
Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 527- 535

527

Research Article

Research Article

Load balancing for Software Defined Network using Machine learning

Aashish kumar

a and Darpan Anand

b

A

 Research Scholar, Department of C.S.E., Chandigarh University Mohali,
India
 bAssociate Professor, Department of C.S.E., Chandigarh University Mohali, India.

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: Software-Defined Networking is one of the most revolutionary and prominent technology in the field of networking.
It solves the problem that our traditional network faces. Still it can face a problem of bottleneck and can be overloaded. To
overcome this issue, various researcher has it given various works but they are based on two or three-parameter to perform load

balancing and also they are static or dynamic. We have proposed an intelligent technique that forwards the packet i.e. TCP/UDP

packet traffic based on several parameters (based on 12 parameters discussed in the latter part of this section). Based on these
parameters, we have applied the trained machine using KMeans [1] and DBSCAN [2] clustering algorithm and also determine
the optimal number of clusters. We have tested it on the huge number of packet that are 5000, 10000, 20000, 50000, 100000,
10000000.We have also compared there results of the KMeans and DBSCAN algorithm and also discussed researchers view

Keywords: Software defined Network, Load Balancing, Communication Network, and Network Performance.

1. Introduction

Software Defined Network [3]solves many problems that our traditional network is facing. But as we know that a

huge amount of data is generated in our era. It might possible that the controller in SDN becomes overloaded.To

overcome this issue, many researchers have given their view to solve problem of controller overloading. But they

have taken two or three-parameter to balance the load in SDN.So there is need of a machine learning technique

which can take various parameter and solve the problem of load balancing.These issues can be solved by machine

learning techniques. So, we are going to discuss SDN, Load balancing and clustering in machine learning [4] in a

later section of this paper.

1.1. Software Defined Network

Traditional systems have tight coupling between the control plane [5] andinformation plane [6] yet this prompts

the issue of dynamic IP allocation, change in routing, bandwidth management end to end reachability, etc. SDN

solves these problems and separates the control layer and information layer.So,we can define SDN as a network in

which the control layer(may be located on different geographical locations) is physically separated from the

information layer and a logically centralized regulator governs the routing devices.Main layers of SDN

arcitecture(as shown in Fig1) are

– Data Layer:It contains switching devices like router, switches etc. It is responsible to process and forward the

packets as per the rules de- fined in the forwarding table.

– Control Layer :It is also known as NETWORK BRAIN.It is responsible for routing the data. Some of the function

this layer are System Configuration, routing table information’s exchange and management

– Management plane:It is used to access and provides in management of our network equipment.Still, SDN has the

issue of standard protocol that can exchange between informationplane and control plane. In 2008, the issue is

tackled by the Open Flow protocol [7] which is famous southbound API in the SDN and maintained by the Open

Flow Networking Foundation(ONF) [8]. Some of the components of Open flow are:-

– Flow table

Aashish kumar a and Darpan Anand b

528

– Port

– Messages

Whatever, we have discussed is about SDN but SDN controller can be overloaded by traffic. So we will discuss

load balancing, load balancer in SDN in later section.

1.2 Load Balancing

It is a process used to spread the load between servers or any other computing equipment. The purpose of load

balancing is to maximize resource utilization, maximum throughput, reduce response time, avoid overload and avoid

crashing. It also used to avoid from failover. Customarily load balancer comes programming introduced on

equipment. Along these lines, it was merchant explicit and costly. The product load balancer runs on a virtual

machine or hardware.

1.2.1 Load balancing Types

– Transport layer load balancer [9]: In this method, load balancer utilizes data , for example, IP address of source

and objective and ports characterized at data header of the information.

– Application Layer load balancer [10It circulates the heap to the servers dependent on application layer

conventions, for example, HTTP, COOKIES or information.

In our proposed system, we relate with layer 4 load balancer.

