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Abstract: The aim of this paper is to investigate the application of integral transform combined with variation 
iteration method to solve evolution partial differential equations. The combined form of the Laplace 

substitution and variation iteration method is implemented efficiently in finding the analytical and numerical 

solutions of nonlinear evolution partial differential equations with mixed partial derivatives. The obtained 
solutions are compared to the exact solutions and other existing methods. Illustrative examples show the 

efficiency and the powerful of the used method. 
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1. Introduction  

    Various phenomena arising in natural, nonlinear physical sciences [1, 2], and engineering [3, 4] are 

modeled by a class of integrable nonlinear evolution equations which can be expressed in terms of nonlinear 

partial differential equations (NLPDEs). Those problems have important effects in applied mathematics. 

Many authors had paid great attention in developing different methods for finding exact and/or approximate 

solutions of such models [5-13] and the references therein. 

    Nonlinear evolution partial differential equations involving mixed partial derivatives appear in several 

fields of science, physics and engineering. The important applications of these equations have obtained so 

much interesting from many author scientists. Until now getting the exact or approximation solutions for the 

most models of these equations have big problem. Solving these equations need some different methods. In 

the recent period, many researchers mainly had paid attention to studying the solution of these equations by 

using various methods [14-23]. The paper is devoted to solve some nonlinear evolution partial differential 

equations involving mixed partial derivatives by using a hybrid method combined the Laplace substitution 

method (LS) and the variational iteration method (VIM). 

    The concept of LS [21] was proposed by Sujit Handibag and B. D. Karande in 2012. The method is based 

on the application of the well-known Laplace transform. On the other hand, the VIM was developed by He 

[24-27] for solving linear and nonlinear PDEs. The goal of this work is to extend the application of LS with 

combination of VIM (LS-VIM) for solving nonlinear evolution PDEs involving mixed derivatives.  

    The rest of this paper is organized as follows. In Section 2, the brief description of the LS-VIM is given. 

In Section 3, we apply the proposed method for solving NLPDEs involving mixed partial derivatives. Finally, 

the conclusions are given in Section 4. 

 

2. Description of Method 

     

    Consider the following general form of NLPDE involving mixed derivatives with initial conditions  

 

𝙇𝒖(𝒙, 𝒕) + 𝓡𝒖(𝒙, 𝒕) + 𝓝𝒖(𝒙, 𝒕) = 𝓱(𝒙, 𝒕)                                                                          (1) 

𝒖(𝒙, 𝟎) = 𝙛(𝒙),   𝒖𝒕(𝟎, 𝒕) = 𝙜(𝒕)                                                                                          (2) 
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where  𝘓 =
𝜕2

𝜕𝑥𝜕𝑡
  is a linear operator,  ℛ𝑢(𝑥, 𝑡) is the remaining of linear operator,  𝒩𝑢(𝑥, 𝑡) represents the 

nonlinear operator, and 𝒽(𝑥, 𝑡) is the source term.  

Then equation (1) can be written as:  

𝝏𝟐

𝝏𝒙𝝏𝒕
𝒖(𝒙, 𝒕) + 𝓡𝒖(𝒙, 𝒕) + 𝓝𝒖(𝒙, 𝒕) = 𝓱(𝒙, 𝒕)                                                                        (3) 

Let 
𝜕

𝜕𝑡
= 𝑈 then replace it in equation (3) we get 

𝝏𝑼

𝝏𝒙
𝒖(𝒙, 𝒕) + 𝓡𝒖(𝒙, 𝒕) + 𝓝𝒖(𝒙, 𝒕) = 𝓱(𝒙, 𝒕)                                                                          (4) 

Taking Laplace transform with respect to x of both sides of equation (4) and apply the differentiation property 

of Laplace transform, we get 

𝑳𝒙 [
𝝏𝑼

𝝏𝒙
𝒖(𝒙, 𝒕)] + 𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] + 𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] = 𝑳𝒙[𝓱(𝒙, 𝒕)]                                               (5) 

                [𝒔𝑼(𝒔, 𝒕) − 𝑼(𝟎, 𝒕)] + 𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] + 𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] = 𝑳𝒙[𝓱(𝒙, 𝒕)]                                 (6) 

