
Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3660

Performance Improvement for Parallel Message Passing
Applications

Nuha Al-Ameedi1, Ahmed Fanfakh2
1,2 Department of Computer ScienceCollege of Sciencefor Women University of Babylon, Hilla,
Iraq
nuha.hussien.hadi@gmail.com, ahmed.fanfakh@uobabylon.edu.iq

 Article History: 15 May 2021; Revised: 17 May 2021; Accepted: 28 May 2021; Published

online: 20 June 2021

Abstract: The message passing interface (MPI) application is a parallel application that solves

a problem by combining various communication routines with computation. Due to the

synchronization between nodes, running this program on a heterogeneous platform would

result in undesirable idle times. In other words, this may lead to a computational imbalance in

the system. The increase in slack time between nodes, on the other hand, wastes the computing

power of the computing nodes. A dynamic load balancing algorithm is proposed in this paper,

which is applied to the parallel Jacobi application. It reduces slack times by using some

information gathered from a parallel application dynamically. The obtained results speedup the

execution time of an application by 15.40, 12.38, and 9.54 for problem sizes 8000, 6000, and

4000 respectively, compared to the serial execution time.
Keywords:Message Passing Applications, Heterogeneous cluster, Load Balancing

1. Introduction

Distributed parallel computing systems are a set of nodes connected through a communication

network. It has some forms and infrastructure types like cluster, grid, and cloud, and so on. The

local cluster is a set of nodes that are connected by the local area network. In almost all

instances, computational capacities in nodes must be homogeneous. In certain cases, however,

the variety of computers nowadays can be heterogeneous in the nodes’ computing powers.

However, enhancing cluster efficiency by spreading the working load appropriately across the

computing resources is usually known as load balance [1]. A distributed system is a model that

communicates and coordinates the behavior of networked components. The elements connect

with each other to achieve a shared goal [2]. When parallel message passing programs running

over this heterogeneous network are performed, the heterogeneity of node computing power

generates an imbalanced workload. These occur when fast nodes suspend with the slowest

nodes. However, the total runtime increases when idle times increase too [3].

When the heterogeneous cluster runs parallel distributed programs on the heterogeneous

cluster, the variation in computing power results in an imbalanced workload. Speed-up is one

of the most common metrics for calculating the parallel program performance. It is the ratio of

an application's sequential execution time to its parallel execution time that solves the same

problem. [4]. in this paper, a dynamic load balancing algorithm to recalculate the workload

resulting from heterogeneity to reduce the produced idle time is proposed. It works depending

on some gathered data from the parallel program. Moreover, three different communication

routines are used to show how execution time can change corrodingly to the communication

time.

The remainder of the paper is arranged as follows: some related works is presented in the

Section 2. Section 3 explains load balancing in message passing systems. The proposed load

balancing method for the MPI application is defined in Section 4. The experimental results are

mailto:nuha.hussien.hadi@gmail.com
mailto:ahmed.fanfakh@uobabylon.edu.iq

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3661

shown in Section 5. The paper ends in section 6 with the conclusion and future work.

2 Related Works

The authors rely on many approaches, like statistical methods, mathematical models, and

heuristic algorithms, to speed up the runtime of parallel applications. Recently, the primary

area of concern in the distributed system is load balancing by moving the workload from

heavily loaded nodes to lightly loaded ones. Therefore, increasing the throughput and

minimizing the response and waiting time, it increases the overall performance of the

computing device. Designing an efficient dynamic load-balancing algorithm is one of the most

important issues in distributed systems because it contributes in improving the distributed

system’s performance [5]. Some of the interested works about the load balancing are in the

following:

Authors in [6], proposed Load Balanced Fault Tolerant (LBFT) architecture using SOA

includes a new dynamic load complementary algorithm, in addition to the fault-tolerant

scheduling approach that has resulted in successful load balancing and fault tolerance. In [7],

researchers proposed designing a fuzzy hybrid algorithm (FHA) to solve the problem of work

schedules for efficiency purposes. The goal of the proposed system was to concurrently apply

two algorithms to solve the same problem. To combine Q-Learning effectiveness with ant

colony optimization to minimize the overall execution time. In [8] Mahato solved the load

balancing problem by scheduling the colored Petri nets (CPNs) and evaluating the efficiency of

the GTP system. In [9] had developed an improved grid Simulator method to heterogeneity

conscious load balancing (EGHLB). The proposed algorithm estimates device parameters such

as resource load, a Grid let’s expected end time is an object that contains all the job-related

information. Every arrival of the Grid let’s balances the load by preparing to provide a new

mechanism that prevents overloading of the resource and executes all the Grid let’s within the

allocated time limit on the heterogeneous resources. In [10] the method used for order choice

resembled the optimal solution to resolve load balancing as an issue of decision-making in

multiple parameters. Besides, an appropriate weighting mechanism is suggested to adjust the

weights of the parameters considered to the present condition of the device and to the task

features. . In [11], the authors suggested a negotiation-like process between the future

WebSocket client and the target WebSocket server load balancing device to set the client on.

