\mathbf{q}-Continuous on (q-open, q-closed, \mathbf{q}-interior, \mathbf{q}-closure) and separation axiom in quad Topological Space

${ }^{1}$ Safa Khodir Hameed, ${ }^{2}$ Luma, S. Abdalbaqi,
${ }^{1}$ Affiliation (Departmentof Mathematic,College of Education for Women, Tikrit University) - Researcher
${ }^{2}$ Affiliation (Department of Mathematic, College of Education for Women, Tikrit University)
*Corresponding author’s email:lumahhany1977@tu.edu.iq
SecondAuthor's Full Name:Luma Saad Abdalbaqi
Highest Qualification:Assistant Professor
Department: Mathematic
Affiliation (College/University/Institute) with postal address:
email id:lumahhany@tu.edu.iq
ORCID:https://orcid.org/0000-0001-8674-9730

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 4 June 2021

Abstract

The purpose of this paper is to the q-continuousspace from a quad topological space to a triple topological space, we introduce a conditions to make us able to change the separation axioms and regular space, normal space in q-topologicalspace to the separation axioms and regular space, normal space in tri-topological space and study some of their properties

Keywords: Quad topological spaces, $q-T_{0}$ space, $q-T_{1}$ space, $q-T_{2}$ space, $q-T_{3}$ space ,regular space, $q-T_{4}$ space, normalspace, q-continuous, q-homeomorphism.

1- Introduction

J .C. Kelly [2] introduced bi-topological spaces in 1963 and Luma [4], . The study of tri-topological spaces was firstinitiated by Martin M. Kovar [4] in 2000, where a non empty set X with three topologies is calledtritopological spaces. N.F. Hameed \& Mohammed Yahya Abid [1] studied separation axioms in tritopologicalspaces. D.V. Mukundan [5] introduced the concept on topological structures with fourtopologies, quad topology and defined new types of open (closed)sets. In thispaper, we use q-open and q-closed sets defined by D.V. Mukundan [5] to explain the concept of separation axioms in quad topological spaces

Definition 2.1: A quad topological space X is called $\left(T_{o_{-}} q\right)$ space iff to each pair of distinct point x, y in X, there exist a (q_open) set containing one of the points but not other.
Definition 2.11: A quad topological space X is called ($T_{1}-q$) space iff to each pair of distinct point x, y in X, there exist a pair (q_open) set containing X but not y and the other containing y but not X.
Definition 2.22: A quad topological space X is called $\left(T_{2-} q\right)$ space iff to each pair of distinct point x, y of X, there exist a pair of distinct (q_open) sets one containing x and the other containing y and called (Hausd orff_q).
Definition 2.33: A quad topological space X is said to be (regular_q) space iff for each $q_{c l o s e d}$ set F and each point $x \notin F$. there exist disjoint $\left(q_{\text {open }}\right)$ sets G, H such that $x \in G, F \subseteq H$.
A regular_ q with $T_{1-} q$ space is called $T_{3-} q$ space.
A regular_ $q+T_{1-} q$ space $=T_{3-} q$ space
Definition 2.43: A quad topological space X is called to be normal_ q space iff for each two disjoint $q_{\text {_colsed }}$ set $F_{1}, F_{2} \subseteq X$, there exist two disjoint $\left(q_{\text {open }}\right)$ sets G_{1}, G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$.
A Normal_ q with $T_{1-} q$ space is called $T_{4-} q$ space.
A Normal_ $q+T_{1-} q$ space $=T_{4-} q$ space

2- Preliminaries

Definition 2.1 [5][6] :Let X be a nonempty set and $(\tau)_{i=1,2,3,4}$ are general topologies on X .
Then a subset A of space X is said to be quad-open(q-open) set if $A \subset \tau_{1} \cup \tau_{2} \cup \tau_{3} \cup \tau_{4}$ and itscomplement is said to be q -closed and set X with four topologies called $\left(X, \tau_{i}\right)_{i=1,2,3,4} . \mathrm{q}$-opensets satisfy all the axioms of topology.