Multiplying the both sides of equation (6) by  1

𝑠
  and substitution the initial conditions given in equation (2), 

we get  

[𝑼(𝒔, 𝒕) −
𝟏

𝒔
𝙜(𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] =

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]                                   (7) 

Now, applying the inverse Laplace transform with respect to x of both sides of equation (7), yields 

𝑼(𝒙, 𝒕) = [𝙜(𝒕)] − 𝑳𝒙
−𝟏 {

𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] −

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]}                           (8) 

Re-substitute  
𝜕

𝜕𝑡
= 𝑈 in equation (8), we have  

𝝏𝑼(𝒙,𝒕)

𝝏𝒕
= [𝙜(𝒕)] − 𝑳𝒙

−𝟏 {
𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] −

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]}                               (9) 

Now, by taking the Laplace transform of equation (9) with respect to t and Multiplying by 1

𝑠
 , then using the 

initial condition given in equation (2) and applying the inverse Laplace transform with respect to t , we get  

𝒖(𝒙, 𝒕) = 𝙛(𝒙) + 𝑳𝒕
−𝟏 (

𝟏

𝒔
𝑳𝒕 [[𝙜(𝒕)] − 𝑳𝒙

−𝟏 {
𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] −

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]}]) (10) 

𝒖𝒙𝒕(𝒙, 𝒕) =
𝝏𝟐

𝝏𝒙𝝏𝒕
𝙛(𝒙)

+
𝝏𝟐

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 [[𝙜(𝒕)] − 𝑳𝒙

−𝟏 {
𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] −

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]}]) 

                                                                                                                                                                  (11) 

Using correction function of the variation iteration method with Lagrange multiplier  𝜆 = −1  

𝒖𝒏+𝟏(𝒙, 𝒕) = 𝒖𝒏(𝒙, 𝒕) − ∫ ∫ (𝒖𝒏)𝒙𝒕(𝒙, 𝒕) −
𝒕

𝟎

𝒙

𝟎

𝝏𝟐

𝝏𝒙𝝏𝒕
𝙛(𝒙) −

𝝏𝟐

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 [[𝙜(𝒕)] − 𝑳𝒙

−𝟏 {
𝟏

𝒔
𝑳𝒙[𝓡𝒖(𝒙, 𝒕)] −

𝟏

𝒔
𝑳𝒙[𝓝𝒖(𝒙, 𝒕)] +

𝟏

𝒔
𝑳𝒙[𝓱(𝒙, 𝒕)]}]) 𝒅𝒙𝒅𝒕                                                                                                             (𝟏𝟐)                                                             

The solution of the given NLPDEs in equation (1) represented by equation (12) with correction function and 

the solution 𝑢(𝑥, 𝑡) is given by  

𝒖(𝒙, 𝒕) = 𝒍𝒊𝒎
𝒏→∞

𝒖𝒏(𝒙, 𝒕)                                                                                                                                      (𝟏𝟑) 

3. Application of the Proposed Method  
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Example (3.1): [15] consider the following nonlinear partial differential equation which involving mixed 

derivatives, 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
− (

𝝏𝒖

𝝏𝒙
)

𝟐

+ 𝒖𝟐 = 𝒆𝒙                                                                                                    (11) 

subject to the initial condition           

𝒖(𝟎, 𝒕) = 𝒕          ,            𝒖𝒙(𝒙, 𝟎) = 𝟎                                                                              (12) 

with exact solution  

𝒖(𝒙, 𝒕) = 𝒆𝒙𝒕                                                                                                                       (13) 

Let 
𝜕𝑢

𝜕𝑥
= 𝑈 

𝝏 𝑼

𝝏𝒕
− (𝑼)𝟐 + 𝒖𝟐 = 𝒆𝒙                                                                                                          (14) 

Taking Laplace transform with respect to t of both sides of equation (17) and apply the differentiation 

property of Laplace transform, we get 

𝑳𝒕 (
𝝏 𝑼

𝝏𝒕
) − 𝑳𝒕(𝑼)𝟐 + 𝑳𝒕(𝒖𝟐) = 𝑳𝒕𝒆𝒙                                                                                   (15) 

(𝒔𝑼(𝒙, 𝒔) − 𝒖(𝒙, 𝟎)) − 𝑳𝒕(𝑼)𝟐 + 𝑳𝒕(𝒖𝟐) = 𝑳𝒕𝒆𝒙                                                                (16) 

