q-Continuous on (q-open, q-closed, q-interior, q-closure) and separation axiom in quad Topological Space

¹Safa Khodir Hameed,²Luma, S. Abdalbaqi,
¹Affiliation (Departmentof Mathematic,College of Education for Women, Tikrit University) - Researcher
²Affiliation (Department of Mathematic, College of Education for Women, Tikrit University)
*Corresponding author's email:<u>lumahhany1977@tu.edu.iq</u>
SecondAuthor's Full Name:Luma Saad Abdalbaqi
Highest Qualification:Assistant Professor
Department: Mathematic
Affiliation (College/University/Institute) with postal address:
email id:<u>lumahhany@tu.edu.iq</u>
ORCID:<u>https://orcid.org/0000-0001-8674-9730</u>

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 4 June 2021

ABSTRACT

The purpose of this paper is to the q-continuousspace from a quad topological space to a triple topological space, we introduce a conditions to make us able to change the separation axioms and regular space, normal space in q-topological space to the separation axioms and regular space, normal space in tri-topological space and study some of their properties

Keywords: Quad topological spaces, $q-T_0$ space, $q-T_1$ space, $q-T_2$ space, $q-T_3$ space, regular space, $q-T_4$ space, normalspace, q-continuous, q-homeomorphism.

1- Introduction

J.C. Kelly [2] introduced bi-topological spaces in 1963 and Luma [4], . The study of tri-topological spaces was firstinitiated by Martin M. Kovar [4] in 2000,where a non empty set X with three topologies is calledtritopological spaces. N.F. Hameed & Mohammed Yahya Abid [1] studied separation axioms in tritopologicalspaces. D.V. Mukundan [5] introduced the concept on topological structures with fourtopologies, quad topology and defined new types of open (closed)sets. In thispaper, we use q-open and q-closed sets defined by D.V. Mukundan [5] to explain the concept of separation axioms in quad topological spaces

Definition 2.1: A quad topological space *X* is called (T_o_q) space *if f* to each pair of distinct point *x*, *y* in *X*, there exist a (q_open) set containing one of the points but not other.

Definition 2.11: A quad topological space *X* is called (T_{1},q) space *if f* to each pair of distinct point *x*, *y* in *X*, there exist a pair (q_open) set containing *X* but not *y* and the other containing *y* but not *X*.

Definition 2.22: A quad topological space X is called $(T_{2}q)$ space *iff* to each pair of distinct point x, y of X, there exist a pair of distinct (q_open) sets one containing x and the other containing y and called (*Hausd orff_q*).

Definition 2.33: A quad topological space *X* is said to be $(regular_q)$ space *if f* for each q_{closed} set *F* and each point $x \notin F$. there exist disjoint (q_{open}) sets *G*, *H* such that $x \in G, F \subseteq H$.

A *regular_q* with T_1_q space is called T_3_q space.

A regular_ $q + T_{1}q$ space = $T_{3}q$ space

Definition 2.43: A quad topological space *X* is called to be *normal_q* space *if f* for each two disjoint *q_colsed* set $F_1, F_2 \subseteq X$, there exist two disjoint (q_{open}) sets G_1, G_2 such that $F_1 \subseteq G_1, F_2 \subseteq G_2$.

A *Normal_q* with T_{1_q} space is called T_{4_q} space.

A *Normal_q* + T_{1_q} space = T_{4_q} space

2- Preliminaries

Definition 2.1 [5][6] :Let X be a nonempty set and $(\tau)_{i=1,2,3,4}$ are general topologies on X.

Then a subset A of space X is said to be quad-open(q-open) set if $A \subset \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ and its complement is said to be q-closed and set X with four topologies called $(X, \tau_i)_{i=1,2,3,4}$. q-opensets satisfy all the axioms of topology.

Definition2.2 [5][6]: A subset of a q-topological space $(X, \tau_i)_{i=1,2,3,4}$ is called q- Neighbourhood of a point if and only if there exist q-open sets such that $x \subset X \subset A$.

Note 2.3[5][6] : We will denote the q-interior (resp. q-closure) of any subset ,say of by q-intA(qclA), is the intersection of all q-closed sets containing A.where q-intA is the union of all q-open sets contained in A, and q-clA is the intersection of allq-closed sets containing A.

