X]
be the set continuous functions on J with values in the Banach spaces X .
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A2 Let u ∈ C[0, 1] and f ∈ (J×PC1×J, J) is piecewise continuous function and there exist a positive
constants N1,N2 and N such that

‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ N1(‖u1 − u2‖+ ‖v1 − v2‖)

for all u1, v1, u2, v2 in Y , N2 = maxt∈J ‖f(t, 0, 0)‖ and N = max{N1,N2}.

A3 Let u′ ∈ C[0, 1] satisfy the Lipschitz condition. i.e.,There exist a positive constants L1,L2 and L
such that

‖D(t, u)−D(t, v)‖ ≤ L1(‖u− v‖),

for all u, v in Y . L2 = maxt∈D ‖D(t, 0)‖ and L = max{L1,L2}.

A4 The impulses I∗k ∈ (<n,<n) be bounded and for α∗ > 0 we have
‖I∗y1(t−k )− I∗y2(t−k )‖ ≤ α∗(t)‖y1 − y2‖∞.

A5 For each λ > 0, Let Bλ ∈ {u ∈ Y : ‖u‖ ≤ λ} ⊂ Y , them Bλ is clearly a bounded closed and
convex set in (C[0, 1], J) where λ = ((1 − 2C)−1(‖u0‖) + C) and take C = max{M,N} and
C < 1

2 .

Lemma 3.1 If A3 are satisfied, then the estimate
‖Du(t)‖ ≤ t(L1‖u‖+ L2), ‖Du(t)−Dv(t)‖ ≤ Lt‖u− v‖, are satisfied for any t ∈ <, and u, v ∈ Y.

Definition 3.2 If u(0) = u0 and u ∈ C[0, 1] is a solution of (3) and (4) then there is an f ∈
(J × PC1 × J, J) where t ∈ [0, t1] ∪ (tm, T ],m = 1, 2, . and

v(t) =



v0 t ∈ [τ∗, 0]
v0 − g(0, u0,Du(0)) +AB

a Iαf(t, u(t),Du(t)) t ∈ [0, t1]
v0 − g(0, u0,Du(0)) + I∗1u(t−1 ) +AB

a Iαf(t, u(t),Du(t)) t ∈ (t1, t2]
v0 − g(0, u0,Du(0)) +

∑2
k=1 I∗1u(t−1 ) +AB

a Iαf(t, u(t),Du(t)) t ∈ (t2, t3]
.
.
.
.
.
v0 − g(0, u0,Du(0)) +

∑m
k=1 I∗1u(t−1 ) +AB

a Iαf(t, u(t),Du(t)) t ∈ (tm, T ]

(13)

is satisfied

Theorem 3.3 Let u(t) ∈ C[0, 1] such that (ABC
0 Dαu)(t) ∈ C[0, 1]. Suppose that f ∈ C([0, 1]×J×J, J)

satisfies A1 − A5. Then, if g(a, u(a),Du(a)) = f(a, u(a),Du(a)) = 0 and
(
Lt + (1 + Lt)

(
1−α
B(α) +

tα

B(α)Γ(α)

))
≤ 1 the problem (3) and (4) has an unique solution.

Proof. Suppose u(t) satisfy (3) and (4), then by use (13), for t ∈ [0, t1] we get the integral equation

(AB
0 Iα)(AB

0 Dα)[u(t)− g(t, u(t),Du(t))] =AB
0 Iαf(t, u(t),Du(t)) (14)

Now, by using Proposition 2.6, for t ∈ [0, t1] we obtain

u(t)− g(t, u(t),Du(t)) = u0 − g(a, u(a),Du(a)) +AB
0 Iαf(t, u(t),Du(t))

4
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.
Therfore,

v(t) =



v0 t ∈ [τ∗, 0]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +AB

0 Iαf(t, u(t),Du(t)) t ∈ [0, t1]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) + I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t1, t2]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +

∑2
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t2, t3]
.
.
.
.
.
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +

∑m
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (tm, T ]

Since u(0) = u0 from (4)and taking f(0, u0, 0) = g(0, u0, 0) = 0, then (3) is satisfied. Next, take u(t)
satisfy (3), then by using f(0, u0, 0) = 0 which implies u(0) = u0.
By using R-L sense with AB-derivative in (4)and subsitute (AB

