
Turkish Journal of Computer and Mathematics Education Vol.12 No.13 (2021), 3567-3571

 Research Article

3567

Kube Devops Framework Algorithm

1Shaily Goyal, 2Dr. Amandeep Gill
1Affiliation - Research Scholar, Department of Computer Science and Engineering, JECRC University, Jaipur
2Affiliation - Assistant Professor, Department of Electrical Engineering, JECRC University, Jaipur

Email id – 1shailygoyal27@gmail.com, 2aamangill.87@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 4 June 2021

Abstract: Every business in this age is migrating in the vicinity of the Internet expeditiously. However, to hold on to the

customers, holding on to the efficiency of the web services is indispensable as a slow loading website can turn out to

customer dissatisfaction. Sometimes customers can be lost due to some seconds or even milliseconds. This research paper

targets designing an algorithm for the framework which focuses on the performance optimization of similar web services.

This algorithm adds intelligence to the framework by running pre-tests on the docker image to analyse the local response

time of the application if it falls under the standard requirements or code optimization is the necessity. The algorithm is

responsible for performance tuning and the migration of the application. Besides, it also solves the speed lag issue that can be

caused due to network congestion. The algorithm replaces the tedious manual effort of monitoring and optimizing the

performance of the application post-deployment, making the proposed framework an asset to draw to customer satisfaction.

Keywords: Pod, Kubernetes, Response Time, Performance Tuning, Application Migration.

1. Introduction

Everything in the Internet world is putting a pedal to the medal. That pops out the word 'slow' from the web

dictionary. With the rapid increase in the amount of information on the web, the urge for its rapid retrieval

increases. All the users expect their web link to fire up in the blink of an eye. There exist several platforms like

Word Press, Kubernetes, and servers like WAMP, XAMPP, LAMP that facilitate the deployment of a website

application notwithstanding additional optimizations (Ahmed, Bezemer, Chen, Hassan, & Shang, 2016).

Modifications are essential in the wake of achieving the sole objective of the paper discussed in the previous

paper. In contemplation of achieving a better HTTP response time, as assured, an algorithm is the main

ingredient in the development of the proposed framework. Optimizing the performance of the web application

could be a tedious and time-consuming task, thus adding an algorithm in the framework is the viable solution to

put up to the instant results (Alsmad & Alda, 2012). This algorithm concerns driving the customers towards our

framework ensuring no slow loading, hence it brings forth the customer satisfaction which comes with the speed

while accessing a webpage. Further, this paper discusses how the algorithm supports the objective and what all

advantages it provides to the framework to serve its purpose. The algorithm aims to tune the performance of the

framework. The research paper discusses in the forthcoming sections that most of the performance monitoring

tasks are performed before the real-time deployment of the application, ensuring fewer efforts in optimization.

The paper also explains how the algorithm handles the network congestion issues by load balancing and scaling.

2. Literature review

Response time is defined as the amount of time from the moment when a user sends some request regarding any

activity to the moment when the system states the completion of that request. The response time is used as a

performance measure for an application (Arora & Bali, 2015). As it is the total time from requesting to receiving

the response, it is the most helpful tool in performance testing. For example, if the speed or performance of a

webpage or website is to be tested, response time is calculated.

The framework that is based on the WAMP server is conceptualized as a client/server architecture consisting of

three tiers (Azzam, Alkabi, & Alsmadi, (2012). The top tier is the presentation layer that displays the

information; the middle tier consists of the processing layer which performs all the logical tasks. And the bottom

tier is the data tier for storing the geographic data. This framework has adopted a thin client who helps the

framework to ease up in updating the data and it requires negligible resources at the client-side. The server

occupies the central position as all the processing tasks are executed at the server side itself whilst the client side

is only responsible for communication through an interface and displaying of the results. The technologies like

servlet, common gateway interface connect the webserver to the framework's server (Bora & Bezboruah, 2015).

mailto:shailygoyal27@gmail.com
mailto:aamangill.87@gmail.com

Turkish Journal of Computer and Mathematics Education Vol.12 No.13 (2021), 3567-3571

 Research Article

3568

Figure 1. Flow Chart of the Framework based on WAMP

This framework has some ease in updating as the server system obtains centralized control over all the

resources. It is easy to start and cheaper yet compromises local needs, advanced data formats, and most

important response time (Esfandyari, 2015). As the client has a prerequisite of the completely processed data for

the display, the framework requires persistent communication with the server even for simpler tasks like zoom.

The proposed framework overcomes all these disadvantages in the best possible manner.