Dividing equation (19) by s and substitution the initial conditions given in equation (15), we have 

(𝑼(𝒙, 𝒔) −
𝟏

𝒔
𝟎) − 𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝑼)𝟐] +

𝟏

𝒔
𝑳𝒕(𝒖𝟐) =

𝟏

𝒔𝟐 𝒆𝒙                                                          (17) 

Now, applying the inverse Laplace transform with respect to t of both sides of equation (20), yields  

𝑼(𝒙, 𝒕) − 𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕(𝑼)𝟐] + 𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝟐)] = 𝒆𝒙𝒕                                                                 (18) 

Go back to 
𝜕𝑢

𝜕𝑥
= 𝑈                  

𝝏𝒖

𝝏𝒙
− 𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖

𝝏𝒙
)

𝟐

] + 𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕(𝒖𝟐)] = 𝒆𝒙𝒕                                                                      (19) 

Taking Laplace transform with respect to x of both sides of equation (22) and apply the differentiation 

property of Laplace transform, we get 

𝒔𝒖(𝒔, 𝒕) − 𝒖(𝟎, 𝒕) − 𝑳𝒙 {𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕 (

𝝏𝒖

𝝏𝒙
)

𝟐

]} + 𝑳𝒙 (𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕(𝒖𝟐)]) = 𝑳𝒙(𝒆𝒙𝒕)                                  (20) 

Dividing both sides of equation (23) by s and substitution the initial conditions given in equation (15), yields  

𝒖(𝒔, 𝒕) −
𝟏

𝒔
𝒕 −

𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖

𝝏𝒙
)

𝟐

]} +
𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝟐)]) =

𝟏

𝒔
𝑳𝒙(𝒆𝒙𝒕)                                     (21) 

Applying the inverse Laplace transform with respect to x of both sides of equation (24), we get   

𝒖(𝒙, 𝒕) − 𝒕 − 𝑳𝒙
−𝟏 (

𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖

𝝏𝒙
)

𝟐

]}) + 𝑳𝒙
−𝟏 (

𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝟐)])) = 𝒆𝒙𝒕 − 𝒕                     (22) 

𝒖(𝒙, 𝒕) = 𝑳𝒙
−𝟏 (

𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖

𝝏𝒙
)

𝟐

]}) − 𝑳𝒙
−𝟏 (

𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝟐)])) + 𝒆𝒙𝒕                                (23) 

Now,  

𝑢𝑥𝑡(𝑥, 𝑡) =
𝜕2𝑢

𝜕𝑥𝜕𝑡
[𝐿𝑥

−1 (
1

𝑠
𝐿𝑥 {𝐿𝑡

−1 [
1

𝑠
𝐿𝑡 (

𝜕𝑢

𝜕𝑥
)

2

]})] −
𝜕2𝑢

𝜕𝑥𝜕𝑡
{𝐿𝑥

−1 (
1

𝑠
𝐿𝑥 (𝐿𝑡

−1 [
1

𝑠
𝐿𝑡(𝑢2)]))} + 𝑒𝑥.  
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𝑢𝑥𝑡(𝑥, 𝑡) −
𝜕2𝑢

𝜕𝑥𝜕𝑡
[𝐿𝑥

−1 (
1

𝑠
𝐿𝑥 {𝐿𝑡

−1 [
1

𝑠
𝐿𝑡 (

𝜕𝑢

𝜕𝑥
)

2

]})] +
𝜕2𝑢

𝜕𝑥𝜕𝑡
{𝐿𝑥

−1 (
1

𝑠
𝐿𝑥 (𝐿𝑡

−1 [
1

𝑠
𝐿𝑡(𝑢2)]))} − 𝑒𝑥 = 0. 