0 Dα(AB
0 Dα))(t) = v(t) for t ∈ [0, t1] we

obtain

(ABR
0 Dαu)(t) = u0(ABR

0 Dα1)(t)− g(0, u0,Du(0))(ABR
0 Dα1) + (ABR

0 Dα)g(t, u(t),Du(t))
+(ABR

0 Dα(AB
0 Iα))f(t, u(t),Du(t))

Thus we have

(ABR
0 Dα)(u(t)− g(t, u(t),Du(t))) = (u0 − g(0, u0,Du(0)))Eα

(
−α

1− α
tα

)
+ f(t, u(t),Du(t))

By Theorem 1 in [5], the result will be obtained. Now, define the operator

Tv(t) =



v0 t ∈ [τ∗, 0]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +AB

0 Iαf(t, u(t),Du(t)) t ∈ [0, t1]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) + I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t1, t2]
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +

∑2
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t2, t3]
.
.
.
.
.
v0 − g(0, u0,Du(0)) + g(t, u(t),Du(t)) +

∑m
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (tm, T ]

Then by A5, ‖u‖ ≤ λ and by the Lemma 2.3, for t ∈ [0, t1] we have

‖Tu(t)‖ ≤ ‖u0‖+ C‖u‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u‖

+C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
≤ λ

For t ∈ (t1, t2]

‖Tu(t)‖ ≤ ‖u0‖+ ‖I∗1v(t−1 )‖+ C‖u‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u‖

+C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
≤ λ

5
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For t ∈ (t2, t3]

‖Tu(t)‖ ≤ ‖u0‖+ ‖
2∑

k=1

I∗1v(t−1 )‖+ C‖u‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u‖

+C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
≤ λ

Similarly, for t ∈ (tm, T ] ‖Tu(t)‖ ≤ λ where m=1,2,3,..
Now, to prove uniqueness for t ∈ [0, t1], we have

‖Tu1(t)− Tu2(t)‖ ≤ M(1 + Lt)‖u1 − u2‖+
1− α

B(α)
(N(1 + Lt))‖u1 − u2‖]

+
α

B(α)
(M(1 + Lt))‖u1 − u2‖((AB

0 Iα)(t)

≤ C‖u− v‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u1 − u2‖

≤ ‖u1 − u2‖

For t ∈ (t2, t3]

‖Tu1(t)− Tu2(t)‖ ≤ +α∗‖u1 − u2‖+ M(1 + Lt)‖u1 − u2‖+
1− α

B(α)
(N(1 + Lt))‖u1 − u2‖]

+
α

B(α)
(M(1 + Lt))‖u− v‖((AB

0 Iα)(t)

≤ C‖u1 − u2‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u1 − u2‖

≤ ‖u1 − u2‖

Similarly, for t ∈ (tm, T ]we have ‖Tu1 − Tu2‖ ≤ ‖u1 − u2‖ where m=1,2,3,.. Therefore Tu(t) has an
unique solution.

Hence, the operator Tu(t), t ∈ Bλ proved the existence and uniqueness conditions and has a fixed
point by Banach contraction principle in Banach spaces X.

Next, we investigate the problem (3) and (4) has a fixed point by using another fixed point
technique, namely Krasnoselskii’s fixed point theroem.

Theorem 3.4 If A1−A5 are satisfied and q(t2− t1) = [N(‖u(t2)−u(t1)‖+Lt‖u(t2)−u(t1)‖)], then
the problem (3) and (4) has a solution.

Proof. For any constant λ0 > 0 and u ∈ Bλ0 , defined two operator T1 and T2 on Bλ0 as follows

(T1u)(t) = u0 + ‖
m∑

k=1

I∗1v(t−1 )‖ − g(0, u(0), 0) + g(t, u(t),Du(t)) (15)

(T2u)(t) = AB
a Iαf(t, u(t),Du(t)). (16)

Obviously, u is a solution of (3) and (4) iff the operator T1u + T2u = u has a solution u ∈ Bλ0

Our proof will be divided into three steps.