1.2.2 Load balancing in SDN

There are two ways to deal with balance the heap in SDN as a centralized and distributed methodology. In a

central methodology, there is a super-regulator that adjusts the heap between different regulators (ordinary

controllers). The issue with this methodology is that if the super-regulator comes down, the entire organization gets

down and other issues are adaptability and accessibility issues. The super-regulator methodology was settled by a

distributed methodology. In the distributed methodology, there are a few regulators that balance the heap between

them. Yet, the issue is that correspondence is overhead. Presently, we will examine different work done by

researchers.

1.3 Tabular Related Work

This section shows the previous work done by the researchers.It include advantages and disadvantages,and the

parameter they have used for load balancing.

The tabular format is shown as Table 1
Sr

no

Year Autho

r

Name

Algorithm

Used

Advantages Disadvantage

s

Basis of

Descision

1 2016 Sufiev

et

al [11]

Dynamic

Cluster

Reduced

latency

Super

controller

does not

depend

on Regular

Controller

Single point

of failure

Scalability

is- sues

2 2014 Chou

et

al [12]

Genetic

Based

Load

Balancing

Avoid

Bottleneck

Save cost

High

Complexity

and

Computation

time

Scalability

issues

Arithmetic

average

for the

coefficient

of

variation

metric

3 2017 Hu

et al

[13]

Switch-

Migration

based

decision

making

Low

Response time

Not tested in

large scale

wireless

network

Real time

controller

load

information

.

4 2015 Wang

et

al [14]

Based on

Distributed

Architecture

Efficient

adjustment

of traffic

flow

Reduced

consumption

overhead

Solve

reliability

problem

Communicati

on overhead

ICMP

Packet

testing

5 2014 Zhang

et

al [15]

Hybrid

routing

Achieve near

optimal

load

Latency is not

considered.

Load balancing for Software Defined Network using Machine learning

529

balancing

Increase

throughput

Reduced

TCAM

6 2016 He et

al] [16

Swarm

Optimizatio

n

Decrease

latency

Increased QoS

Security

issues

Energy

Consumption

7 2016 Yong

et

al [17]

Load

balancing

Technique

Based on

SDN

High

throughput

Scalability

issues

Availability

issues

Latency is not

considered

Hased

based

8 2017 Zhong

et

al [18]

Load

Balancing

based on

Server

Response

Time

Easy to

implement

Low

Response

time

Low

availability

Low

scalability

System

bottleneck

Low

availability

Low

scalability

System

bottleneck

9 1017 Rangi

setti

˜and

Tamm

a

[19]

QoS Aware

Load

Balancing

algorithm(Q

ALB

Improved

GBR

satisfaction

Better QoS

data

rates

Jitter and

Delay

is

not considered

Scalability

issues

Loads of

neighbour

cells.

QoS

profiles

of UEs.

Throughput

10 2018 Filali

et

al [20]

Optimizatio

n

algorithm

Minimize

latency

between SDN

controller and

Switches

Jitter and

Throughput

is not

considered

Response

Time.

Resource

utilization.

11 2017 Shang

et

al [21]

Service-

Oriented

Load

Balancing

Mechanism

improve the

average

link

bandwidth

utilization

rate up

to

79% with

smaller

link load

jitter and

average

link delay

Overhead of

maintaining

mean flow

request

deviation

table

Average

link

bandwidth

utilization

Link load

jitters

Average

link

delay

12 2016 Seung

and

Kwon

[22]

Centralized

based Load

balanced

based

on Genetic

Algorithm

 Single point

of failure

Communicati

on

overhead

CPU

utilization

Packet

messages

13 2020

Rupan

i

et

al [23]

Backpropag

ation

Artificial

neural

network

It is scalable,

link

failure and

node

failure

Highly

Complexity

14 2016 Chen

and

Xu

[24]

Backpropag

ation

Artificial

neural

network

Achieve

19.3%

network

latency

Decrease at

most.