They also announced that WebSocket links have various types of behavior, so this variation

must be taken into account by an intelligent load balancer. In [12] the cuckoo search-ant colony

was optimized via a hybrid algorithm. The method will be developed in an optimal schedule by

clustering resources in light of their loads and making efficient use of resources to complete

transactions on time.For the framework booking calculation, researchers in [13] suggested a

load balancing scheme that would lead to the efficient provision of resources by conducting

experiments to observe specific job parameters in a heterogeneous cluster. In a model for the

provision of resources based on MLP (Multilayer Perceptron) and SVM (Support Vector

Machine), the work history of computing heavy jobs was collected. The model's accuracy is

measured and experimental results show that better performance of Multilayer Perceptron than

of Support Vector Machine. In [14] the method used the load balancing Min-Min algorithm

(LBMM). Initially, it meets the mission that has the least execution time and the commodity

that generates it. In [15], the authors proposed a new Dynamic Load Balancing (JMADLB) Job

Migration Algorithm to track parameters such as load processor and queue length. They had

designated an Alea 2 Java simulator algorithm to migrate new jobs out of overload resources

into underloaded resources and to test and evaluate algorithms. These algorithms were

compared with other scheduling algorithms, such as First Come First Served (FCFS) and

Earliest Deadline First (EDF). The dynamic load-balancing algorithm is proposed in this paper

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3662

to redistribute the workload based on some information gathering from iterative parallel

applications executed over a cluster.

3 Load Balancing in Message Passing System

Distributed parallel system is a set of heterogeneous computing nodes linked by a high-speed

network. It allows resources of the scheme shared by users from various locations across the

communication network. This system is ideal when the computational workload is distributed

over all of its computing nodes equally [16]. This prevents computing resources from being

under-used and reduces the response time for work implemented on more highly loaded

computing nodes. Method of computing power sharing is commonly referred to as "load

balancing" for improving the efficiency of a distributed system by redistributing the workload

between the computing nodes available. Load balancing aims to improve the efficiency of the

system by redistributing the workload between computing nodes, thus improving the response

time, the latency of communication, throughput, and utilization of resources [5].

The message passing routines use to run the parallel application over any distributed platform

easily. The message passing program is composed of computation and communication parts.

The task size computes before any task can communicate with others to solve the problem.

However, if the size of all tasks not equivalent, then the workload is imbalanced, see Fig.1.

Moreover, if all tasks have a similar work size, but execute over a heterogeneous platform, idle

times will also produce according to the synchronization. The absence of idle time since all

tasks must be equivalent in their size and execute over the homogenous parallel platform, see

Fig.2. Therefore, his best message-passing program is the one that only has time for

computation and communication with no slack times. The runtime of the parallel program is

the execution time of the slower assignment [17].

Fig.1. Load imbalance

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3663

Fig.2. Load balance

Therefore, the execution time of parallel message-passing applications is calculated by the

slower task. It has the greatest computing time and the lowest communication time, where

slack times are not as in equation (1).

Tparallel = max (Tcpi) + min (Tcmi)
i=1,2,..N i=1,2,...N (1)

Whereas a result, the computation and communication times of node i are Tcpi and Tcmi

respectively. This model calculates the parallel program execution time by calculating the

measured computation time of the slower node. The communication time is also measured

without slack time [3].

4 Proposed Load Balancing Method for MPI Application

This section aims to overcome an imbalanced computation problem when executing a

message-passing application over a heterogeneous platform to speed up the overall running

time. Each node differs in computing power from the other nodes in the heterogeneous cluster

in the computing power. MPI programs are portable applications that work without changing a

line in their code if they execute over different parallel hardware. Every program, therefore,

consists of two components: computation and communication.

The proposed algorithm focuses on dynamically balancing the workload of the iterative

method. It was applied to the distributed heterogeneous platforms when synchronous

communication is used. The proposed algorithm works dynamically by gathering some

information about the application at the running time to recompute the workload as a function

of this information. After the first iteration, all computation times collect from all the nodes in

the heterogeneous cluster and the maximum computation time is computed as follows:

Max _ Tcp = max (Tcpi)
i=1,2,...,N

(2)

Where, Tcpi is the computation time of the node i and the number of nodes in the cluster

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3664

represented by np.

Whereas the load balancing algorithm is designed for synchronous iterative applications

running on the heterogeneous cluster, the load balancing factor is computed to capture the

changes in the workload between nodes. It is calculated for node i by dividing the maximum

computation time by the computation time of node i as follows:

LFi = Max _ Tcp / tcp _ alli
(3)

Where, LFi

is the load balancing factor of node i,

Max _ Tcp is the maximum

computation time, and tcp _ alli is the computation time of node i.