6
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Step 1. ‖T1u + T2u‖ ≤ λ0 whenever u ∈ Bλ0 . For every u ∈ Bλ0 and t ∈ [0, t1], we have

‖(T1u)(t) + (T2u)(t)‖ ≤ ‖u0‖+ C‖u‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u‖

+C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
≤ λ0

For t ∈ (t1, t2], we have

‖(T1u)(t) + (T2u)(t)‖ ≤ ‖u0‖+ ‖I∗1v(t−1 )‖+ C‖u‖+ C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

))
‖u‖

+C
(
Lt + (1 + Lt)

(1− α

B(α)
+

tα

B(α)Γ(α)

)
≤ λ0

Similarly, for t ∈ (tm, T ] we have where m=1,2,3,..
Hence, ‖T1u + T2u‖ ≤ λ0 for every u ∈ Bλ0 .

Step 2. T1 is a contraction on Bλ0 for any u, v ∈ Bλ0 , according to A4 and t ∈ [0, t1] , we have

‖(T1u)(t)− (T1v)(t‖ ≤ ‖u0 − v0‖+ M‖u− v‖+ MLt‖u− v‖
≤ ‖u0 − v0‖[1 + (M + MLt)‖u− v‖]
≤ R‖u0 − v0‖

For t ∈ (t1, t2], we have

‖(T1u)(t)− (T1v)(t‖ ≤ ‖u0 − v0‖+ α∗‖u− v‖+ M‖u− v‖+ MLt‖u− v‖
≤ ‖u0 − v0‖[1 + (α∗ + M + MLt)‖u− v‖]
≤ R‖u0 − v0‖

Similarly, for t ∈ (tm, T ] we have where m=1,2,3,.. which implies that ‖T1u − T1v‖ ≤ R‖u0 − v0‖,
since R = 1, where R = 1 + (α∗ + M + MLt)‖u− v‖. i.e., T1 is a contraction.
Step 3. T2 is completely continuous operator.

First we have to prove that T2 is continuous on Bλ0 . For any un, u ⊂ Bλ0 , n = 1, 2, 3.... with
limn→u ‖un − u‖ = 0, we get limn→u un(t) = u(t), for t ∈ [0, t1] ∪ (tm, T ].
Thus by A1, we have limn→∞ f(t, un(t),Dun(t)) = f(t, u(t),Du(t)) for t ∈ [0, t1] ∪ (tm, T ].
We can conclude that

sup
s∈[0,1]

‖f(t, un(t),Dun(t))− f(t, u(t),Du(t))‖ → 0 as n →∞

On other hand, for t ∈ [0, t1] ∪ (tm, T ]

‖(T2un)(t)− (T2u)(t)‖ ≤
(1− α

B(α)
− tα

B(α)Γ(α)

)
‖f(t, un(t),Dun(t))− f(t, u(t),Du(t))‖

≤
(1− α

B(α)
− tα

B(α)Γ(α)

)
sup

s∈[tm,T ]

‖f(t, un(t),Dun(t))− f(t, u(t),Du(t))‖

Hence ‖(T2un)(t)− (T2u)(t)‖ → 0 as n →∞. Therefore T2 is continuous on Bλ0 .

Now, we have to show that T2u, u ∈ Bλ0 is relatively compact which is sufficient to prove that the
function T2u, u ∈ Bλ0 uniformly bounded and equicontinuous, and ∀ t ∈ [0, t1] ∪ (tm, T ]
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‖T2u‖ ≤ λ0, for any u ∈ Bλ0 , therefore (T2u)(t), u ∈ Bλ0 is bounded uniformly.
Now, we prove that (T2u)(t), u ∈ Bλ0 is a equicontinuous.
For any u ∈ Bλ0 and 0 ≤ t1 ≤ t2 ≤ t, we get

‖(T2u)(t2)− (T2u)(t1)‖ ≤ 1− α

B(α)
q(t2 − t1) +

α

B(α)
q(t2 − t1)

(t2 − t1)α

αΓ(α)

≤ q
(1− α

B(α)
− (t2 − t1)α

B(α)Γ(α)

)
(t2 − t1)

‖(T2u)(t2) − (T2u)(t1)‖ → 0 as t2 → t1. Therefore, the operator T2 is a equicontinuous on Bλ0 .
Hence, which implies T2 is relatively compact on Bλ0 .

Therefore T2 is relatively compact subset of X by theorem 2.4. And, by theorem 2.5 we can
conclude that T2 has atleast one fixed point. Therefore the operator T has a fixed point u which is
the solution of (3) and (4).