Complex Bandwidth

utilization

ratio

Packet loss

rate

Transmissio

n

latency

Aashish kumar a and Darpan Anand b

530

Transmissio

n

hops

15 2017 Ying

et

al [25]

 Two

tier

architecture

Hardware

independent

Improves

WiFi s

load balancing

degree by 34

to

41%

An

improvement

of 28 to 36%

in WiFi s re

association

Time.

Not consider

traffic

patterns

of the

associated

devices,

user priorities

and QoS

constraints

Re

association

requests

16 2018 Kavan

a

et

al [26]

Load

balacing

algorithm

it requires

least

hardware

17 2018 Chen

et

al [27]

Traffic-

aware

load

balancing

scheme

Reduce

service

response time

up

to 50%

Not included

IoT security

in the

proposed

scheme

18 2019 Aly et

al [28]

Controller

adaptive

Load

balancing

Throughput

increased to

12%

Response time

increased to

9%

Single point

of failure

Low

availability

No of

requests

on

controller

2. Proposed Methodology

We have used Software Jupyter notebook to implement our methodology. Our main is to propose a technique

for the Software-Defined network which considers various parameters.For this, we have taken a dataset from

Kaggle.com of Universidad Del Cauca Popayan, Colombia. The proposed methodology diagram is shown in Fig 2.

In our proposed methodology, when clients sends request for particular service to the server. it first sends to the

Software Load balancer(the al-gorithm is implemented here) and the first algorithm will obtained the flow statis-

tics (IP addresses, ports,inter-arrival times, etc) using CIC Flowmeter [30]. Based on these features, it calculates the

cluster value of request and it will send to the appropriate servers. We will discuss each thing in the upcoming

sections.

Fig.2. Proposed Work Architecture

2.1 Flowchart of Proposed algorithm

In our proposed methodology, when clients send requests for particular service to the server, it first sends to the

Software Load balancer (an algorithm is imple-mented here) and the first algorithm will obtained statistics using

CIC Flowmeter. Based on these features, it calculates the cluster value of request using KMeans and also checks

the threshold of respective server(No of request it can handle). If it is less than the threshold, it will send to the

intermediate nodes. This is how it will work.Let us discuss about the dataset in the next section.Load balancing for

Software Defined Network using Machine learning 9

Load balancing for Software Defined Network using Machine learning

531

Fig. 3. Flow Chart of Proposed Work

2.1.1 Data Set

The dataset is taken from the Kaggle website, basically it was captured from the Universidad Del Cauca,

Popayan, Colombia United States of America. It is the morning and evening of 2017. A total of 3577296 packets

were captured,out of these 100000 packets are used to train our machine. This format has 87 features but we have

taken 12 features to balance the load which are described below:

– Source.IP: The source IPV4 address of the client

– Destination.IP: The source IPV4 address of the destination.

– Source.Port: The source port number.

– Destination.Port:The destination port number.

– Flow.Duration: Total Flow duration(millisecond(ms))

– Flow.IAT.Std: Standard deviation of the inter-arrival time of the packets.

– Fwd.IAT.Std: Standard deviation of inter-arrival time from source to destina-tion.

– Bwd.IAT.Std: Standard deviation of inter-arrival time from destination to source.

– Packet.Length.Std: standard deviation of the length of the packets of the packet in both ways.

– Down.Up.Ratio: Download and transfer proportion.

– Active.Std: Standard deviation time of the packet before getting inactive

– Idle.Std: Standard deviation time of the packet before getting active.

Basic Statistics of the dataset is summarized below: In Fig 4, we can see there

Fig. 4. Summary of Dataset

8 rows, which describe details about dataset. These parameters are described below as:

– count: return number of elements in particular column.

– mean: return averages of the particular column.

– std : return standard deviation of particular column.

– min : return minimum value in particular column.

– 25,50,75 : return percentile value of all numeric values in a column.