Definition2.2 [5][6]: A subset of a q-topological space $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ is called q- Neighbourhood of a point if and only if there exist q-open sets such that $x \subset X \subset A$.

Note 2.3[5][6] : We will denote the q-interior (resp. q-closure) of any subset, say of by q-intA(qclA), is the intersection of all q-closed sets containing A.where q-intA is the union of all q-open sets contained in A, and qclA is the intersection of allq-closed sets containing A .

3- q-Continuous in quad Topological Space

Definition3.1: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$, be quad-topological space and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri-topological space, a function of $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is said to be q-ccontinuous at $x \in X$ if f for every tri-open set V in ψ containing $f(x)$ there exists q -open set U in X containing x such that $f(U)=V$, we say that f is q continuous on X if f is q-continuous at each $x \in X$.

Definition3.2 : Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be quad topological space and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri topological space and $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a function, then:

1. f is said to be q-open function if and only if $f(G)$ is tri-open in ψ for every q-open set G in X.
2. $\quad f$ is q-closed function if and only if $f(F)$ is tri-closed in ψ for every q-closed set F in X.
3. f is q-homeomorphism if and only if:
i. $\quad f$ is bijective ($1-1$, onto)
ii. $\quad f$ and f^{-1} are q-continuous.

Example 3.3: Let $X=\{a, b, c\}, \tau_{i}=\{x, \varphi,\{a\}\}, \tau_{i}=\{x, \varphi,\{b\}\}, \tau_{i}=\{x, \varphi,\{a, c\}\}$,
$\tau_{i}=\{x, \varphi,\{b\},\{c\},\{b, c\}\},\left(X, \mathrm{~T}_{1}\right),\left(X, \mathrm{~T}_{2}\right),\left(X, \mathrm{~T}_{3}\right),\left(X, \mathrm{~T}_{4}\right)$ are quad topological space, such that:
$T_{U X}=\{x, \varphi,\{a\},\{b\},\{c\},\{b, c\},\{a, c\}\}$
Let $\psi=\{1,2,3\} \tau_{1 \psi}=\{\psi, \varphi,\{1,2\}\}, \tau_{2 \psi}=\{\psi, \varphi,\{2,3\}\}, \tau_{3 \psi}=\{\psi, \varphi,\{1\},\{3\},\{1,3\}\}$ where $\left(X, \mathrm{~T}_{1}\right),\left(X, \mathrm{~T}_{2}\right),\left(X, \mathrm{~T}_{3}\right)$ aretri-topological space, such that $T_{U Y}=\{\psi, \varphi,\{1\},\{3\},\{1,2\},\{2,3\},\{1,3\}\}$
Define $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, T_{i}\right)_{i=1,2,3}$ by $f(a)=1, f(b)=2, f(c)=3$
Then f is not q-open and not q-continuous because $f^{-1}(\psi)=\{a, b, c\}=X$ is q-open in X, and $f^{-1}(\varphi)=\varphi$ is q open in $X, f^{-1}(\{1\})=\{a\}$ is q-open in $X, f^{-1}(\{3\})=\{c\}$ is q-open in X but $f^{-1}(\{1,2\})=\{a, b\}$ is not q-open in X.
Hence f is not q-continuous. And since $f(X)=\{1,2,3\}=\varphi$ is tri-open in ψ and $f(\varphi)=\varphi$ is tri-open in ψ, also $f(\{a\})=\{1\}$ is tri-open in ψ and $f(\{b\})=\{2\}$ is not tri-open in ψ, Hence f is not q-open.
Early $T_{U X}^{C}=\{x, \varphi,\{b, c\},\{a, c\},\{a, b\},\{a\},\{b\}\}$ and $T_{U Y}^{C}=\{\psi, \varphi,\{2,3\},\{1,2\},\{3\},\{1\},\{2\}\}$
Then $f(\varphi)=\varphi$ is tri-open in $\psi, f(x)=\psi$ is tri-open in ψ and $f(\{b, c\})=\{2,3\}$ is tri-open in ψ
And $f(\{a, c\})=\{1,3\}$ is not tri-open in ψ. Hence f is not q -closed.
Clearly f is bijective, but its not q -continuous. Thane is notq-homeomorphism.
Propositions 3.4: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a quad topological space and $\left(\psi, T_{i}\right)_{i=1,2,3}$ be a tri topological space the function $f: X \rightarrow \psi$ is q -continuous if and only if the inverse image under f of every $\mathrm{t}=$ open set V of ψ is a qopen set of X.
Proof: Let f a q-continuous, and V is tri-open in ψ, to prove that $f^{-1}(V)$ is q-open in X . if $f^{-1}(V)=\varphi$ so, $f^{-1}(V)$ is q-open inX. if $f^{-1}(V) \neq \varphi$, Let $x \in f^{-1}(V)$ then $f(x) \in V$,Bydefinition ofq-continuous there exist qopen set Gx in X containing x such that $f(G x) \in V$.
$x \in G x \in f^{-1}(V)$ this shows that $f^{-1}(V)$ is a q-nbd of each is points. Hence $f^{-1}(V)$ is q-open in X .
Conversely, let $f^{-1}(V)$ is q-open set in X , for each V is a tri-open set in ψ to prove f is q -continuous.
Let $x \in X$ andV is a tri-open set in ψ containing $f(x)$ so $f^{-1}(V)$ is q-open in X-containing $f(x)$ so $f^{-1}(V)$ is qopen in X-containing x and $\left(f^{-1}(V)\right) \subset V$
Then f is q -continuous on X .

