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Abstract. The study concern with two main ideas. The first one focuses on generating an odd distribution that involves a 

combination of Lomax distribution with extreme value distribution. The second one is devoted to estimate the parameter 

model that will be obtained from the generated odd distribution. A simulation part of the modification technique of Newton-

Raphson method has been proposed to evaluate the parameters values by using an initial value to each parameter. We 

summarize this work with some statements that highlight the proposed ideas.    

1. Introduction 

This study concerned with a generating an odd distribution by combing the extreme value distribution with the Lomax 

distribution, denoted by the ODEL. Afterwards, we estimate the new parameter model obtained from this combination by 

using the numerical methods like the Newton-Raphson method. The usage of such method is crucial due to the number of 

nonlinear equations that each one is contained. Also, there is an extension has been made by replacing the location parameter 

of the ODEL-distribution with a linear model �̅�′𝑧̅, (�̅� = (𝛽𝑜 , 𝛽1, … , 𝛽𝑛), 𝑧̅ = (𝑧𝑜, 𝑧1, … , 𝑧𝑛)). The extended model of the 

ODEL-distribution is denoted by EODEL-distribution. This approach aims to enhance the analysis of data set that have been 

used to compare the ODEL-distribution to its extended formula. We have also used the measure-of-goodness to find out the 

best distribution that could fits data among others.  

Extreme value distributions (EVDs) are necessary to demonstrate and quantify events that occur with low probability and 

have been used extensively as part of risk management, finance, insurance, financial aspects, mathematics, hydrogen, 

materials science, broadcast communications, and many data sets of extreme events. The EVDs category includes three types 

of EVD in the literature: (Type I) Gumbel, (Type Two) Fréchet, (Type Three) Weibull These diseases are generalized by 

combining position, scale, and power parameters leading to maximum value distributions (GEVDs): generalized Gumbel, 

generalized Frѐchet and generalized Weibull. 

Maximum probability is a relatively simple way to construct the estimator of unknown parameter 0. It was introduced by R.A 

Fisher, a great English mathematical statistician, in 1912. The Maximum Likelihood Estimation (MLE) can be applied to 

most problems, has an intuitive gravitational value, and often results in a reasonable estimate of 0. Moreover, if the sample is 

large, Then the method will produce an excellent estimate of 0. For these reasons, the maximum likelihood method is perhaps 

the most widely used estimation method in statistics. 

In the modern era, there has been an increasing interest in introducing new generators of univariate distributions through at 

least one additional shape parameter events for the baseline distribution. This additional parameter value was demonstrated in 

the tail properties in addition to increasing the proposed family suitability. Some common generators are beta-G [1]. gamma-

G (type 1) [2],Kumaraswamy-G [3], gamma-G (type 2) [4], McDonald-G [5], gamma-G (type 3) [6], exponentiated 

generalized-G [7], Transformed-Transformer (T-X) [8], Weibull-G [9], Garhy-G [10], exponentiated Weibull-G [11], 

Kumaraswamy Weibull-G [12], type II half logistic-G [13] and exponentiated extended-G family [14].  
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This paper consist of four parts. In the next part we present the most basic concepts related to the odd distribution and its 

properties. Part three is devoted to explain our methodology, derivations, properties, analysis of data set, and comparison. 

The last part is devoted to present summaries and conclusion related to the results that we have gain within this study.   

2.  Basic Notions  

We review some basic notions related to extreme value distribution, and Lomax distribution. The pdf, the cdf, survival 

function 𝑆(𝑥) and hazard function ℎ(𝑥) of the extreme value distribution are, respectively  

  𝑓(𝑥) =
1

𝜃
𝑒−(

𝑥−𝜆

𝜃
)𝑒−e

−(
𝑥−𝜆
𝜃

)

, −∞ < 𝑥 < ∞ (2.1) 

  𝐹(𝑥) = 𝑒−e
−(

𝑥−𝜆
𝜃

)

, −∞ < 𝜆 < ∞, 𝜃 > 0 (2.2) 

  𝑆(𝑥) = 1 − 𝐹(𝑥), −∞ < 𝜆 < ∞, 𝜃 > 0 (2.3) 

 

 
ℎ(𝑥) =

𝑓(𝑥)

𝑆(𝑥)
 (2.4) 

Also, the pdf, cdf, survival function and hazard function of Lomax distribution are, respectively.  