3. Methodology

The conventional method of deploying a web application on Kubernetes requires a docker file. It builds an

image out of that docker file and deploys the pod containing the application; except this is a plain vanilla

technical method that later requires a tedious manual effort for the finer performance of the application (Fageria

& Kaushik, 2014). To inculcate a solution to this, the proposed framework has an intermediate layer that runs an

algorithm that handles all the "traditionally required manual tasks". This algorithm is scripted mostly Python and

partially Ansible. The algorithm looks up for all the essential performance monitoring preliminary to the actual

deployment of our web application. The principal tasks performed by this algorithm are performance tuning and

application migration. The algorithm supervises all the performance measures before it deploys the application

on the platform. This helps in a pre-analysis of the real-time performance on the Web. When the user inputs a

docker file for the creation and deployment of the web application before the file passes on to Kubernetes the

algorithm intervenes. During its runtime, the algorithm builds an image from the docker file and tests for the

local response time before deleting the current image from the system. This lays out the local response time of

the image and provides the scope for the modification of the response time (Kelkar & Kandalgaonkar, 2015).

Furthermore, it runs a pre-test for the response time analysis the same. If the local response time doesn’t meet

the expected response time, it means that the response time of the website in the standard form would be greater

than the local (Kulkarni, Kotkar, Undale, Mankar, Mashal, & Komawar, 2015). Thus, the algorithm throws

warnings stating the need for global optimization as a higher local response time doesn't work in favour of the

objective. Post the warnings, its user’s choice to deploy the application in the framework or not. Besides these,

network congestion is another subject of concern which the algorithm has carefully handled (Kumar & Singh,

2015). For instance, if an HTTP page takes 10ms to respond and gradually the traffic increases leading the

response time to around 80ms which is much greater than the threshold assumed (40ms). To deal with the delay

in the response, the algorithm plans on scaling the number of pods such that the overall response for 10 users is

not hindered even for 100. Ergo, the algorithm solves the congestion issues by scaling.

4. Results

Source code is explained below:

Turkish Journal of Computer and Mathematics Education Vol.12 No.13 (2021), 3567-3571

 Research Article

3569

Framewire.py: The following attached source code is responsible for the deployment of the proposed

framework. The working of the code begins with the creation of a docker image for the application and further

the application is deployed with an Nginx web server. The code also checks for the deployment and service

status. To implement the above-stated working, the python libraries like time, sub-processes and sys are

imported. These libraries include the methods and variables that are required for the implementation of the

algorithm into a code. The following are the steps that are executed in the given code:

• A docker image is created to build the application.

• Above this image, the k8s framework is deployed.

• The two types of storage PV and NFS storage are created.

• PVC is created from a PV. This PVC acts as a cache for a web server running in a container.

• Now, the application is deployed using the Nginx server.

• After the deployment, the status of the deployment and the service is checked.

#!/usr/bin/python3

import time

import subprocess

import sys

creating docker image for application

subprocess.getoutput('docker build -t shailyfr:v1 githubURL')

deployment on k8s framework above created image will be used here

first create PV from NFS storage

subprocess.getoutput('kubectl apply -f pv.yml -n kube-public')

create PVC from PV

Note: PVC will be acting as a cache for a web server running in the container

subprocess.getoutput('kubectl apply -f pvc.yml -n kube-public')

deploying application with Nginx webserver

subprocess.getoutput('kubectl apply -f web.yml -n kube-public')

checking deployment

subprocess.getoutput('kubectl get deployment -n kube-public')

checking service

subprocess.getoutput ('kubectl get svc -n kube-public')

Graph.py: The following code is responsible for plotting the graphs of the time per request across all concurrent

connection versus request per second for all the frameworks including LAMP, WAMP, XAMPP and the

proposed K8s framework. This graphical representation helps in inferring the conclusion as it makes analysis

and visualization easier. The python library that is used for displaying the output result in graphical format is

matplotlib. This library has pre-defined methods that help us represent the required dataset in the form of various

graphs like, line graphs, histograms, pie charts etc. Below are stated the steps to process the python code to

achieve the desired graph.

• The code is fed the data as input.

• This data includes the number of requests made per second in the respective frameworks, and the time

taken (in milliseconds) to process that particular request.

• import matplotlib.pyplot as plt

req_per_seclamp=[2000,2235,3000,3688,4010,4860]

req_per_secwamp=[2003,2265,3005,3698,4020,4870]

Turkish Journal of Computer and Mathematics Education Vol.12 No.13 (2021), 3567-3571

 Research Article

3570

req_per_secxamp=[2008,2285,3010,3628,4030,4880]

req_per_secshailyfr=[2010,2295,3020,3688,4040,4890]

order is LAMP , XAMP , localhost , WAMP , framework

to process time taken by frameworks in MS (millisecond)

time_takenlamp=[0.447,0.467,1.453,1.986,2.162,2.323]

time_takenwamp=[0.547,0.560,1.653,2.286,2.962,3.123]

time_takenxamp=[0.540,0.550,1.753,2.186,2.732,3.029]

time_takenshailyfr=[0.448,0.450,1.353,1.686,2.072,2.129]

plt.title("HTML orented webapp")

plt.ylabel("time per request across all concurrent connection")

plt.xlabel("request per second")

plt.bar(req_per_seclamp,time_takenlamp,label="LAMP")

plt.bar(req_per_secwamp,time_takenwamp,label="WAMP",color="red")

plt.bar(req_per_secxamp,time_takenxamp,label="XAMP",color="green")

plt.bar(req_per_secshailyfr,time_takenshailyfr,label="Shailyfr",color="yellow")

plt.legend()

plt.show()