– max : return maximum value in particular column.

All above statistics are useful to perform data preprocessing.In the next section, we will discuss Data preprocessing.

2.1.2 Data Preprocessing

As we know that Data preprocessing is the technique to process the raw data so that it can be used in an efficient

way. Steps involved in data preprocessing are:

– Data Cleaning

Aashish kumar a and Darpan Anand b

532

– Data Transformation

– Data Reduction

In our methodology, we first check the missing data, noisy data, as well as data type of each of the parameters.

These are performed by pandas module, Seaborn module of python language. Whatever, we get the result, we

performed hashing on these datasets by using apply map() method. To normalize data, so that it can lie between 0

and 1.We apply min-max scaling, Min-max scalar works by using the following formula:

where x is the particular datapoint,max(x) is maximum value in the data-points,min(x) is minimum value in the

datapoints. This can be achieved by sklearn.preprocessing.MinMaxScaler class. Now we have data ready for train-

inpurposes.Next step is to train the machine using KMeans as discussed in next section.

2.1.3 Training Model

In this module, we use KMeans and DBSCAN to train or to perform clustering based on flow statistics(12

parameters) of our dataset. KMeans, DBSCAN. Both use a parameter called Euclidian distance. Greater the

Euclidean distance, the lower will be the similarity between the data points or vice versa. In n-dimensional space,

Euclidean distance between two data points can be calculated as:

where xi, yiare the ith data point KMeans algorithm aims at minimizing an objec-tive function known as Square

error function given by:

One of the major problem KMeans clustering faces that is finding the optimal-number of clusters. This can be

solved by Elbow Method [32] and Sihoullte Method

Fig. 5: Elbow method result for different number of packets

2.1.4 Elbow Method

It is quite possibly the most popular strategies to locate the ideal number of groups.It plots the value of the sum

of squared error (SSE) [33] Vs values of k. The main aim is to select small SSE after that SSE will tend to decrease

towards zero as the number of k increases. In the Elbow method, KMeans will runs for the entire dataset for a range

of values of k. For each k, the SSE will be calculated.

Load balancing for Software Defined Network using Machine learning

533

where xi is the i th datapoint and ci is the ith centroid. In our algorithm, we have result of Elbow method for

different number of packets.

2.2 Silhouette Method

It is utilized to quantify how close every data point in a group to other neighbour-ing bunches. Its worth

extents from - 1 to +1. An estimation of +1 shows that the ex-ample is excessively far away from its neighbouring

group and excessively near the allocated bunch. So also, an estimation of - 1 demonstrates that the fact of the matter

is nearer to its neighbouring bunch than its allocate group. Suppose ith is the data point, whereas a(i),b(i) is the mean

distance between the point i and cluster (A),(B) respectively.

Thus, the silhouette s(i) can be expressed as

Fig. 6: KMeans Figure t

ested on different number of packets

KMeans unsupervised clustering algorithm clusters the data points into spherical shape whereas DBSCAN is

suitable for non-convex clusters.It is also used to iden-tify the outliers or noise We will give a short description of

DBSCAN in the next section.

2.3 DBSCAN

Density-based spatial clustering of Application with noise(DBSCAN) is suitable for dataset having nonconvex

clusters and having outliers. DBSCAN clustering technique requires two parameters:

1. eps

2. minPoints: It can be define as minimum number of points required to form dense region.

Now, we will discuss results obtained in next section.

3. Experimental Result

We have tested it on several number of parameter that are 5000,10000,20000,50000,100000,1000000

packets(described below) The fol-lowing graph shows that KMeans perform better than DBSCAN .Load balancing

for Software Defined Network using Machine learning 13

4. Conclusion

For the proposed methodology, we conclude that KMeans perform better than DBSCAN and it can be proposed

as Machine learning techniques for Software Defined Network but there are limitations to this approach. Basically

it take care of a total of 12 parameters which may make it a better machine-learning algo-rithm and also take care

about the forward and backward transmission parame-ter which make it intelligent and optimized methodology. In

the coming years, we would like to test on SDN scenario and measure the various load balancing pa-rameters.

