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Abstract: In this paper, a model predictive control (MPC) based on the properties of the voltage source inverter is applied to 

Polysolenoid motors. Polysolenoid motors are a particular type of permanently excited synchronous motor. It has a tubular 
texture. On the stator of the motor, there are only two windings. Based on the structural characteristics of the motor, the used 
source is a two-phase voltage source inverter. When considering the voltage supplied to the two windings from the inverter as 
continuous, the continuous control set model predictive control (CCS-MPC) is developed at the force loop. Simulation results 
are performed to illustrate the performance of the implemented system. 
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1. Introduction  

The Polysolenoid motor exerts thrust on the moving part to produce reciprocating motion. The working 

principle of the Polysolenoid motor has been mentioned in [1-12]. Currently, linear motors have been widely used 

in industry due to the advantages of efficiency, position accuracy, and reduced system weight. Some typical 

applications using linear motors can be mentioned, such as micro-motor systems [13,14], vehicle power steering 

systems [15], compressor drive components in industrial refrigeration systems [16], marine system applications 

[17], magnetic levitation transport applications [18-20], and so on. The control problem for linear motors has 

always attracted the attention of researchers. In [19-21], the method of speed control using self-tuning PI 

controller combined with speed estimation technique in the slow-speed region was introduced. Sliding controllers 

used to deal with the effects of uncertainty were presented in [22-25]. The backstepping control based on 

Lyapunov's direct method was applied in [26-29]. In [30], the sliding control method combined with the extreme 

learning machine (ELM) technique drives the position deviation to equilibrium after a finite number of steps. 

Using the disturbance observer to control the position error of the motor [8,31], the stability of the system is 

proved by the Lyapunov method. To solve the control problem with an approximate model, the technique of using 

neurons was implemented in [32,33]. In the above studies, the role of the inverter is considered as a 1:1 transfer 

function of modulus and phase angle when performing voltage vector modulation on the stator side. This is not 

satisfactory because the inverter is essentially bound to the modulation limit. In addition, when considering the 

switching time of the transistor, the vector modulation domain will become very complicated. The MPC used in 

this case will be based on solving the optimization problem for the objective function to perform the voltage 

vector modulation of the inverter, taking into account the constraints. 

2. Mathetical model 

 

Figure. 1 Polyslenoid motor [4] 
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The mathematical model of Polysolenoid motor on the 𝑑𝑞-coordinate system is as below 

[12]: 
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From (1), the continuous current model of the Polysolenoid motor on the 𝑑𝑞-coordinate 

system is driven as: 
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3.Control design 

From the continuous current model, the discrete-time current model of the stator is obtained as below: 

( ) ( ) ( )1dq dq dq pk k k + = + +i Φi Hu h       (3) 
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in which, Ts is the sampling time of the current. 

Based on the discrete-time model, a predictive model is built with ( )est

dq k i+i  is the predicted current value at 

the next 𝑖-th samples. Using the discrete-time model (3), we have: 

( ) ( ) ( )1est est

dq dq dq pk i k k i k k i + + = + + + +i Φi Hu h     (4) 

where ( ) ( )est

dq dqk k=i i  is at the current sample k ; ( )dq k i+u denotes the control signal that need to be 

determined at at the next 𝑖-th samples. The intended use of dqu is to distinguish actual control signals applied to 

the system, ( ) ( ), 1dq dqk k −u u , … With a prediction range pN , the MPC solves optimal problem with control 

voltage vectors ( ) ( ) ( ) ( ), 1 ,....., 1dq dq dq dq pk k k k N= + + −u u u u  as variables. 
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The selected objective function has the following quadratic form: 

( )( ) ( )( )
1

| |
pN

T
ref est ref est

dq dq dq dq
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J k i k k i k
=

 = − + − +
   i i Q i i    (5) 

where  ( )1ddiag =Q  is a positive definite diagonal matrix, the coefficient 
d represents the weight of the 

current deviation from 
ref

d di i−  to 
ref

q qi i− in the objective function J , ref

dqi  is the reference from the output of the 

speed controller. Due to the fast kinematics of the current control loop, the prediction range is chosen to be small 

in order to reduce the computation cost in the problem (5) and ensure the performance of the controller. In 

addition, in industrial applications, the sampling time of the current loop is much faster than that of the speed 

loop. Combining the above reasons, we can consider the speed and angular position of the motor to be constant 

during one sampling cycle resulting in ref

dqi is a constant in Equation (5). 

 

Figure.2 Modulation plane on αβ-coordinate system using CCS-MPC. 

The modulation plane on the αβ-coordinate system using CCS-MPCis depicted in Figure.2Condition for A to 

be in the modulation domain is: 
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From the constraint of 
su , we obtain the constraint of dqu  as below: 
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Accordingly, the optimization problem (5) with the cost function J can be converted into a quadratic form, 

with ( ) ( )dq dqk k=u u is the the optimal variable, as below: 
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where C is a component that depends only on the current state and the current velocity and does not depend on 

( )dq ku . 
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4.Simulation results 

The motor parameters are described in Table. 1. 

Table.1. Motor parameters 

Motor parameters Symbol Value Unit 

d-axis stator inductance Lsd 1.4 mH 

q-axis stator inductance Lsq 1.4 mH 

Stator resistance Rs 10.3 Ω 

Rotor flux ψp 0.035 Wb 

Number of pole pairs zp 2  

Pole step τp 0.02 m 

    
 

Simulation is performed with the current sampling time ( )100iT s= .Response of the CCS-MPC current 

regulator to a change in the current loop reference value. 

 

Figure.3  Current response iq 

 

 

Figure. 4Current response id 
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Comments:  At the time of changing the q-axis reference current value (Figure 4, Figure 5),  the iq current value 

reaches the reference value, the id current is also returned to zero. The id is affected but not significantly, and this 

is an acceptable value. To drive the value of the d-axis current closer to zero, we change the weighted value λd. 

We see that the controller design has performed demultiplexing between the two d-, q- axes. 

5. Conclusion 

The CCS-MPC control method applied to Poysolenoid motors has promoted its efficiency by decoupling the 

currents on the two d-, q- axes corresponding to the flux generation and thrust axes. In this paper, since the 

sampling time of the force loop is extremely small, ( )100iT s= , the prediction range is limited. When using the 

CCS-MPC method, the processing capacity of the microcontroller plays a decisive role in the responsibility of the 

system. For higher power motors, the CCS-MPC method will be a very suitable choice. Since the system has a 

large electromagnetic time constant (Tu = Lu/Ru), a larger sampling period will be chosen. That will balance the 

criteria of the processing power of the microcontroller and the quality of the system. We can more easily select a 

processor to reduce costs as well as have more choices in the popular processors available to integrate into the 

system. 
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