4 Nonlocal Conditions

The existence results of (3) with nonlocal condition in the form

u|[−τ∗,0] = u0 + p∗(0)

The p∗(t) be

p∗(t) =
∑m

i=1 λ1ui(t)

where ui ∈ PC1,
∑m

i=1 λ1 < 1 for i=1,2,3,...m and p : C([0, 1], X) → X is a given function

A7 thereexist a constant C1 > 0 such that ‖p∗(u)− p∗(v)‖ ≤ C1‖u− v‖
A8 Consider ‖p∗(0)‖+

∑m
k=1 ‖I∗1u(t−1 )‖ ≤ λ

Definition 4.1 If u(0) = u0 + p∗(0) and u ∈ C[0, 1] is a solution of (3) and (4) then there is an
f ∈ (J × PC1 × J, J) where t ∈ [0, t1] ∪ (tm, T ],m = 1, 2, . and

v(t) =



v0 + p∗(0) t ∈ [τ∗, 0]
v0 + p∗(0)− g(0, u0,Du(0)) +AB

0 Iαf(t, u(t),Du(t)) t ∈ [0, t1]
v0 + p∗(0)− g(0, u0,Du(0)) + I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t1, t2]
v0 + p∗(0)− g(0, u0,Du(0)) +

∑2
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t2, t3]
.
.
.
.
.
v0 + p∗(0)− g(0, u0,Du(0)) +

∑m
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (tm, T ]

is satisfied

Theorem 4.2 If A1−A6 are satisfied and C
(
Lt+(1+Lt)

(
1−α
B(α) + tα

B(α)Γ(α)

))
, then the problem (3)

and (4) has a solution.
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Proof. Using the hypothesis A7 and A8, consider the problem

v(t) =



v0 + p∗(0) t ∈ [τ∗, 0]
v0 + p∗(0)− g(0, u0,Du(0)) +AB

0 Iαf(t, u(t),Du(t)) t ∈ [0, t1]
v0 + p∗(0)− g(0, u0,Du(0)) + I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t1, t2]
v0 + p∗(0)− g(0, u0,Du(0)) +

∑2
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (t2, t3]
.
.
.
.
.
v0 + p∗(0)− g(0, u0,Du(0)) +

∑m
k=1 I∗1u(t−1 ) +AB

0 Iαf(t, u(t),Du(t)) t ∈ (tm, T ]

By using the technique in theroem 3.2, we can easily prove that ‖Du(t))‖ ≤ r and ‖Du1(t)) −
Du2(t))‖ ≤ ‖u1(t) − u2(t)‖ are fixed point and obtain a unique solution. Then the system () with
nonlocal conditions () is relatively compact by theorem 3.3. This proof is similar to theorem 3.2 and
3.3. therefore its omitted

5 Example

Consider the following problem

(ABC
0 D

3
2 )(u(t)− t

3
√

(π)
sin(u(t) + u′(t)))) =

t

3
√

(π)
cos(u(t) + u′(t)), (17)

u(t) = 1, t ∈ [1, 2], B(α) = 1 (18)

Notice that g(0, u(0),Du(0)) = f(0, u(0),Du(0)) = 0 and u′(t) ∈ C[1, 2] satisfy the Lipschitz condi-
tions.
Let g(t, u, v) = t

3
√

(π)
sin(u + v), f(t, u, v) = t

3
√

(π)
cos(u + v), t ∈ [−τ∗, ].

It is easy to see that

(ABC
0 D

3
2 )(u(t)− g(t, u, v)) = f(t, u, v), (19)

u(0) = 1, t ∈ [1, 2], B(α) = 1 (20)

Therefore, by Banach contraction principle theorem (19) and (20) has a unique solution, it can be
written as
u(t) = limn→∞ un(t) , where

un(t) = 1 +
1

3
√

π
gn−1(t) +

1− α

3
√

π
fn−1(t) +

α

3
√

πΓ(α)

∫ t

0

(t− s)α−1 fn−1(s)ds,

where n = 1, 2, 3, ...
Solving (19) and (20), we apply the method proposed by Mekkaoui and Atangana in [38], utilizing
from the two-step Lagrange polynomial interpolation.
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