5. Future Work

The Proposed work need to be implemented on real world scenario such as on Software Defined Network

Applications. It need to be tested on more numbers of packets to measure various parameters such as

Throughput,Response time and latency etc.The proposed work needs to check time complexity and more general

software need to capture TCP/IP packets which contains the more features

Aashish kumar a and Darpan Anand b

534

References

A. Chauhan, “Systems and methods for providing load balancing as a service,” Oct. 162018. US Patent

10,104,166.

A. Filali, A. Kobbane, M. Elmachkour, and S. Cherkaoui, “Sdn controller as-signment and load balancing

with minimum quota of processing capacity,” in 2018 IEEE International Conference on Communications

(ICC), pp. 1–6, IEEE, 2018.

A. K. Rangisetti, B. R. Tamma, et al., “Qos aware load balance in software de-fined lte networks,” Computer

Communications, vol. 97, pp. 52–71, 2017.

A. Lashkari, Y. Zang, G. Owhuo, M. Mamun, and G. Gil, “Cic flow meter,” 2019.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algo-rithm,”Pattern recognition, vol.

36, no. 2, pp. 4461.2003.

B. G¨orkemli, S. Tatlıcıo˘glu, A. M. Tekalp, S. Civanlar, and E. Lokman, “Dy-namic control plane for sdn at

scale,” IEEE Journal on Selected Areas in Com-munications,vol. 36, no. 12, pp. 2688–2701, 2018.

C. Chen-Xiao and X. Ya-Bin, “Research on load balance method in sdn,” In-ternational Journal of Grid and

Distributed Computing, vol. 9, no. 1, pp. 25–36, 2016.

D. Michie, D. J. Spiegelhalter, C. Taylor, et al., “Machine learning,” Neural and Statistical Classification, vol.

13, no. 1994, pp. 1–298, 1994.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X.Xu,dbscan,” ACM Trans-actions on Database

Systems(TODS), vol. 42, no. 3, pp. 1–21, 2017.

F. Hu, Q. Hao, and K. Bao, “A survey on software-defined nework and open-flow: From concept to

implementation,” IEEE Communications Surveys & Tuto-rials, vol. 16, no. 4,pp. 2181–2206, 2014.

G. Shang, L. Mao, and W. Gong, “Service-aware adaptive link load balancing mechanism for software-

defined networking,” Future Generation Computer Sys-tems, vol. 81,pp. 452–464, 2018.

H. Xylomenos and G. C. Polyzos, “Tcp and udp performance over a wireless lan,” in IEEE INFOCOM’99.

Conference on Computer Communications. Pro-ceedings. Eighteenth Annual Joint Conference of the IEEE

Computer and Com-munications Societies.The Future is Now (Cat. No. 99CH36320), vol. 2, pp. 439–446,

IEEE, 1999.

I. Farhad, H. Lee, and A. Nakao, “Data plane programmability in sdn,” in 2014 IEEE 22nd International

Conference on Network Protocols, pp. 583–588, IEEE, 2014.

1. H. Kathi, S. Srinivasan, and P. Singhal, “Data traffic load balancing based on application layer messages,”

July 13 2006. US Patent App. 11/031,184.

2. H. Kavana, V. Kavya, B. Madhura, and N. Kamat, “Load balancing using sdn methodology,”International

Journal of Engineering Research and Technolo-gy, vol. 7, no. 5,pp. 206–208, 2018.

3. H. Sufiev and Y. Haddad, “A dynamic load balancing architecture for sdn,” in 2016 IEEE International

Conference on the Science of Electrical Engineering (ICSEE),pp. 1–3, IEEE, 2016.