3- q-Continuous in quad Topological Space

Definition3.1: Let $(X, \tau_i)_{i=1,2,3,4}$, be quad-topological space and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri-topological space, a function of $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ is said to be q -ccontinuous at $x \in X$ if f for every tri-open set V in ψ containing f(x) there exists q-open set U in X containing x such that f(U) = V, we say that f is q-continuous at each $x \in X$.

Definition3.2: Let $(X, \tau_i)_{i=1,2,3,4}$ be quad topological space and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri topological space and $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be a function, then:

- 1. *f* is said to be q-open function if and only if f(G) is tri-open in ψ for every q-open set G in X.
- 2. *f* is q-closed function if and only if f(F) is tri-closed in ψ for every q-closed set *F* in *X*.
- 3. *f* is q-homeomorphism if and only if:
 - i. f is bijective (1-1, onto)
 - ii. f and f^{-1} are q-continuous.

Example 3.3: Let $X = \{a, b, c\}, \tau_i = \{x, \varphi, \{a\}\}, \tau_i = \{x, \varphi, \{b\}\}, \tau_i = \{x, \varphi, \{a, c\}\}, \tau_i = \{x, \varphi, \{b\}, \{c\}, \{b, c\}\}, (X,T_1), (X,T_2), (X,T_3), (X,T_4) are quad topological space, such that:$ $<math display="block">T_{UX} = \{x, \varphi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ Let $\psi = \{1,2,3\}\tau_{1\psi} = \{\psi, \varphi, \{1,2\}\}, \tau_{2\psi} = \{\psi, \varphi, \{2,3\}\}, \tau_{3\psi} = \{\psi, \varphi, \{1\}, \{3\}, \{1,3\}\}$ where $(X,T_1), (X,T_2), (X,T_3)$ are tri-topological space, such that $T_{UY} = \{\psi, \varphi, \{1\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}\}$ Define $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, T_i)_{i=1,2,3}$ by f(a) = 1, f(b) = 2, f(c) = 3Then f is not q-open and not q-continuous because $f^{-1}(\psi) = \{a, b, c\} = X$ is q-open in X, and $f^{-1}(\varphi) = \varphi$ is q-open in X, $f^{-1}(\{1\}) = \{a\}$ is q-open in X, $f^{-1}(\{3\}) = \{c\}$ is q-open in X but $f^{-1}(\{1,2\}) = \{a, b\}$ is not q-open in X. Hence f is not q-continuous. And since $f(X) = \{1,2,3\} = \varphi$ is tri-open in ψ and $f(\varphi) = \varphi$ is tri-open in ψ , also

Hence f is not q-continuous. And since $f(X) = \{1, 2, 3\} = \varphi$ is tri-open in ψ and $f(\varphi) = \varphi$ is tri-open in ψ , also $f(\{a\}) = \{1\}$ is tri-open in ψ and $f(\{b\}) = \{2\}$ is not tri-open in ψ , Hence f is not q-open.

Early $T^{C}_{\cup X} = \{x, \varphi, \{b, c\}, \{a, c\}, \{a, b\}, \{a\}, \{b\}\} \text{ and } T^{C}_{\cup Y} = \{\psi, \varphi, \{2, 3\}, \{1, 2\}, \{3\}, \{1\}, \{2\}\}$

Then $f(\varphi) = \varphi$ is tri-open in ψ , $f(x) = \psi$ is tri-open in ψ and $f(\{b, c\}) = \{2, 3\}$ is tri-open in ψ

And
$$f(\{a, c\}) = \{1,3\}$$
 is not tri-open in ψ . Hence f is not q-closed.

Clearly f is bijective, but its not q-continuous. Thane is notq-homeomorphism.

Propositions 3.4: Let $(X, \tau_i)_{i=1,2,3,4}$ be a quad topological space and $(\psi, T_i)_{i=1,2,3}$ be a tri topological space the function $f: X \to \psi$ is q-continuous if and only if the inverse image under f of every t=open set V of ψ is a q-open set of X.

Proof: Let f a q-continuous, and V is tri-open in ψ , to prove that $f^{-1}(V)$ is q-open in X. if $f^{-1}(V) = \varphi$ so, $f^{-1}(V)$ is q-open in X. if $f^{-1}(V) \neq \varphi$, Let $x \in f^{-1}(V)$ then $f(x) \in V$, By definition of q-continuous there exist q-open set Gx in X containing x such that $f(Gx) \in V$.