Propositions 3.5: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a quad topological space and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri topological space. A function $f: X \rightarrow \psi$ is q-continuous iff if the inverse image under f of every tri-closed set in ψ is q -closed set in X.

Proof: Assume that f is q-continuous and let F be any tri-closed set in ψ. To show that $f^{-1}(\mathrm{~F})$ is q-closed in X , since f is q -continuous and $\psi-F$ is t-open in ψ, it follows from proposition (3.3.4), $f^{-1}(\psi-\mathrm{F})=\mathrm{X}-f^{-1}(F)$ is q-open in X, that is $f^{-1}(F)$ is q-closed in X.
Conversely, let $f^{-1}(F)$ be q -closed in X for every t -closed set F in ψ, we want to show that f is q -continuous function. Let G be an t -open set in ψ. Then $\psi-\mathrm{G}$ is t -closed in ψ and so by hypothesis,
$f^{-1}(\psi-G)=X-f^{-1}(G)$ is q-closed in X , that is $f^{-1}(G)$ is q-open in X , hence f is q-continuous by proposition (3.1.4).

Proposition 3.6: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a quad topological space, and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri topological space, a function $f: X \rightarrow \psi$ is q-continuous iff. $f(q-\operatorname{cl}(A) \subset \operatorname{tri}-\operatorname{cl}(f(A)$ for every $A \in X$
Proof: let f be q -continuous, since $\operatorname{tri}-\operatorname{cl}(f(A))$ is a tri-closed set in Ψ. Then by proposition (3.3.5)
$f^{-1}(\operatorname{tri}-\operatorname{cl}(f(A))$ isq-closed in X ,
$q-c l\left(f^{-1}\left(\operatorname{tri}-\operatorname{cl}(f(A))=f^{-1}(t-\operatorname{cl}(f(A))\right.\right.$
Now $f(A) \subset t-c l\left(f(A), A \subset f^{-1}(f(A)) \subset f^{-1}(t-c l(f(A))\right.$
Then $q-c l(A) \subset q-c l\left(f^{-1}\left(\operatorname{tri}-\operatorname{cl}(f(A))=f^{-1}(\operatorname{tri}-\operatorname{cl}(f(A))\right.\right.$ by (3.3.4)
Then $f(q-c l(A)) \subset \operatorname{tri}-c l(f(A))$
Conversely, let $f(q-\operatorname{cl}(A)) \subset \operatorname{tri}-\operatorname{cl}(f(A))$ for every $A \subset X$.
Let be any tri-closed set in ψ, so that $\operatorname{tri}-\operatorname{cl}(F)=F$,
Now $f^{-1}(F) \subset X$ by hypothesis, $f\left(q-c l\left(f^{-1}(F)\right)\right) C \operatorname{tri}-\operatorname{cl}\left(f\left(f^{-1}(F)\right)\right) \subset \operatorname{tri}-c l(F)=F$
Therefore, $q-c l\left(f^{-1}(F)\right) \subset f^{-1}(F)$ but $f^{-1}(F) \subset q-\operatorname{cl}\left(f^{-1}(F)\right)$ always
Hence $q-\operatorname{cl}\left(f^{-1}(F)\right)=f^{-1}(F)$ and so $f^{-1}(F)$ is q-closed in X, hence by proposition (3.3.5), f is q continuous.