4. H. Zhong, Q. Lin, J. Cui, R. Shi, and L. Liu, “An efficient sdn load balancing scheme based on variance

analysis for massive mobile users,” Mobile Infor-mation Systemsvol. 2015, 2015.

J. Peng and Y. Xia, “A cutting algorithm for the minimum sum-of-squared er-ror clustering,”in Proceedings

of the 2005 SIAM International Conference on Da-ta Mining, pp. 150–160, SIAM, 2005.

K. Zhang, K. Xi, M. Luo, and H. J. Chao, “Load balancing for multiple traffic matrices using sdn hybrid

routing,” in 2014 IEEE 15th International Conference on High Performance Switching and Routing

(HPSR), pp. 44–49, IEEE, 2014.

L. Kirkpatrick, “Software-defined networking,” Communications of the ACM, vol. 56,no. 9, pp. 16–19, 2013.

5. K.-Y. Wang, S.-J. Kao, and M.-T. Kao, “An efficient load adjustment for bal-ancing multiple controllers

in reliable sdn systems,” in 2018 IEEE International Conference on Applied System Invention (ICASI),

pp. 593–596, IEEE, 2018.

6. L.-D. Chou, Y.-T. Yang, Y.-M. Hong, J.-K. Hu, and B. Jean, “A genetic-based load balancing algorithm

in openflow network,” in Advanced technologies, em-bedded and multimedia for human-centric

computing, pp. 411–417, Springer, 2014.

7. P. Bholowalia and A. Kumar, “Ebk-means: A clustering technique based on elbow method and k-means

in wsn,” International Journal of Computer Applica-tions, vol. 105,no. 9, 2014.

8. S. Bhalla, P. Kwan, M. Bedekar, R. Phalnikar, and S. Sirsikar, Proceeding of International Conference on

Computational Science and Applications: ICCSA 2019. Springer Nature, 2020.

9. S.-B. Kang and G.-I. Kwon, “Load balancing of software-defined network controller using genetic

algorithm,” Contemporary Engineering Sciences, vol. 9, no. 18, pp. 881–888, 2016.

10. W. Braun and M. Menth, “Software-defined networking using openflow: Proto-cols, applications and

architectural design choices,” Future Internet, vol. 6, no. 2, pp. 302–336, 2014.

11. W. H. F. Aly, “Controller adaptive load balancing for sdn networks,” in 2019 EleventhInternational

Conference on Ubiquitous and Future Networks (ICUFN), pp. 514–519,IEEE, 2019.

Load balancing for Software Defined Network using Machine learning

535

12. X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy of soft-ware-defined cloud/fog

networking in the internet of vehicles,” China Communi-cations, vol. 13, no. Supplement2, pp. 140–149,

2016.

13. Y. Li and M. Chen, “Software-defined network function virtualization: A sur-vey,” IEEE Access, vol. 3,

pp. 2542–2553, 2015.

14. Y. Wang, X. Tao, Q. He, and Y. Kuang, “A dynamic load balancing method of cloud centerbased on sdn,”

China Communications, vol. 13, no. 2, pp. 130–137, 2016.

15. Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, and M. Zhu, “A load balancing strategy of

sdn controller based on distributed decision,” in 2014 IEEE 13th International Conference on Trust,

Security and Privacy in Computing and Communications, pp. 851–856, IEEE, 2014.

16. Y.-D. Lin, C. C. Wang, Y.-J. Lu, Y.-C. Lai, and H.-C. Yang, “Two-tier dynamic load balancing in sdn-

enabled wi-fi networks,” Wireless Networks, vol. 24, no. 8, pp. 2811–2823, 2018.

17. Y.-J. Chen, L.-C. Wang, M.-C. Chen, P.-M. Huang, and P.-J. Chung, “Sdn-enabled traffic-aware load

balancing for m2m networks,” IEEE Internet of Things Journal,vol. 5, no. 3, pp. 1797–1806, 2018.