 $x \in Gx \in f^{-1}(V)$ this shows that $f^{-1}(V)$ is a q-nbd of each is points. Hence $f^{-1}(V)$ is q-open in X. Conversely, let $f^{-1}(V)$ is q-open set in X, for each V is a tri-open set in ψ to prove f is q-continuous. Let $x \in X$ and V is a tri-open set in ψ containing f(x) so $f^{-1}(V)$ is q-open in X-containing f(x) so $f^{-1}(V)$ is q-open in X-containing x and $(f^{-1}(V)) \subset V$ Then f is q-continuous on X.

Propositions 3.5: Let $(X, \tau_i)_{i=1,2,3,4}$ be a quad topological space and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri topological space. A function $f: X \to \psi$ is q-continuous iff if the inverse image under f of every tri-closed set in ψ is q-closed set in X.

Proof: Assume that f is q-continuous and let F be any tri-closed set in ψ . To show that $f^{-1}(F)$ is q-closed in X, since f is q-continuous and $\psi - F$ is t-open in ψ , it follows from proposition (3.3.4), $f^{-1}(\psi - F) = X - f^{-1}(F)$ is q-open in X, that is $f^{-1}(F)$ is q-closed in X.

Conversely, let $f^{-1}(F)$ be q-closed in X for every t-closed set F in ψ , we want to show that f is q-continuous function. Let G be an t-open set in ψ . Then ψ -G is t-closed in ψ and so by hypothesis,

 $f^{-1}(\psi - G) = X - f^{-1}(G)$ is q-closed in X, that is $f^{-1}(G)$ is q-open in X, hence f is q-continuous by proposition (3.1.4).

Proposition 3.6: Let $(X, \tau_i)_{i=1,2,3,4}$ be a quad topological space, and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri topological space, a function $f: X \to \psi$ is q-continuous iff. $f(q - cl(A) \subset tri - cl(f(A) \text{ for every } A \in X)$

Proof: let f be q-continuous, since tri - cl(f(A)) is a tri-closed set in Ψ . Then by proposition (3.3.5) $f^{-1}(tri - cl(f(A)))$ is q-closed in X,

 $q - cl(f^{-1}(tri - cl(f(A)) = f^{-1}(t - cl(f(A)) \dots (3.3.4))$ Now $f(A) \subset t - cl(f(A), A \subset f^{-1}(f(A)) \subset f^{-1}(t - cl(f(A)))$ Then $q - cl(A) \subset q - cl(f^{-1}(tri - cl(f(A)) = f^{-1}(tri - cl(f(A)))$ by (3.3.4)
Then $f(q - cl(A)) \subset tri - cl(f(A))$ Conversely, let $f(q - cl(A)) \subset tri - cl(f(A))$ for every $A \subset X$.
Let be any tri-closed set in ψ , so that tri - cl(F) = F,
Now $f^{-1}(F) \subset X$ by hypothesis, $f(q - cl(f^{-1}(F)))C tri - cl(f(f^{-1}(F))) \subset tri - cl(F) = F$ Therefore, $q - cl(f^{-1}(F)) \subset f^{-1}(F)$ but $f^{-1}(F) \subset q - cl(f^{-1}(F))$ always
Hence $q - cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is q-closed in X, hence by proposition (3.3.5), f is q-continuous.

Proposition 3.7: Let $(X, \tau_i)_{i=1,2,3,4}$ be a quad topological space, and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri-topological space, a function $f: X \to \psi$ is q-continuous iff:

 $q - cl(f^{-1}(B)) \subset f^{-1}(t - cl(B))$ for every $B \subset \psi$

Proof: Let f be q-continuous. Since tri - cl(B) is t-closed in Ψ , then by proposition (3.3.5) $f^{-1}(tri - cl(B))$ is q-closed in X and therefore,

 $\begin{array}{l} q - cl(f^{-1}(tri - cl(B)) = f^{-1}(tri - cl(B)) \dots \dots \dots \dots (3 - 3 - 5) \\ \text{Now } B \subset tri - cl(B) \ , \ \text{then } f^{-1}(B) \subset f^{-1}(tri - cl(B)), \ \text{then } q - cl(f^{-1}(B)) \subset q - cl(f^{-1}(t - cl(B)) = f^{-1}(tri - cl(B)) \ \text{by } (3 - 3 - 5) \end{array}$

Conversely, let the condition hold and let Fbe any tri-closed set in ψ so that tri - cl(F) = F by hypothesis $q - cl(f^{-1}(F)) \subset f^{-1}(q - cl(F)) = f^{-1}(F)$ but $f^{-1}(F) \subset q - cl(f^{-1}(F))$ always. Hence $q - cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is q-closed in X. it follows from proposition (3.3.5) that f is q-

continuous.