As discussed in the paper above, the algorithm is successful in tuning the performance of the application

deployed. Since most of the monitoring task is performed before the real-time deployment, the maximum

possibility of modification in the code is in the hands of the user before their application enters into the world

Web for real. This, in turn, saves a lot of time and effort as modifying the codes and script of a running

application is a lot more difficult job. The algorithm issues warnings in case of the need for optimization, hence

it doesn't become compulsory for the user to amend the code, and the deployment of the application entirely is

the user’s choice. Therewithal lays a major challenge, as the number of users of the web service increases, the

congestion in the network increases. The HTTP request might take longer than usual in such scenarios. But as

mentioned earlier, the algorithm has inbuilt a feature of scaling that provides the same response time irrespective

of the number of users. The algorithm serves its purpose thusly.

Table 1. Comparison of the Proposed Framework with the Existing Frameworks

S.NO. Parameters Existing framework Proposed framework

1. Cost High Low

2. Response time High Low

3. Load balancing External and Paid Inbuilt

4. High availability External and Paid Inbuilt

5. Code storage Not Provided Implemented

6. Jenkins technology Not Provided Implemented

7. Portable Very Less Chance Extremely Portable

8. Skills required More Fewer

9. Migration Typical Super Easy

Turkish Journal of Computer and Mathematics Education Vol.12 No.13 (2021), 3567-3571

 Research Article

3571

10. Customer-friendly Need More Tech Skills Fewer Tech Skills

Table 1 below depicts all the features that make the proposed framework finer even at the lower cost levels

proving the above-concluded results. It provides a clear vision of how the proposed framework outstands

amongst the existing ones.

5. Conclusion

Overall, the algorithm helps better our framework than the existing frameworks by providing automated services

to the framework. The inbuilt performance monitoring techniques of the framework are the outcome of the

algorithm. It also provides the feature of application migration which increases the feasibility in customer

service, as well as the auto scalability, which is the most fascinating characteristic. There are several parameters

on basis of which the proposed framework has tested and verified to provide better results than all the existing

ones. The proposed framework provides better performance than the existing ones. This conclusion can be

drawn based on the parameters like cost, response time, load balancing, migration, availability, and other added

technologies. The Kube Devops framework is comparatively more portable and is platform-independent.

Future Scope

The algorithm adds scalability to the proposed framework by maintaining the number of containers running. It

regulates the response time of the web services running and as it fluctuates, it launches a new container or

deletes the one in an already running state as per the requirement. The performance of the framework can be

further modified by monitoring the slave nodes in the architecture rather than the containers. For instance, if the

response time exceeds some pre-decided threshold, a new slave can be attached to the cluster and similarly if it

decreases to a certain amount of time, a worker node can be detached from the cluster. Adding this feature along

with the container might help avoid the creation of a large number of containers.

References

1. Ahmed T. M., Bezemer C., Chen T., Hassan A. E. & Shang W. (2016). Studying the Effectiveness of

Application Performance Management (APM) Tools for Detecting Performance Regressions for

Web Applications: An Experience Report, 1-12.

2. Alsmad I. & Alda S. (2012). Test Cases Reduction and Selection Optimization in Testing Web

Services. Information Engineering and Electronic Business, 5, 1-8.

3. Arora I. & Bali V. (2015). A Brief Survey on Web Application Performance Testing Tools Literature

Review. International Journal of Latest Trends in Engineering and Technology. 5(3), 367-375.

4. Azzam S., Alkabi M. N. & Alsmadi I. (2012). Web Services Testing Challenges and Approaches.

Institute of Communication, Culture, Information and Technology (ICCIT), 291-296.

5. Bora A. & Bezboruah T. (2015). A Comparative Investigation on Implementation of RESTful versus

SOAP-based Web Services. International Journal of Database Theory and Application, 8(3), 297-312.

6. Esfandyari A. (2015). A comparative study and classification on web service security testing approach.

Advances in Computer Science: an International Journal, 4(4), 46-50.

7. Fageria P. & Kaushik M. (2014). Research of Load Testing and Result Based on Load runner.

International Journal of Civil Engineering, 1, 1-4.

8. Kelkar D. & Kandalgaonkar K. (2015). Analysis and Comparison of Performance Testing Tools.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 4(5),

1880-1883.

9. Kulkarni V., Kotkar P., Undale M., Mankar P., Mashal K. & Komawar K. (2015). Advanced Web

Server Testing Tools. International Journal of Science and Research (IJSR), 4(10), 2064-2066.

10. Kumar R. & Singh A. J. (2015). A Comparative Study and Analysis of Web Service Testing Tools.

International Journal of Computer Science and Mobile Computing, 4(1), 443-442.