Using correction function and 𝜆 = −1  

𝒖𝒏+𝟏(𝒙, 𝒕) = 𝒖𝒏(𝒙, 𝒕) − ∫ ∫ ((𝒖𝒏)𝒙𝒕(𝒙, 𝒕) −
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖𝒏

𝝏𝒙
)

𝟐

]})] +
𝒕

𝟎

𝒙

𝟎

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
{𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝒏

𝟐)]))} − 𝒆𝒙 𝒅𝒙𝒅𝒕)                                                                                                                                                      

(24) 

When  𝑛 = 0 and 𝑢0(𝑥, 𝑡) = 𝑒𝑥𝑡, we have  

𝒖𝟏(𝒙, 𝒕) = 𝒖𝟎(𝒙, 𝒕) − ∫ ∫ ((𝒖𝟎)𝒙𝒕(𝒙, 𝒕) −
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 (

𝝏𝒖𝟎

𝝏𝒙
)

𝟐

]})] +
𝒕

𝟎

𝒙

𝟎

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
{𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒖𝟎

𝟐)]))} − 𝒆𝒙 𝒅𝒙𝒅𝒕)                                                                                                                                                      

(25) 

𝒖𝟏(𝒙, 𝒕) = 𝒆𝒙𝒕  − ∫ ∫ (𝒆𝒙 +
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 {𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒆𝟐𝒙𝒕𝟐)  ]})] +

𝒕

𝟎

𝒙

𝟎

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
{𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙 (𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕(𝒆𝟐𝒙𝒕𝟐)]))} − 𝒆𝒙 𝒅𝒙𝒅𝒕)                                                                                                                                                     

(26) 

𝒖𝟏(𝒙, 𝒕) = 𝒆𝒙𝒕                                                                                                                                             (27) 

Equation (30) represents the exact solution.  

    Note that this example cannot be solved by LS because the equation (14) is not linear, i.e. ℛ𝑢(𝑥, 𝑡)  ≠ 𝟎 , 

the term 𝑢(𝑥, 𝑡) appears in the both sides of the equation and cannot be combined in a single side. The 

proposed LS-VIM overcomes this limitation efficiently. The exact solution of the given equation is obtained 

in one iteration, while it was obtained after substituting all values of 𝑢𝑛(𝑥, 𝑡) by using the method of Laplace 

substitution combined with the Adomian decomposition method [15]. 

Example (3.2): [22] consider the following nonlinear partial differential equation which involving mixed 

derivatives, 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
+

𝝏𝒖

𝝏𝒙
+ 𝒖 = 𝟔𝒙𝟐𝒕                                                                                                                               (28) 

subject to the initial conditions             𝒖(𝒙, 𝟎) = 𝟏  ,                 𝒖(𝟎, 𝒕) = 𝒕  ,             𝒖𝒕(𝟎, 𝒕) = 𝟎.           (29) 

with exact solution 𝒖 (𝒙, 𝒕) = 𝟏 − 𝒕𝒙 + 𝒕𝟐𝒙𝟑.                                                                                           (30) 

Let 
𝜕𝑢

𝜕𝑡
= 𝑈 

𝝏𝑼 

𝝏𝒙
+

𝝏𝒖

𝝏𝒙
+ 𝒖 = 𝟔𝒙𝟐𝒕                                                                                                                                    (31) 

Taking Laplace transform with respect to x of both sides of equation (35) and apply the differentiation 

property of Laplace transform, we get 

 

𝑳𝒙 (
𝝏𝑼 

𝝏𝒙
) + 𝑳𝒙 (

𝝏𝒖

𝝏𝒙
) + 𝑳𝒙(𝒖) = 𝑳𝒙(𝟔𝒙𝟐𝒕 )                                                                                                   (32) 

𝒔𝑼(𝒔, 𝒕) − 𝑼(𝟎, 𝒕) + 𝒔𝒖(𝒔, 𝒕) − 𝒖(𝟎, 𝒕) + 𝑳𝒙(𝒖) =
𝟏𝟐𝒕

𝒔𝟑                                                                             (33) 

Dividing equation (37) by s and substitution the initial conditions given in equation (33), we have 
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𝑼(𝒔, 𝒕) − 𝟎 + 𝒖(𝒔, 𝒕) −
𝟏

𝒔
𝒕 +

𝟏

𝒔
𝑳𝒙(𝒖) =

𝟏𝟐𝒕

𝒔𝟒                                                                                                 (34) 

Now, applying the inverse Laplace transform with respect to x of both sides of equation (38), yields  

𝝏𝒖

𝝏𝒕
+ 𝒖(𝒙, 𝒕) − 𝒕 + 𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖)) = 𝑳𝒙

−𝟏 (
𝟏𝟐𝒕

𝒔𝟒 )                                                                                          (35) 