Proposition 3.8: Let $(X, \tau_i)_{i=1,2,3,4}$ be a quad topological space, and $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a tri topological space, a function $f: X \to \psi$ is q-continuous iff $f^{-1}(tri - int(B) \subset q - int(f^{-1}(B)))$ for every $B \subset \psi$.

Proof: Let f be q-continuous, since tri - int(B) is tri-open in ψ , then by proposition (3.1.4) $f^{-1}(tri - int(B))$ sq-openin Xand therefor $q - int(f^{-1}(tri - int(B)) = f^{-1}(tri - int(B))$ (3.3.6)

Now $tri - int(B) \subset B$ then $f^{-1}(tri - int(B)) \subset f^{-1}(B)$, then $q - int(f^{-1}(tri - int(B)) \subset q - int(f^{-1}(B)))$ Hence $f^{-1}(tri - int(B)) \subset q - int(f^{-1}(B))$ by (3.3.6).

Conversely, let the condition hold and let G by any tri-open set in ψ . So that tri - int(G) = G by hypothesis, $f^{-1}(tri - int(G)) \subset q - int(f^{-1}(G))$, since $f^{-1}(tri - int(G)) = f^{-1}(G)$ then $f^{-1}(G) \subset q - int(f^{-1}(G))$, but $q - int(f^{-1}(G)) \subset f^{-1}(G)$ always and so $q - int(f^{-1}(G)) = f^{-1}(G)$ therefore $f^{-1}(G)$ is a q-open in X and consequently by proposition (3.3.4) f is q-continuous.

4- Separation axiom in quad Topological Space

Proposition 4.1 : Let $(\psi, T_i)_{i=1,2,3}$ be a T_o-tri space if $f: (X, T_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ q-continuous and 1-1 function, then $(X, \tau_i)_{i=1,2,3,4}$ is a T₀-q space.

Proof: Let $x_1, x_2 \in X, x_1 \neq x_2$. Since f is 1-1 function then $f(x_1) \neq f(x_2)$, $f(x_1)$ and, $f(x_1) \in G$ and ψ us T₀-tri-space, then there exist q-open G in ψ such that $f(x_1) \in G$ and $f(x_2) \notin G$.

So $x_1 \in f^{-1}(G)$, $x_2 \notin f^{-1}(G)$. therefore $f^{-1}(G)$ is q-open set in X containing x_1 but not x_2 , hence $(X, T_i)_{i=1,2,3,4}$ is T₀-q space.

Proposition4.2:let $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be an q-open bijective function if $(X, \tau_i)_{i=1,2,3,4}$ is a T₀-q space then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is T₀-tri space.

Proof: suppose $y_1, y_2 \in \psi, y_1 \neq y_2$ since f is onto, there exist $x_1, x_2 \in X$ such that $y_1 = f(x_1), y_2 = f(x_2)$ and since f is bijective, then $(x_1) \neq (x_2)$, since X is T₀-q space, then there exist q-open set G such that $x_1 \in G, x_2 \notin G$.

Hence $y_1 = f(x_1) \in f(G), x_2 = f(x_2) \notin f(G)$, since f is q-open function, then f(G) is tri-open set in ψ . Therefore $(\psi, T_i)_{i=1,2,3}$ is T₀-t space.

Proposition 4.3: Let $(\psi, \tau_{i\psi})_{i=1,2,3}$ be T₁-tri space, If $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ is q-continuous and 1-1 function, then X is a T₁-q space.

Proof: Let $x_1, x_2 \in X$, $x_1 \neq x_2$ since f is 1-1 function then $f(x_1), f(x_2) \in \psi$, ψ is T₁-tri space, then there exist U_1, U_2 , tri-open set in ψ such that: $f(x_1) \in U_1, f(x_2) \in U_2, f(x_1) \notin cU_2, f(x_2) \notin U_1$ then $x_1 \in f^{-1}(U_1)$ but $x_2 \notin f^{-1}(U_1)$, and $X_2 \in f^{-1}(U_2)$, but $x_1 \notin f^{-1}(U_2)$ and $f^{-1}(U_1), f^{-1}(U_2)$ are q-open set in X, Hence $(X, T_i)_{i=1,2,3,4}$ is a T₁-q space.