The new block per node is calculated by multiplying the load balancing factor from the

equation (3) with the old block size as follows:

New _ bli = LFi bl _ size (4)

Where, New _ bli

is the new block of the node i.

Accordingly, the total number of new blocks is calculated by summing up all the blocks

calculated in equation (4) as follows:

np

Tnbl = New _ bli

i=1

(5)

By comparing the original size of the problem N with the total number of new blocks as in

equation (5), there are some differences in the results based on the conversion from real to

integer values.

Diff = abs(N − Tnbl) (6)

The algorithm iteratively recomputes the differences in the equation (6) and redistributed it

according to the load balancing factor calculated in the equation (3) as follows:

Diff = Diff
LFi

i np

(7)

The flowchart in Fig. (3), adds Diffi to the new blocks if the total of the new blocks are less

than the problem size N. Otherwise, this amount will subtract from all blocks. It stops the

iterations when the result of the equation (6) is less than the number of nodes.

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3665

Fig. 3.The flowchart of the proposed load balancing method

5 Experiments

In this section, the proposed method is validated by next sub sections that show the

experimental setting and the results.

5.1 Experiment Setting

This subsection uses the Linux operating system to program and execute the proposed method.

Message passing interface uses to program and implements the parallel application and the

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3666

proposed method. The Jacobi method is used to validate the proposed load balancing

algorithm. The Iterative Jacobi method was applied in two sizes in the matrix (4000×4000),

(6000×6000), and (8000×8000). The residual value of convergence of the iterative Jacobi

method was equal to (1×10-4) for all experiments. For implementing parallel heterogeneous

clusters, the SimGrid/SMPI simulator is used. A heterogeneous cluster of four distinct node

types selected to be used in the simulator. Every node in the cluster has different characteristics

of computing powers (FLOPS) from others. Nodes are connected through a 10 Gbit/s

bandwidth network with Ethernet. The detailed characteristics of the computing power of those

four nodes are shown in Table 1.

Table 1. Heterogeneous Nodes' Characteristics

Node’s number Computational Power
in GFlops

Processor freq.
(GHz)

1 40 2.50

2 50 2.66

3 60 2.90
4 70 3.40

5.2 Results of the Experiment

The precision of the proposed load-balancing algorithm is verified in this subsection. Using

Jacobi method, which solves the issue of a linear equation system, the load balance algorithm

was implemented. A different number of nodes, 4, 8, 16, 24, 32, 64 nodes, were proposed to

represent six scenarios. The initial execution time is captured for the parallel program Jacobi as

in equation (1). Whereas the MPI has different types of communication routines, three types of

these communication were implemented. Two point to point routines, which are standard

Send/Recv and coupled SendRecv and allgatherv collective communications routine were

used. Four parallel scenarios are compared to the serial version of iterative Jacobi method.

The first scenario concerning the parallel Jacobi method that not solves the load balancing

problem. This scenario used the standard send/recv communication routine. The other three

parallel scenarios implement the load balancing algorithm each with different communication

routine that demonstrated previously. The main goal of this scenario to study the suitability of

these routines when using different number of nodes in a cluster. Fig.4 (a,b,c), clarifying the

comparison of execution time of the four parallel scenarios to serial version of iterative Jacobi

application. Three problem sizes 4000, 6000, and 8000 for an application are used. Besides,

the proposed algorithm reduced the execution time of the Jacobi synchronous method by

reducing the idle times. It also demonstrated the efficiency of the load balancing algorithm to

improve performance the total execution time of the program by eliminating the waiting time

that occurred when using synchronous communications.

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3667

(a) Resutt of problem size 4000

(b) Resutt of problem size 6000

Results of problem size 8000

Fig. 4. The execution time results

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3668

Fig. 5. The average of both speedup and granularity of all problem sizes (4000, 6000, and

8000)

The speedup ratio is calculated for all results that compare the ratio between serial execution

time and the execution time of parallel application. Additionally, to study the ratio between

computation and communication times, the granularity ratio was also calculated for all results.

Fig. (5) show all these ratios and their relationship to the heterogeneous cluster's number of

nodes. Acutely, the speedup ratio decreases when the number of nodes increases due to a

decrease in computation. In other words, the decrease in the granularity ratio of the application

will decrease its speedup ratio. Experiment results show that the proposed algorithm

significantly balances the computations by speedup the execution time by 15.40, 12.38, and

9.54 times for problem sizes 8000, 6000, and 4000 respectively. Accordingly, the speedup ratio

increased when the computation is increased too. The load balancing method that uses

allgatherv communication routine is the best scenario in term of reducing the execution time of

the serial version.