Proposition 3.7: : Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a quad topological space, and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri-topological space, a function $f: X \rightarrow \psi$ is q-continuous iff:
$q-c l\left(f^{-1}(B)\right) \subset f^{-1}(t-c l(B))$ for every $\mathrm{B} \subset \psi$
Proof: Let f be q-continuous. Since $\operatorname{tri}-\operatorname{cl}(B)$ is t-closed in Ψ, then by proposition (3.3.5) $f^{-1}(\operatorname{tri}-\operatorname{cl}(B))$ is q -closed in X and therefore,
$q-c l\left(f^{-1}(\operatorname{tri}-c l(B))=f^{-1}(\operatorname{tri}-\operatorname{cl}(B)) \ldots \ldots \ldots \ldots .(3-3-5)\right.$
Now $B \subset \operatorname{tri}-\operatorname{cl}(B)$, then $f^{-1}(B) \subset f^{-1}(\operatorname{tri}-\operatorname{cl}(B))$, then $q-\operatorname{cl}\left(f^{-1}(B)\right) \subset q-\operatorname{cl}\left(f^{-1}(t-\operatorname{cl}(B))=\right.$ $f^{-1}(\operatorname{tri}-\operatorname{cl}(B))$ by (3-3-5)
Conversely, let the condition hold and let Fbe any tri-closed set in ψ so that $\operatorname{tri}-\operatorname{cl}(F)=F$ by hypothesis
$q-c l\left(f^{-1}(F)\right) \subset f^{-1}(q-c l(F))=f^{-1}(F) \operatorname{but}^{-1}(F) \subset q-c l\left(f^{-1}(F)\right)$ always.
Hence $q-\operatorname{cl}\left(f^{-1}(F)\right)=f^{-1}(F)$ and $\operatorname{sof}^{-1}(F)$ is q-closed in X. it follows from proposition (3.3.5) that f is qcontinuous.

Proposition 3.8: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a quad topological space, and $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a tri topological space, a function $f: X \rightarrow \psi$ is q-continuous iff $f^{-1}\left(\operatorname{tri}-\operatorname{int}(B) \subset q-\operatorname{int}\left(f^{-1}(B)\right)\right.$ for every $B \subset \psi$.
Proof: Let f be q-continuous, since $\operatorname{tri}-\operatorname{int}(B)$ is tri-open in ψ, then by proposition (3.1.4) $f^{-1}(\operatorname{tri}-$ $\operatorname{int}(B)$ isq-openin Xand thereforq $-\operatorname{int}\left(f^{-1}(\operatorname{tri}-\operatorname{int}(B))=f^{-1}(\operatorname{tri}-\operatorname{int}(B))\right.$ \qquad

Now $\quad \operatorname{tri}-\operatorname{int}(B) \subset B \quad$ then $\quad f^{-1}(\operatorname{tri} i \operatorname{int}(B)) \subset f^{-1}(B)$, then $\quad q-\operatorname{int}\left(f^{-1}(\operatorname{tri}-\operatorname{int}(B) \subset q-\right.$ $\operatorname{int}\left(f^{-1}(B)\right)$ Hence $f^{-1}(\operatorname{tri}-\operatorname{int}(B)) C q-\operatorname{int}\left(f^{-1}(B)\right)$ by (3.3.0).
Conversely, let the condition hold and let G by any tri-open set in ψ. So that $\operatorname{tri}-\operatorname{int}(G)=G$ by hypothesis, $f^{-1}(\operatorname{tri}-\operatorname{int}(G)) \subset q-\operatorname{int}\left(f^{-1}(G)\right)$, since $f^{-1}(\operatorname{tri}-\operatorname{int}(G))=f^{-1}(G)$ then $f^{-1}(G) \subset q-$ $\operatorname{int}\left(f^{-1}(G)\right)$, but $q-\operatorname{int}\left(f^{-1}((G)) \subset f^{-1}(G)\right.$ always and so $q-\operatorname{int}\left(f^{-1}((G))=f^{-1}\left((G)\right.\right.$ therefore $f^{-1}(G)$ is a q-open in X and consequently by proposition (3.3.4) f is q-continuous.

