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Abstract:In this paper, we propose a block classification with monitor and restriction (BCMR) method to isolate 

and reduce the interference of blocks in garbage collection and wear leveling. The proposed method monitors the 

endurance variation of blocks during garbage collection and detects hot blocks by making a restriction condition 

based on this information. This method induces block classification by its update frequency for garbage 

collection and wear leveling, resulting in a prolonged lifespan for NAND flash memory systems. The 

performance evaluation results show that the BCMR method prolonged the life of NAND flash memory systems 

by 3.95% and reduced the standard deviation per block by 7.4%, on average. 
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1. Introduction 
Unlike conventional magnetic disks, NAND flash memory, a type of nonvolatile memory, has advantages 

such as low power consumption, fast operating speeds, and light weight. Owing to these advantages, NAND 

flash memory is used in various applications such as solid-state drives (SSD), USB memory, and smartphones. 

However, unlike magnetic disks, NAND flash memory has problems such as a shorter lifespan, an erase-before-

write requirement, and imbalance of operation units [1-4]. To address these problems, many researchers have 

proposed file systems or data structures considering the inherent characteristics of NAND flash memory [6-8]. 

However, recently considerable research has been conducted on flash translation layers (FTL), a development 

that can solve these problems without changing the traditional file systems or data structures. 

As shown in Fig. 1, FTL is composed of an address translation table, garbage collection, and wear leveling 

[7]. Previous researchers have conducted studies on methods to extend the lifespan of NAND flash memory 

using either garbage collection or wear leveling. However, these researchers have proposed optimization 
methods to extend life assuming that each component of the FTL layer operates alone. Therefore, problems arise 

when certain blocks are concurrently selected in the system environment where the proposed methods are 

simultaneously connected and performed in the FTL layer. This causes shortening of the NAND flash memory 

lifespan. Therefore, in system environments with FTL layers, in which garbage collection and wear leveling are 

simultaneously considered, the problem of wear in certain blocks can be solved easily by classifying and 

allocating separate blocks to the two processes.  

This paper introduces a block classification with monitor and restriction (BCMR) methodology to classify 

frequently selected blocks in a system environment in which garbage collection and wear leveling are 

simultaneously conducted. The proposed BCMR uses the following procedure in the process of garbage 

collection. 

 Information on changes in the block erase count is monitored.  

 The sacrifice block is selected based on the monitored information. 
 When the sacrifice block is selected, the constraints are applied.   

Based on the above procedure, frequently selected blocks in BCMR are selected according to the algorithm 

proposed in this paper, thereby helping extend the lifespan of NAND flash memory. This paper is structured as 

follows. Section 2 discusses the background information and related research on NAND flash memory. Section 3 

details the process of performing BCMR. Section 4 describes a performance evaluation of BCMR, and Section 5 

concludes the paper. 

 

2. Related Work 

As shown in Table 1, single-level cells (SLC), multi-level cells (MLC), or triple-level cells (TLC) are 

implemented in NAND flash memory depending on the method in which bits are classified in flash cells [8].  

Table 1. Comparison of flash cells 

Description SLC MLC TLC 

Read latency 25 µs 60 µs 100 µs 

Program latency 
200 

µs 
800 µs 2.4 ms 

Erase latency 700 1.5 ms 3.0 ms 

https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Microsecond
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µs 

Bits per flash 
cell 

1 bit 2 bit 3 bit 

Endurance 105 104 103 

Price per bit high low very low 

 

As shown in Table 1, as the number of bits per flash cell in NAND flash memory increases, operation latency 

increases. Because an increase in bits per flash cell has the effect of decreasing price per bit, recently, MLC has 

mainly been used for its trade-off between performance and price. In addition, NAND flash memory has inherent 
characteristics different from conventional magnetic disks, which are described as follows [1-2]. 

 NAND flash memory operations include read, write, and delete. Read and write operations are executed 

by page units, whereas delete and block operations are executed by block units. Here, a block is a group of 

multiple pages. 