𝝏𝒖

𝝏𝒕
+ 𝒖(𝒙, 𝒕) − 𝒕 + 𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖)) = 𝟐𝒕𝒙𝟑                                                                                               (36) 

Taking Laplace transform with respect to t of both sides of equation (40) and apply the differentiation 

property of Laplace transform, we get 

𝒖(𝒙, 𝒔) −
𝟏

𝒔
 +

𝟏

𝒔
𝑳𝒕(𝒖(𝒙, 𝒕)) −

𝟏

𝒔
(

𝟏

𝒔𝟐) +
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖))) =

𝟏

𝒔
𝑳𝒕(𝟐𝒕𝒙𝟑)                                           (37) 

Applying the inverse Laplace transform with respect to t of both sides of equation (41), we get   

𝒖(𝒙, 𝒕) − 𝟏 + 𝑳𝒕
−𝟏 (

𝟏

𝒔
𝑳𝒕(𝒖(𝒙, 𝒕))) −

𝒕𝟐

𝟐
+ 𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖)))) = 𝒕𝟐𝒙𝟑                                     (38) 

𝒖(𝒙, 𝒕) = 𝟏 − 𝑳𝒕
−𝟏 (

𝟏

𝒔
𝑳𝒕(𝒖(𝒙, 𝒕))) +

𝒕𝟐

𝟐
− 𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖)))) + 𝒕𝟐𝒙𝟑                                       (39) 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
=

𝝏 

𝝏𝒙
(

𝝏 

𝝏𝒕
) =

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
=

𝝏 

𝝏𝒙
(

𝝏 

𝝏𝒕
) = −

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕(𝒖(𝒙, 𝒕))) −

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖)))) + 𝟔𝒙𝟐𝒕                

(40) 

Now using  correction function and 𝜆 = −1 

𝒖𝒏+𝟏(𝒙, 𝒕) = 𝒖𝒏(𝒙, 𝒕) − ∫ ∫ ((𝒖𝒏)𝒙𝒕(𝒙, 𝒕) +
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕(𝒖𝒏(𝒙, 𝒕)))] +

𝒕

𝟎

𝒙

𝟎

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖𝒏)))) − 𝟔𝒕𝒙𝟐 𝒅𝒙𝒅𝒕)                                                                                                                                             

(41) 

Taking  𝑛 = 0  and  𝑢0 = 1. 

𝒖𝟏(𝒙, 𝒕) = 𝒖𝟎(𝒙, 𝒕) − ∫ ∫ ((𝒖𝟎)𝒙𝒕(𝒙, 𝒕) +
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕(𝒖𝟎(𝒙, 𝒕)))] +

𝒕

𝟎

𝒙

𝟎

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 (𝑳𝒙

−𝟏 (
𝟏

𝒔
𝑳𝒙(𝒖𝟎)))) − 𝟔𝒕𝒙𝟐 𝒅𝒙𝒅𝒕)                                                                                                                                              

(42) 

𝒖𝟏(𝒙, 𝒕) = 𝟏 − ∫ ∫ (𝟎 + 𝟎 + 𝟏 − 𝟔𝒕𝒙𝟐 𝒅𝒙𝒅𝒕)
𝒕

𝟎

𝒙

𝟎
                                                                                   (43) 

𝒖𝟏(𝒙, 𝒕) = 𝟏 − ∫ ∫ (
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝒕] +

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
(𝒙𝒕) − 𝟔𝒕𝒙𝟐 𝒅𝒙𝒅𝒕)

𝒕

𝟎

𝒙

𝟎
                                                                    (44) 

𝒖𝟏(𝒙, 𝒕) = 𝟏 − ∫ ∫ (𝟏 − 𝟔𝒕𝒙𝟐 𝒅𝒙𝒅𝒕)
𝒕

𝟎

𝒙

𝟎
                                                                                                  (45) 

𝒖𝟏(𝒙, 𝒕) = 𝟏 − 𝒕𝒙 + 𝒕𝟐𝒙𝟑  which is the exact solution 𝒖(𝒙, 𝒕).                                                                (46) 

 

    The exact solution was obtained after two iterations by using other existing methods such as Laplace 

substation method, the Adomian decomposition method, and the homotopy perturbation method [22].   
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Example (3.3): [23] consider the nonlinear partial differential equation which involving mixed derivatives  