4- Separation axiom in quad Topological Space

Proposition 4.1 : Let $\left(\psi, T_{i}\right)_{i=1,2,3}$ be a T_{0}-tri space if $f:\left(X, T_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ q-continuous and 1-1 function, then $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ is a $\mathrm{T}_{0}-\mathrm{q}$ space.
Proof: Let $x_{1}, x_{2} \in \mathrm{X}, x_{1} \neq x_{2}$. Since f is 1-1 function then $f\left(x_{1}\right) \neq f\left(x_{2}\right), f\left(x_{1}\right)$ and, $f\left(x_{1}\right) \in G$ and ψ us $\mathrm{T}_{0^{-}}$ tri-space, then there exist q-open G in ψ such that $f\left(x_{1}\right) \in G$ and $f\left(x_{2}\right) \notin G$.
So $x_{1} \in f^{-1}(G), x_{2} \notin f^{-1}(G)$. therefore $f^{-1}(G)$ is q-open set in X containing x_{1} but not x_{2}, hence $\left(X, T_{i}\right)_{i=1,2,3,4}$ is $\mathrm{T}_{0}-\mathrm{q}$ space.

Proposition4.2:let $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be an q-open bijective function if $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ is a $\mathrm{T}_{0}-\mathrm{q}$ space then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is T_{0}-tri space.
Proof: suppose $y_{1}, y_{2} \in \psi, y_{1} \neq y_{2}$ since f is onto, there exist $x_{1}, x_{2} \in \mathrm{X}$ such that $y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right)$ and since f is bijective, then $\left(x_{1}\right) \neq\left(x_{2}\right)$, since X is $\mathrm{T}_{0}-\mathrm{q}$ space, then there exist q -open set G such that $x_{1} \in G, x_{2} \notin$ G.

Hence $y_{1}=f\left(x_{1}\right) \in f(G), x_{2}=f\left(x_{2}\right) \notin f(G)$, since f is q-open function, then $f(G)$ is tri-open set in ψ. Therefore $\left(\psi, T_{i}\right)_{i=1,2,3}$ is T_{0}-t space.

Proposition 4.3: Let $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be T_{1}-tri space, If $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is q-continuous and 1-1 function, then X is a $\mathrm{T}_{1}-\mathrm{q}$ space.
Proof: Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ since f is 1-1 function then $f\left(x_{1}\right), f\left(x_{2}\right) \in \psi, \psi$ is T_{1}-tri space, then there exist U_{1}, U_{2}, tri-open set in ψ such that: $f\left(x_{1}\right) \in U_{1}, f\left(x_{2}\right) \in U_{2}, f\left(x_{1}\right) \notin c U_{2}, f\left(x_{2}\right) \notin U_{l}$ then $x_{1} \in f^{-1}\left(U_{1}\right)$ but $x_{2} \notin$ $f^{-1}\left(U_{1}\right)$, and $X_{2} \in f^{-1}\left(U_{2}\right)$, but $x_{1} \notin f^{-1}\left(U_{2}\right)$ and $f^{-1}\left(U_{1}\right), f^{-1}\left(U_{2},\right)$ are q-open set inX, Hence $\left(X, T_{i}\right)_{i=1,2,3,4}$ is a $\mathrm{T}_{1}-\mathrm{q}$ space.