Proposition 4.4: Let $f: (X, \tau_i)_{i=1,2,3,4} \to (\psi, \tau_{i\psi})_{i=1,2,3}$ be bijective function and q-open function,

If $(X, \tau_i)_{i=1,2,3,4}$ is a T₁-q space then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a T₁-tri space

Proof: Suppose $y_1, y_2 \in \psi$, $y_1 \neq y_2$ since f is onto, there exist $x_1, x_2 \in X$, such that

 $y_1 = f(x_1), y_2 = f(x_2)$ and since f is bijective, then $x_1 \neq x_2 \in X$, $f(x_1) \neq f(x_2)$ and since X is T_1 -q space, then there exist q-open sets G, H such that $x_1 \in G$ but $x_2 \notin G$ and $x_2 \in H$ but $x_1 \notin H$, hence $f(x_1) \in f(G)$ and $f(x_2) \in f(H)$. since f is q-open function hence f(G), f(H) are tri-open sets of ψ , such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ but $y_1 \notin f(H)$, then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a T_1 -tri space.

Proposition4.5: Let $(\psi, \tau_{i\psi})_{i=1,2,3}$ be T₂-tri-space, if $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ is q-continuous and 1-1 function, then $(X, \tau_i)_{i=1,2,3,4}$ is a T₂-q space.

Proof:Let $x_1, x_2 \in X$, $x_1 \neq x_2$ since *f* is 1-1 function then

 $f(x_1) \neq f(x_2), y_1 = f(x_1), y_2 = f(x_2), y_1 \neq y_2.$

Since ψ is T₂-tri-space, there exist tow tri-open sets G,H in ψ such that $y_1 \in G, y_2 \in H, G \cap H = \varphi$, hence $x_1 \in f^{-1}(G), x_2 \in f^{-1}((H)$ since f is q-continuous and $f^{-1}(G)$ and $f^{-1}((H)$ are q-open sets in X.Also $f^{-1}(G) \cap f^{-1}((H) = 0$ and $f^{-1}(G \cap H) = f^{-1}(\varphi) = \varphi$ Thus $f: (X, T_i)_{i=1,2,3,4}$ isa T₂-q space.

Proposition4.6: let $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be bijective and q-open function, if $(X, T_i)_{i=1,2,3,4}$ is a T₂-q space then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a T₂-t space.

Proof: Let $y_1 \neq y_2$ since f is bijective function and onto, then there exist $x_1 \neq x_2 \in X$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$ since X is T₂-q space, then there exist q-open sets G, H in X such that $x_1 \in G, x_2 \in H, G \cap H = \varphi$. Since f is q-open function then f(G) and f(H) are tow t-open sets in ψ and $f(G \cap H) = f(G) \cap f(H) = \varphi$, Also $y_1 = f(x_1) \in f(G), y_2 = f(x_2) \in f(H)$ hence $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a T₂-tri space.

Proposition 4.7: Let $(X, \tau_i)_{i=1,2,3,4}$ be a regular-qspace and the function

 $f: (X, \tau_i)_{i=1,2,3,4} \to (\psi, \tau_{i\psi})_{i=1,2,3}$ be q-homeomorphism then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a regular-t space.

Proof: let F be a t-closed in ψ , $q \in \psi$, $q \notin F$. Since f is bijective and onto function, then there exist. P $\in X$ such that f(p) = q, $p = f^{-1}(q)$ since f is q-continuous so $f^{-1}(F)$ is q-closed in X, $q \notin Fp = f^{-1}(q) \notin f^{-1}(F)$. since $(X, T_i)_{i=1,2,3,4}$ is regular-q-space, there exist q-open sets G,H in X. such that $p \in G$, $f^{-1}(F) \in H$ and $G \cap H = \varphi$ so $q = f(p) \in f(G), F \in f(f^{-1}(F) \in H)$, since f is a q-open function, hence f(G), f(H) are tri-open sets in ψ and $f(G \cap H) = f(G) \cap f(H) = F(\varphi) = \varphi$, therefore $(\psi, T_i)_{i=1,2,3}$ is a regular-tri-space.