𝒖𝒙𝒕 + 𝒖 = 𝟎                                                                                                                                            (47) 

with exact solution 

𝒖(𝒙, 𝒕) = 𝐜𝐨𝐬𝐡(𝒙 − 𝒕)                                                                                                                            (48) 

subject to the initial conditions  

𝒖(𝒙, 𝟎) = 𝐜𝐨𝐬𝐡(𝒙),     𝒖𝒕(𝟎, 𝒕) = 𝐬𝐢𝐧𝐡(𝐭).                                                                                               (49) 

 Let 
𝜕 𝑢

𝜕𝑡
= 𝑈 

𝝏𝑼

𝝏𝒙
+ 𝒖 = 𝟎                                                                                                                                                 (50) 

Taking Laplace transform with respect to x of both sides of equation (54) and apply the differentiation 

property of Laplace transform, we get 

𝒔𝑼(𝒔, 𝒕) − 𝑼(𝟎, 𝒕) + 𝑳𝒙(𝒖) = 𝟎                                                                                                                 (51) 

Dividing equation (55) by s and substitution the initial conditions given in equation (53), we have 

𝑼(𝒔, 𝒕) −
𝟏

𝒔
𝐬𝐢𝐧𝐡 (𝐭) +

𝟏

𝒔
𝑳𝒙(𝒖) = 𝟎                                                                                                             (52) 

Now, applying the inverse Laplace transform with respect to x of both sides of equation (56), yields  

𝑼(𝒙, 𝒕) − 𝐬𝐢𝐧𝐡 (𝐭) + 𝑳𝒙
−𝟏 [

𝟏

𝒔
𝑳𝒙(𝒖)] = 𝟎                                                                                                     (53) 

𝝏 𝒖

𝝏𝒕
(𝒙, 𝒕) − 𝐬𝐢𝐧𝐡 (𝐭) + 𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)] = 𝟎                                                                                                   (54) 

Applying the inverse Laplace transform with respect to t of both sides of equation (58), we get   

𝒔𝒖(𝒙, 𝒔) − 𝒖(𝒙, 𝟎) − 𝐬𝐢𝐧𝐡 (𝐭) + 𝑳𝒕 [𝑳𝒙
−𝟏 [

𝟏

𝒔
𝑳𝒙(𝒖)]] = 𝟎                                                                           (55) 

Dividing equation (59) by s and substitution the initial conditions given in equation (53), we have 

𝒖(𝒙, 𝒔) −
𝟏

𝒔
𝐜𝐨𝐬𝐡 (𝒙)      −

𝟏

𝒔
𝑳𝒕[𝐬𝐢𝐧𝐡 (𝐭)] +

𝟏

𝒔
[𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]] = 𝟎                                                            (56) 

Now, applying the inverse Laplace transform with respect to t of both sides of equation (60), we get   

𝒖(𝒙, 𝒕) − 𝐜𝐨𝐬𝐡(𝒙)     − 𝐜𝐨𝐬𝐡(𝒕) − 𝟏 + 𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]]] = 𝟎                                                    (57) 

𝒖(𝒙, 𝒕) = [𝐜𝐨𝐬𝐡(𝒙)    + 𝐜𝐨𝐬𝐡(𝒕) + 𝟏 − 𝑳𝒕
−𝟏 [

𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]]]                                                           (58) 

𝝏 𝒖

𝝏𝒕
= 𝐬𝐢𝐧𝐡(𝐭) − 

𝝏 𝒖

𝝏𝒕
𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]]]                                                                                           (59) 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
= − 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]]]                                                                                                     (60) 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
+ 

𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙(𝒖)]]] = 𝟎                                                                                                  (61) 

Using correction function and 𝜆 = −1 , 
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𝒖𝒏+𝟏(𝒙, 𝒕) = 𝒖𝒏(𝒙, 𝒕) − ∫ ∫ ((𝒖𝒏)𝒙𝒕(𝒙, 𝒕) +
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙

 (𝒖𝒏)]]]]  𝒅𝒙𝒅𝒕)
𝒕

𝟎

𝒙

𝟎
                       (62) 