Proposition 4.4: Let $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be bijective function and q-open function,
If $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ is a $\mathrm{T}_{1}-\mathrm{q}$ space then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a T_{1}-tri space
Proof: Suppose $y_{1}, y_{2} \in \psi, y_{1} \neq y_{2}$ since f is onto, there exist $x_{1}, x_{2} \in \mathrm{X}$, such that
$y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right)$ and since f is bijective, then $x_{1} \neq x_{2} \in X, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ and since X is $\mathrm{T}_{1}-\mathrm{q}$ space, then there exist q-open sets G,H such that $x_{1} \in G$ but $x_{2} \notin G$ and $x_{2} \in H$ but $x_{1} \notin \mathrm{H}$, hence $f\left(x_{1}\right) \in f(G)$ and $f\left(x_{2}\right) \in f(H)$. since f is q-open function hence $f(G), f(H)$ are tri-open sets of ψ, such that $y_{1} \in f(G)$ but $y_{2} \notin$ $f(G)$ and $y_{2} \in f(H)$ but $y_{1} \notin f(H)$, then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a T_{1}-tri space.

Proposition4.5: Let $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be T_{2}-tri-space, if $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is q-continuous and 1-1 function, then $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ is a $T_{2}-\mathrm{q}$ space.
Proof:Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ since f is1-1 function then
$f\left(x_{1}\right) \neq f\left(x_{2}\right), y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right), y_{1} \neq y_{2}$.
Since ψ is T_{2}-tri-space, there exist tow tri-open sets G,H in ψ such that $y_{1} \in G, y 2 \in H, G \cap H=\varphi$, hence $x_{1} \in f^{-1}(G), x_{2} \in f^{-1}\left((H)\right.$ since f is q -continuous and $f^{-1}(G)$ and $f^{-1}((H)$ are q-open sets in X.Also $f^{-1}(G) \cap f^{-1}\left((H)=0\right.$ and $f^{-1}(G \cap H)=f^{-1}(\varphi)=\varphi$ Thus $f:\left(X, T_{i}\right)_{i=1,2,3,4}$ isa $T_{2}-q$ space.

Proposition4.6: let $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be bijective and q-open function, if $\left(X, T_{i}\right)_{i=1,2,3,4}$ is a $T_{2}-\mathrm{q}$ space then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a T_{2}-t space.
Proof: Let $y_{l} \neq y_{2}$ since f is bijective function and onto, then there exist $x_{1} \neq x_{2} \in \mathrm{X}$ such that $y_{l}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ since X is $\mathrm{T}_{2}-\mathrm{q}$ space, then there exist q -open sets G, H in X such that $x_{1} \in G, x_{2} \in H, G \cap H=\varphi$. Since f is q -open function then $f(G)$ and $f(H)$ are tow t-open sets in ψ and $f(G \cap H)=f(G) \cap f(H)=\varphi$, Also $y_{1}=f\left(x_{1}\right) \in f(G), y_{2}=f\left(x_{2}\right) \in f(H)$ hence $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a T_{2}-tri space.

Proposition4.7: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a regular-qspace and the function
$f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be q-homeomorphism then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a regular-t space.
Proof: let F be a t-closed in $\psi, q \in \psi, q \notin F$. Since f is bijective and onto function, then there exist. P $\in \mathrm{X}$ such that $f(p)=q, p=f^{-1}(q)$ since f is q -continuous so $f^{-1}(F)$ is q-closed in $\mathrm{X}, q \notin F p=f^{-1}(q) \notin$ $f^{-1}(F)$. since $\left(X, T_{i}\right)_{i=1,2,3,4}$ is regular-q-space, there exist q-open sets G,H in X. such that $p \in G, f^{-1}(F) \in H$ and $G \cap H=\varphi$ so $q=f(p) \in f(G), F \in f\left(f^{-1}(F) \in H\right)$, since f is a q-open function, hence $f(G), f(H)$ are tri-open sets in ψ and $f(G \cap H)=f(G) \cap f(H)=F(\varphi)=\varphi$, therefore $\left(\psi, T_{i}\right)_{i=1,2,3}$ is a regular-tri-space.