 As shown in Table 1, the latencies of read, write, and delete operations of NAND flash memory are 

asymmetric. 

 Unlike magnetic disks, there is a limited number of write cycles per block in NAND flash memory. 

To address the above-mentioned problems of NAND flash memory, initial studies have proposed specialized 

file systems or data structures [7]; however, the recent studies have mainly used the flash translation layer (FTL), 

a method that supports the properties of magnetic disks as-is. The structure of FTL is shown in Fig. 1 [1].   

 

The address translation table records the logical and physical addresses as one item; accessing the physical 
address in NAND flash memory is supported by using the logical address. Through this method, NAND flash 

memory overcomes the problems of existing operations that execute delete operations before write operations. In 

other words, in-place update of NAND flash memory is possible by using the address translation table. However, 

a number of invalid pages arise when this process is repeated, thereby taking up unnecessary memory space. 

Therefore, to clean up this unnecessary space, a garbage collection process is needed. 

 
Fig. 1. System architecture of FTL 

 

The address translation table records the logical and physical addresses as one item; accessing the physical 

address in NAND flash memory is supported by using the logical address. Through this method, NAND flash 

memory overcomes the problems of existing operations that execute delete operations before write operations. In 

other words, in-place update of NAND flash memory is possible by using the address translation table. However, 

a number of invalid pages arise when this process is repeated, thereby taking up unnecessary memory space. 

Therefore, to clean up this unnecessary space, a garbage collection process is needed. 

Garbage collection supports the function of collecting the invalid pages of NAND flash memory, which is 

carried out during the in-place update support or data deletion. However, if garbage collection is executed 

repeatedly, a problem arises in which only certain blocks frequently execute delete operations, thus becoming the 
main cause for NAND flash memory life degradation. To address this issue, the wear leveling method is used. 

Wear leveling is a technique to address the problem of imbalanced delete operations between blocks that 

arise in garbage collection. The number of delete operations on each block is equalized to extend the lifespan of 

NAND flash memory. In other words, wear leveling plays a role in leveling the wear of memory by selecting 

blocks that have almost no delete operations to participate in garbage collection. Most recent research on 

methods to extend the life of NAND flash memory uses the afore-mentioned garbage collection and wear 

leveling techniques [10, 15]. 

https://en.wikipedia.org/wiki/Microsecond
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Initial research on extending the life of NAND flash memory focused on securing space for use. As a result, 

certain blocks in memory were found to be frequently used. This practice was found to deplete NAND flash 

memory life faster than expected. To address this problem, the CB, CAT, and SAGC methods have been 

proposed [11, 16].  

Recently, wear leveling has been actively researched to extend the life of NAND flash memory. A 
representative study is SWL. In SWL, a bit flag table is used to identify the blocks that have not participated in 

garbage collection and make them to participate in garbage collection, thereby leveling the memory wear and 

extending the life of NAND flash memory.  

However, the proposed methods are efficient when either garbage collection or wear leveling is used and do 

not consider the system environment that uses both processes simultaneously. For example, to employ wear 

leveling efficiently, only blocks that contain pages that have almost no write operations should be selected to 

participate in garbage collection. To achieve this, the pages that participate and those that do not participate in 

the operation should be classified and transferred to separate blocks. As a result, the migrated pages are situated 

between the hot block (block that frequently deletes) and the cold block (block that frequently does not delete). 

In a system that takes into account both garbage collection and wear leveling, there is a risk that the blocks 

between the hot and cold blocks are frequently referenced. Therefore, in a system environment in which garbage 
collection and wear leveling are performed simultaneously, it is necessary to separate the hot and cold blocks. To 

fulfill this requirement, this paper focuses on preventing interference and ensuring isolation of the selected 

blocks between the two processes. 

 

3. Proposed Method 

This paper proposes a block classification with monitor and restriction method to prevent interference of 

blocks and ensure isolation in the garbage collection and wear leveling process. The procedure we use is shown 

in Fig. 2.  