Proposition4.8: Let $(X, \tau_i)_{i=1,2,3,4}$ be T₃-q space and the function $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be q-homeomorphism, then $(\psi, T_i)_{i=1,2,3}$ is T₃-t space.

Proof: Easy by using Propositions (3.4.4) and (3.4.7)

proposition4.9: Let $(X, \tau_i)_{i=1,2,3,4}$ be a normal-q space and the function $f: (X, T_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be q-homeomorphism, then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is a normal-t.

Proof: Let $(X, \tau_i)_{i=1,2,3,4}$ be a normal-q space and let $(\psi, \tau_{i\psi})_{i=1,2,3}$ be a q-homeomorphism image of $(\psi, \tau_{i\psi})_{i=1,2,3}$ under a q-homeomorphism to show that $(\psi, \tau_{i\psi})_{i=1,2,3}$ also normal-t space.

Let S,B be a pair of disjoints t-closed subsets of ψ , since f is q-continuous function then $f^{-1}(S)$ and $f^{-1}(B)$ are q-closed subsets of X, also $f^{-1}(S) \cap f^{-1}(B) = f^{-1}(S \cap B) = f^{-1}(\varphi) = \varphi$

then $f^{-1}(S)$, $f^{-1}(B)$ are disjoint pair of q-closed subset of X. since the space $(X, T_i)_{i=1,2,3,4}$ is normal-q, then there exist q-open sets G, H in X such that $f^{-1}(B) \in G, f^{-1}(S) \in H$ and $G \cap H = \varphi$ but $f^{-1}(B) \in G$, then $f(f^{-1}(B)) \in f(G), B \in f(G)$ similarly, $S \in f(H)$. also since f is a q-open function f(G) and f(H) are tri-open sets of ψ , such that $f(G) \cap f(H) = f(G \cap H) = f(\varphi) = \varphi$

thus, there exist tri-open subsets in ψ , $G_1 = f(G)$ and $H_1 = f(H)$ such that $B \cap G_1$, $S \cap H_1$,

and $G_1 \cap H_1 = \varphi$, it follows that $(\psi, \tau_{i\psi})_{i=1,2,3}$ also normal-tri-space.

Proposition4.10: Let $(X, \tau_i)_{i=1,2,3,4}$ be a T₄-q space and the function $f: (X, \tau_i)_{i=1,2,3,4} \rightarrow (\psi, \tau_{i\psi})_{i=1,2,3}$ be q-homeomorphism, then $(\psi, \tau_{i\psi})_{i=1,2,3}$ is T₄-trspace. **Proof:** Easy by using proposition (3.4.4) and (3.4.9)

Proposition4.11: The q-continuous image of a q-continuous space is a tri-compact.

Proof: let $f: (X, \tau_i)_{i=1,2,3,4} \to (\psi, \tau_{i\psi})_{i=1,2,3}$ be a q-continuous, let X be a q-compact, let C be a tri-open covering of the set f(X) by sets of tri-open in ψ . The collection $\{f^{-1}(A): A \in C\}$ is a collection of q-open covering of X, these sets are q-open in X because f is q-continuous hence finitely many of them, say $f^{-1}(A_1), \dots, f^{-1}(A_n)$ cover X, then the sets A_1, \dots, A_n are cover of X.

Conclusions

In this paper, the concept of continuity from a quad topological space to a triple topological space is presented, and the separation axioms are studied between these spaces. between

References

- Hameed N.F. & Mohammed Yahya Abid ,Certain types of separation axioms in Tri-topological spaces, Iraqi journal of science, Vol 52, No.2,2011,PP212-217.
- [2] Kelly J.C, Bitopological spaces, Proc.LondonMath.Soc., 3 PP. 17-89, 1963.

- [3] Kovar M., On 3-Topological version of Thet-Reularity, Internat. J. Math, Sci, Vol.23, No.6, 393-398, 2000.
- [4] LumaS.,On (i,j) -prw Closed Set and (i,j)-prw Continuous function in Bitopological Spaces, AL-Qadisiyha Journal For Science, Vol.19 No. 2, 2014, 194-210.
- [5] Mukundan D.V., Introduction to Quad topological spaces, Int. Journal of Scientific & Engg. Research, Vol.4, Issue 7, 2483-2485, July-2013.
- [6] U.D.Tapi&Ranu Sharma, q-Continuous in quad Topological Space, Annals of Pure and Applied Mathematic, Vol.10, No.1, 117-122, 2015.