6 Conclusion

This paper introduces a dynamic load balancing algorithm for parallel iterative applications

that improves performance and reduces execution time. To see how the execution changes by

using various numbers of nodes, three different communication routines were applied. The

heterogeneous cluster that runs the program is simulated using the SimGrid/SMPI simulator.

Three different array sizes were used to evaluate the proposed Jacobi iterative approach for

solving linear equations. The obtained result showed that the proposed load balancing

algorithm improves the parallel application's execution time by 15.40, 12.38, and 9.54 for

problem sizes of 8000, 6000, and 4000, respectively.

In the future, it will be important to improve the proposed approach to a variety of systems

with the biggest challenges. Furthermore, the suggested approach will be investigated to see if

energy consumption in parallel programs can be reduced while the application's execution time

is reduced. Biggest problem sizes will be executed over many numbers of nodes in a cluster.

References

1. M. van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,”

Computing, vol. 98, no. 10, pp. 967–1009, 2016, doi: 10.1007/s00607-016-0508-7.

2. Dharmik, R., & Sathe, S. (2018). A sender initiated dynamic and decentralized load

balancing algorithm for computational grid environment using variable CPU usage. Int. J.

Appl. Eng. Res, 13, 189–194.

Turkish Journal of Computer and Mathematics Education Vol.12No.13 (2021), 3660-3669
 Research Article

3669

3. Idrees, S. K., & Fanfakh, A. B. M. (2018). Performance and energy consumption

prediction of randomly selected nodes in heterogeneous cluster. Communications in Computer

and Information Science, 938(October 2018), 21–34.

4. Fanfakh, A. B. M. (2019). Predicting the Performance of MPI Applications over

Different Grid Architectures. JOURNAL OF UNIVERSITY OF BABYLON for Pure and

Applied Sciences, 27(1), 468–477.

5. Alam, M., Haidri, R. A., & Shahid, M. (2020). Resource-aware load balancing model for

batch of tasks (BoT) with best fit migration policy on heterogeneous distributed computing

systems. International Journal of Pervasive Computing and Communications, 16(2), 113–141.

6. Indhumathi, V., & Nasira, G. M. (2017). Service oriented architecture for load balancing

with fault tolerant in grid computing. 2016 IEEE International Conference on Advances in

Computer Applications, ICACA 2016, 313–317.

7. Hajoui, Y., Bouattane, O., Youssfi, M., & Illoussamen, E. (2018). New hybrid task

scheduling algorithm with fuzzy logic controller in grid computing. International Journal of

Advanced Computer Science and Applications, 9(8), 547–554.

8. Mahato, D. P. (2018). CPNs based reliability modeling for on-demand computing based

transaction processing. ACM International Conference Proceeding Series, 6–9.

9. Patel, D. K., & Tripathy, C. R. (2018). On the design of an efficient load balancing

mechanism on GridSim adapted to the computing environment of heterogeneity in both

resources and networks. IET Networks, 7(6), 406–413.

10. Abdullah, A. M., Ali, H. A., & Haikal, A. Y. (2019). A reliable, TOPSIS-based multi-

criteria, and hierarchical load balancing method for computational grid. Cluster Computing,

22(4), 1085–1106.

11. Alexeev, V. A., Domashnev, P. V., Lavrukhina, T. V., & Nazarkin, O. A. (2019). The

design principles of intelligent load balancing for scalable websocket services used with grid

computing. Procedia Computer Science, 150, 61–68.

12. Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. (2019). On scheduling

transaction in grid computing using cuckoo search-ant colony optimization considering load.

Cluster Computing, 1–22.

13. Velayutham, V., & Chandrasekaran, S. (2019). Load balancing for effective resource

provisioning in a heterogeneous cluster using machine learning. International Journal of

Engineering and Advanced Technology, 8(6), 505–508.

14. Raushan, M., Sebastian, A. K., Apoorva, M. G., & Jayapandian, N. (2020). Advanced

Load Balancing Min-Min Algorithm in Grid Computing. In Lecture Notes on Data

Engineering and Communications Technologies (Vol. 31). Springer International Publishing.

15. WIDED, A., OKBA, K., & FATIMA, B. (2020). Load balancing with Job Migration

Algorithm for improving performance on grid computing: Experimental Results. Adcaij:

Advances in Distributed Computing and Artificial Intelligence Journal, 8(4), 5.

16. John, N. P., & Bindu, V. R. (2020). Prediction Mechanism – A Novel Approach for

OverLoad Management in a Distributed Computing System. Procedia Computer Science, 171,

2097–2104.

17. Abdulazeez, Z. A., Fanfakh, A. B. M., & Alwan, E. H. (2020). Selecting Best CPU

frequency for energy saving in cluster using genetic algorithm. IOP Conference Series:

Materials Science and Engineering, 928(3).