 

 
Fig. 2. Procedure of BCMR 

 

As shown in Fig. 2, the main procedure of the BCMR method is executed in the following three steps.  
(1) In the garbage collection execution process of BCMR, all blocks are monitored to measure changes in 

the block erase count. Based on this information, when the hot block is being wear leveled in garbage 

collection, the cold block is selected. Here, a hot block refers to the block in which write operations 

occur frequently, whereas a cold block refers to the block in which write operations occur rarely.  

 

(2) Based on the measured changes in the erase count, cold blocks are excluded from selection in the 

garbage collection process. 

 

(3) Finally, in the wear leveling process, the hot blocks and cold blocks are classified based on the monitored 

changes in the erase count in garbage collection and a new threshold is set. Through this process, interference is 

prevented, and isolation is ensured between the two processes.  
As shown in Fig. 2, the monitoring block erase count (MBEC) table is used to measure changes in the block 

erase count during the execution of garbage collection. The valid page numbers of the frequently selected blocks 

can be determined by using the information recorded in the MBEC table. Thus, BCMR can measure the block 

erase imbalance by using the MBEC table to track differences in the changes in the erase count of the blocks 

preferred by garbage collection. In addition, BCMR also clearly classifies the status of the corresponding block 

as a hot or cold block to determine the number of valid pages. The details of the BCMR procedure shown in Fig. 

2 are given in Algorithm 1.   

 

 

 

 

Algorithm 1: BCMR procedure 

 
input: max_ec, max_blk, ec, mbec, v_pages, cost, i, 
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and v_th 

 
output: null 

 
// Get the maximum number of erase count 

1 max_ec ← get_max_erase_count(); 

2 for i = 0 to max_blkdo 

   

// Measure a difference between a maximum erase 

count and a corresponding erase count. 

3 
  

mbec[v_pages[i]] = max_ec-ec[i]; 

   

// Ignore an corresponding block i when it satisfies 

this condition. 

4 
  

if v_pages[i]>v_ththen 

5 
    

continue; 

6 
  

end 

   
// Estimate a cost of block i on each technique. 

7 end  

 
// Reclaim victim blocks by garbage collection. 

8 if wear_leveling_condition = true do 

   
// Get a bcmr cost by equation (1). 

9 
  

cost ← get_bcmr_cost(); 

1

0   
if cost> 0 then 

1

1     
v_th = v_th- 1; 

1

2   
else 

1

3     
v_th = v_th+ 1; 

1

4   
end 

   

// Reset the mbec table and perform procedures in 

each technique. 

1

5 
end  

Through Algorithm 1, BCMR monitors changes in the erase count for all blocks and uses this information to 

classify hot blocks and cold blocks. In wear leveling, Eq. 1 is used to reset the threshold to prevent the blocks not 
the target of garbage collection from participating in garbage collection. 

 

cost =  ∑ 𝐵𝐶𝑀𝑅(𝑖) − ∑(𝐵𝐶𝑀𝑅(𝑖) 𝑥 𝑟)

𝑚𝑎𝑥

𝑖=𝑇

𝑇

𝑖=0

 (1) 

 

In this equation, iindicates page number, T indicates the threshold that classifies the existing hot blocks and 

cold blocks, max indicates the maximum number of pages, and r indicates the weight to be assigned to the cold 

blocks. Based on the cost obtained from Eq. 1, the new threshold of BCMR is calculated as follows.  

 If cost exceeds 0, then the change in the erase count of the hot block is large and threshold value is 

accordingly reduced. 

 If cost is less than 0, then the change in the erase count of the cold block is large and the threshold is 

accordingly increased.  

 
As a result, the threshold of BCMR classifies hot blocks and cold blocks on the basis of the difference 

between the block erase counts, which is the information required during the garbage collection process to 

prevent interference and ensure isolation of the selected blocks between the two processes. 