Now taking  𝑛 = 0 and 𝑢0 = cosh(x) + cosh(t) − 1 

𝒖𝟏(𝒙, 𝒕) = 𝒖𝟎(𝒙, 𝒕) − ∫ ∫ ((𝒖𝟎)𝒙𝒕(𝒙, 𝒕) +
𝝏𝟐𝒖

𝝏𝒙𝝏𝒕
[𝑳𝒕

−𝟏 [
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔
𝑳𝒙

 (𝒖𝟎)]]]]  𝒅𝒙𝒅𝒕)
𝒕

𝟎

𝒙

𝟎
                          (63) 

𝒖𝟏(𝒙, 𝒕) = 𝐜𝐨𝐬𝐡(𝐱) + 𝐜𝐨𝐬𝐡(𝐭) − 𝟏 −
𝟏

𝟐
(−𝒆−𝒙𝒕 + 𝒆𝒙𝒕 − 𝒆−𝒕𝒙 + 𝒆𝒕𝒙 − 𝟐𝒕𝒙)                                         (64) 

𝒖𝟏(𝒙, 𝒕) = 𝐜𝐨𝐬𝐡(𝒙 − 𝒕)                                                                                                                              (65) 

𝒖𝟏(𝒙, 𝒕) = 𝒖(𝒙, 𝒕)                                                                                                                                                       (66) 

 

    Note that the exact solution of equation (51) was obtained in 𝑢7 by using multi-Laplace transform method 

[23] comparing to the proposed LS-VIM. 

   

 Example (3.4): [20] Let us consider the nonlinear equation which reads  

𝒖𝒕 − 𝒖𝒙𝒙𝒕 + (
𝒖𝟐

𝟐
)

𝒙
= 𝟎                                                                                                                        (67) 

 with the initial conditions  𝒖(𝒙, 𝟎) = 𝒙 ,   𝒖𝒕(𝟎, 𝒕) = 𝟎                                                                          (68) 

  and       𝒖𝒙𝒕(𝟎, 𝒕) =
−𝟏

(𝟏+𝒕)𝟐                                                                                                                       (69) 

The exact solution  𝒖(𝒙, 𝒕) =  
𝒙

𝟏+𝒕
         −∞ ≤ 𝒙 ≤ ∞                       𝒕 ≥ 𝟎                                               (70) 

Let  
𝜕𝑢

𝜕𝑡
= 𝑈 , then 

𝑼 −
𝝏𝟐𝑼

𝝏𝒙𝟐 + (
𝒖𝟐

𝟐
)

𝒙
= 𝟎                                                                                                                                (71) 

Taking Laplace transform with respect to x of the both sides of equation (75) and apply the differentiation 

property of Laplace transform, we get 

𝑳𝒙(𝑼) − 𝑳𝒙 (
𝝏𝟐𝑼

𝝏𝒙𝟐) + 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
= 𝟎                                                                                                       (72) 

𝑳𝒙(𝑼) − [𝒔𝟐𝑼(𝒔, 𝒕) +
𝟏

(𝟏+𝒕)𝟐] + 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
= 𝟎                                                                                       (73) 

𝟏

𝒔𝟐 𝑳𝒙(𝑼) − 𝒖(𝒔, 𝒕) +
𝟏

𝒔𝟐

𝟏

(𝟏+𝒕)𝟐 +
𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
= 𝟎                                                                                      (74) 

Now, applying the inverse Laplace transform with respect to x of both sides of equation (78), yields  

𝑳𝒙
−𝟏 [

𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)] −

𝝏𝒖

𝝏𝒕
+ [

𝒙

(𝟏+𝒕)𝟐] + 𝑳𝒙
−𝟏 [

𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
] = 𝟎                                                                         (75) 

Applying the inverse Laplace transform with respect to t of both sides of equation (79), we get   

𝑳𝒕 [𝑳𝒙
−𝟏 [

𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)]] − (𝒔𝒖(𝒙, 𝒔) − 𝒖(𝒙, 𝟎)) + 𝑳𝒕 [

𝒙

(𝟏+𝒕)𝟐] + 𝑳𝒕 [𝑳𝒙
−𝟏 [

𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
]] = 𝟎                       (76) 

𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)]] − (𝒖(𝒙, 𝒔) −

𝟏

𝒔
𝒙) +

𝟏

𝒔
𝑳𝒕 [

𝒙

(𝟏+𝒕)𝟐] +
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
]] = 𝟎                          (77) 

Now, applying the inverse Laplace transform with respect to t of both sides of equation (81), we get   
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𝑳𝒕
−𝟏 {

𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)]]} − (𝒖(𝒙, 𝒕) − 𝒙) +

𝒕𝒙

𝟏+𝒕
+ 𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
]]) = 𝟎                     (78) 

𝒖(𝒙, 𝒕) = 𝑳𝒕
−𝟏 {

𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)]]} − 𝒙 +

𝒕𝒙

𝟏+𝒕
+ 𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
]])                                 (79) 

𝒖𝒙𝒙𝒕(𝒙, 𝒕) =  
𝝏𝟑𝒖

𝝏𝒙𝟐𝝏𝒕
𝑳𝒕

−𝟏 {
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝝏𝒖

𝝏𝒕
)]]} +

𝝏𝟑𝒖

𝝏𝒙𝟐𝝏𝒕
𝑳𝒕

−𝟏 (
𝟏

𝒔
𝑳𝒕 [𝑳𝒙

−𝟏 [
𝟏

𝒔𝟐 𝑳𝒙 (
𝒖𝟐

𝟐
)

𝒙
]])                        (80) 

By substituting in the correction function and using Lagrange multiplier 𝜆 = −1 also continuing by selecting  

𝑢0 = 𝑥 − 𝑥𝑡   

𝒖𝒏+𝟏(𝒙, 𝒕) = 𝒖𝒏(𝒙, 𝒕) − ∫ ∫ 𝒕 + 𝒙𝒕𝟐
 

𝒕

𝟎

𝒙

𝟎
𝒅𝒙𝒅𝒕                                                                                          (81) 

Taking  𝑢0(𝑥, 𝑡) = 𝑥 − 𝑥𝑡 and 𝑛 = 0  

𝒖𝟏(𝒙, 𝒕) = 𝒙 − 𝒙𝒕 +
𝒙𝒕𝟐

𝟐
+

𝒙𝟐𝒕𝟑

𝟔
                                                                                                                  (82) 

Table (1) shows the results of 𝑢1(𝑥, 𝑡) obtained by using LS-VIM comparing to the Exact solution and the 

other existing methods such as VIM, and HPM, while table (2) showing the absolute error for LS-VIM, VIM, 

and HPM compared to the exact solution. Figure (1) depicts the results of 𝑢1 obtained by the proposed LS-

VIM, the exact solution, the VIM, and the HPM when 𝑡 = 0.1. 

 

Table (1) The results of 𝑢1 obtained by LS-VIM comparing to the exact solution, the VIM, and the HPM 

when 𝑡 = 0.1. 

 

x Exact 
LS-VIM 

U1 

VIM 

U1 

HPM 

U1 

0.1 0.091 0.091 0.09 -0.021 

0.2 0.182 0.181 0.18 -0.04 

0.3 0.273 0.272 0.27 -0.06 

0.4 0.364 0.362 0.36 -0.08 

0.5 0.455 0.453 0.45 -.105 

 

 

 

 
 

Figure (1) The result of 𝑢1 obtained by LS-VIM, the exact solution , the VIM, and the HPM when 𝑡 = 0.1 
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Table (2) The absolute error of solution 𝑢1(𝑥, 𝑡) by using the LS-VIM, the VIM, and the HPM at the values 

of x and t used in table (1). 

 

Error of LS-VIM Error of VIM  Error of HPM 

0 0.01 0.112 

0.001 0.002 0.222 

0.001 0.003 0.333 

0.002 0.004 0.444 

0.002 0.005 0.56 

 

 

4. Conclusions 

 

    The combined form of the Laplace substitution method together with the variational iteration method 

presented in this paper has been successfully implemented to solve nonlinear evolution partial differential 

equations including mixed derivatives. Illustrative examples show the efficiency of the proposed method 

throughout getting the exact and/or the numerical solutions from the first iteration. The method gives accurate 

results comparing with some of the existing techniques such as the variational iteration method and the 

homotopy perturbation method, as shown in table (1), and it is capable to solve several different types of 

nonlinear partial differential equations including mixed derivatives. 
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