Proposition4.8: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be $T_{3}-\mathrm{q}$ space and the function $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be qhomeomorphism, then $\left(\psi, T_{i}\right)_{i=1,2,3}$ is $\mathrm{T}_{3}-\mathrm{t}$ space.
Proof: Easy by using Propositions (3.4.4) and (3.4.7)
proposition4.9: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a normal-q space and the function $f:\left(X, T_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be qhomeomorphism, then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is a normal-t.
Proof: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a normal-q space and let $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a q-homeomorphism image of $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ under a q-homeomorphism to show that $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ also normal-t space.
Let S, B be a pair of disjoints t -closed subsets of ψ, since f is q -continuous function then $f^{-1}(S)$ and $f^{-1}(B)$ are q-closed subsets of X, also $f^{-1}(S) \cap f^{-1}(B)=f^{-1}(S \cap B)=f^{-1}(\varphi)=\varphi$
then $f^{-1}(S), f^{-1}(B)$ are disjoint pair of q-closed subset of X. since the space $\left(X, T_{i}\right)_{i=1,2,3,4}$ is normal-q, then there exist q-open sets G, H in X such that $f^{-1}(B) \in G, f^{-1}(S) \in H$ and $G \cap H=\varphi$ but $f^{-1}(B) \in G$, then $f\left(f^{-1}(B)\right) \in f(G), B \in f(G)$ similarly, $S \in f(H)$. also since f is a q-open function $f(G)$ and $f(H)$ are tri-open sets of ψ, such that $f(G) \cap f(H)=f(G \cap H)=f(\varphi)=\varphi$
thus, there exist tri-open subsets in $\psi, G_{l}=f(G)$ and $H_{l}=f(H)$ such that $B \cap G_{l}, S \cap H_{l}$, and $G_{l} \cap H_{l}=\varphi$, it follows that $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ also normal-tri-space.

Proposition4.10: Let $\left(X, \tau_{i}\right)_{i=1,2,3,4}$ be a $\mathrm{T}_{4}-\mathrm{q}$ space and the function $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be qhomeomorphism, then $\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ is T_{4}-trspace.
Proof: Easy by using proposition (3.4.4) and (3.4.9)

Proposition4.11:The q -continuous image of a q -continuous space is a tri-compact.
Proof: let $f:\left(X, \tau_{i}\right)_{i=1,2,3,4} \rightarrow\left(\psi, \tau_{i \psi}\right)_{i=1,2,3}$ be a q-continuous, let X be a q-compact, let C be a tri-open covering of the set $f(X)$ by sets of tri-open in ψ. The collection $\left\{f^{-1}(A): A \in C\right\}$ is a collection of q-open covering of X , these sets are q -open in X because f is q -continuous hence finitely many of them, say $f^{-1}\left(A_{1}\right), \ldots, f^{-1}\left(A_{n}\right)$ cover X, then the sets A_{1}, \ldots, A_{n} are cover of X.

Conclusions

In this paper, the concept of continuity from a quad topological space to a triple topological space is presented, and the separation axioms are studiedbetween these spaces. between

References

[1] Hameed N.F. \& Mohammed Yahya Abid ,Certain types of separation axioms in Tri-topological spaces, Iraqi journal of science, Vol 52, No.2,2011,PP212-217.
[2] Kelly J.C, Bitopological spaces, Proc.LondonMath.Soc., 3 PP. 17-89, 1963.
[3] Kovar M., On 3-Topological version of Thet-Reularity, Internat. J. Math, Sci,Vol.23, No.6,393-398, 2000.
[4] LumaS.,On (i,j) -prw Closed Set and (i,j)-prw Continuous function in Bitopological Spaces, ALQadisiyha Journal For Science, Vol. 19 No. 2, 2014, 194-210.
[5] Mukundan D.V., Introduction to Quad topological spaces, Int. Journal of Scientific \& Engg. Research, Vol.4, Issue 7, 2483-2485, July-2013.
[6] U.D.Tapi\&Ranu Sharma, q-Continuous in quad Topological Space, Annals of Pure and Applied Mathematic,Vol.10, No.1, 117-122, 2015.