4. Experiment and Evaluation 
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To evaluate the performance of the proposed BCMR method, we used the SSD Extension for DiskSim 

Simulation Environment [13-14]. The workload used to evaluate the performance of BCMR is as shown in Table 

2; in the workload, SPC was set to include the characteristics of the application performed in OLTP and FIU was 

set to include operational characteristics such as terminal users and web services.  

Table 2. Workload characteristics of SPC and FIU 

Workload 

Ratio of 

request (%) Avg. request 

(byte) 
read write 

SP

C 

financial

1 

23.1

6 

76.8

4 
4754.3 

financial

2 

82.2

8 

17.7

2 
4394.0 

FI

U 

home1 1.12 
98.8

8 
7246.9 

home2 
12.4

0 

87.6

0 
13079.9 

online 
35.5

5 

64.4

5 
17566.8 

webmail 
26.0

3 

73.9

7 
17930.5 

 

The performance evaluation of BCMR was based on data such as NAND flash memory life, valid page 

migration, and block standard deviation. First, for the memory life and block standard deviation, the erase count 

for each block was set to 103, and the block standard deviation was set based on the block time that first 

exhausted all erase counts among all blocks. A comparative analysis was conducted with the valid page 

migration value based on the number of page migrations after 100 million write operations for overheads. The 

parameters used in the experimental environment were based on the MLC values in Table 1, while the detailed 

parameters are shown in Table 3.   
 

Table 3. Simulation parameters 

Description Value 

Reserved free blocks 15% 

Garbage collection 

condition 
# of free blocks < 5% 

# of total blocks 4096 

Pages per block 128 

Page size 4 KB 

Page read latency 60 us 

Page program latency 800 us 

Block erase latency 1.5 ms 

Blocks per lifetime 104 

 

 

Fig. 3 shows the NAND flash memory life. As shown in Fig. 4, the average lifespan of NAND flash memory 

was extended by 3.58%, 2.13%, 7.06%, and 3.06% when BCMR was activated. As to the reason for the extended 
lifespan shown in the experimental values, it is thought that the lifespan can be extended by lowering the 

selection frequency of the corresponding blocks between the hot and cold blocks through selecting hot blocks in 

garbage collection and cold blocks in wear leveling. In addition, because BCMR takes advantage of the existing 

garbage collection and wear leveling techniques, we were able to confirm further performance improvements 

through experimental results.  
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Fig. 3. The lifespan of NAND flash memory system 

 

Fig. 4 shows the block standard deviation, which was reduced by up to 6.52%, 4.16%, 11.44%, and 7.51% 

when BCMR was implemented. This reduction of the block standard deviation can be considered as a 

meaningful indicator because it directly affects the lifespan. Although reducing the block standard deviation can 

extend the NAND flash memory life, there is a risk of NAND flash memory page migration overhead increasing 

during processing. Therefore, the algorithm that is used must consider this risk. 

 
Fig. 4. The normalized standard deviation based on GA and SWL 

 

Fig. 5 shows the average number of page migrations during garbage collection and wear leveling, which was 

reduced by up to 0.01%, 0.77%, 1.65%, and 0.33% when BCMR was activated.  

The overhead required to perform BCMR proposed in this paper is the use of separate memory. The amount 
of memory used to operate BCMR depends on the number of pages of the NAND flash memory used. Memory 

usage was measured based on the NAND flash memory used in the experimental environment; about 512 bytes 

(4 bytes × 128 pages) were used. 

 
Fig. 5. The normalized number of page migrations on average 

Considering the total amount of memory used in the computer, this can be judged to have almost no effect on 

the operation of the system because of its small size. Accordingly, the method proposed in this paper is proven to 
extend the life of NAND flash memory. 

 

5. Conclusions 

In this paper, we proposed the BCMR method to prevent interference and ensure isolation in garbage 

collection and wear leveling. The proposed BCMR monitors changes in the block erase count during garbage 
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collection and uses this information to select hot blocks by constraining the selection of sacrifice blocks. The 

performance evaluation results show that the BCMR method extended NAND flash memory lifespan by 3.95% 

on average, whereas the standard deviation between blocks was reduced by 7.4% 
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