 𝑔(𝑥) =  
𝛼

𝜎
(1 +

𝑥

𝜎
)−(𝛼+1)              0 < 𝑥 < ∞  , 𝛼, 𝜎 > 0   (2.5) 

 Where, 𝛼 𝑎𝑛𝑑 𝜎 are the shape parameter and scale parameter.   

 𝐺(𝑥) = 1 − (1 +
𝑥

𝜎
)

−𝛼

, �̅�(𝑥) = (1 +
𝑥

𝜎
)

−𝛼

,          0 < 𝑥 < ∞  , 𝛼, 𝜎 > 0   (2.6) 

In particular, we combine extreme value distribution with Lomax distribution in order to obtain an odd distribution. We have 

named it by ODEL-distribution. It is firstly necessary to recall cdf, and survival functions of Lomax distributions in (2.6). 

Therefore, the odd ratio that represents the random variable of the generating odd distribution has the following formula  

 X =
𝐺(𝑥)

�̅�(𝑥)
= (1 +

𝑥

𝜎
)

𝛼

− 1,    0 < 𝑥 < ∞  , 𝛼, 𝜎 > 0 (2.7) 

In fact, the random variable in equation (2.7) will be the new random variable. By substituting such random variable into the 

distribution function in (2.2), it yields that 

 
𝐹1(𝑥) = e

[−𝑒
− 

1
𝜃
[(1+

𝑥
𝜎)

𝛼
−(1+𝜆)]

]

,    − ∞ < 𝑥 < ∞,−∞ < 𝜆 < ∞ , 𝛼, 𝜎 > 0 
 (2.8) 

By differentiate 𝐹1(𝑥) with respect to 𝑥, we obtain the pdf of ODEL-distribution, that is  

 

 𝑓1(𝑥) =
𝛼

𝜃𝜎
(1 +

𝑥

𝜎
)

𝛼−1

e
−

1
𝜃
[(1+

𝑥
𝜎
)
𝛼
−(1+𝜆)]

 𝑒−e
−

1
𝜃

 [(1+
𝑥
𝜎)𝛼−(1+𝜆)]

, −∞ < 𝑥 < ∞ (2.9) 

The pdf in (2.9) can be modified by replacing its location parameter 𝜆 by a linear model  �̅�′𝑧̅, (�̅� = (𝛽𝑜, 𝛽1, … , 𝛽𝑛), 𝑧̅ =

(𝑧𝑜, 𝑧1, … , 𝑧𝑛)). This modification is an extension to the ODEL-distribution, denoted by EODEL-distribution. Then, the pdf 

of EODEL-distribution is   

 𝑓2(𝑥) =
𝛼

𝜃𝜎
(1 +

𝑥

𝜎
)

𝛼−1

e
−

1
𝜃
[(1+

𝑥
𝜎
)
𝛼
−(1+�̅�′�̅�)]

𝑒−e
−

1
𝜃
 [(1+

𝑥
𝜎)𝛼−(1+�̅�′�̅�)]

, (2.10) 

And its distribution function is  

 
𝐹2(𝑥) = 𝑒

[−e
−

1
𝜃
 [(1+

𝑥
𝜎)𝛼−(1+�̅�′�̅�)]

]
 , −∞ < 𝑥 < ∞, 𝜎, 𝛼 > 0, 

   (2.11) 

The last notion that we need to present in this part related to the measures of quality that we will use to compare the 

generated odd distribution to its extended one. These measures of goodness-of-fit are called Akanke information criterion 

(AIC), consistent Akanke information criterion (CAIC), Haman-Quinn information criterion (HQIC), and Bayesian 

information criterion (BIC), respectively. They are widely used to find out which distribution is the best to fit data among 

others. Also, they are very well-known statistical tools in many statistical inferences, and they have the following forms, 

respectively. 
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  𝐴𝐼𝐶 = −2 ℓ̂ + 2ℎ (2.12) 

 𝐵𝐼𝐶 = −2 ℓ̂ + ℎ ln(𝑛)  (2.13) 

 𝐶𝐴𝐼𝐶 = −2 ℓ̂ +
2ℎ𝑛

𝑛 − ℎ − 1
 (2.14) 

 𝐻𝑄𝐼𝐶 = −2 ℓ̂ + 2ℎ ln(ln(𝑛)) (2.15) 

Where, ℓ̂ is the maximum log-likelihood function, h is the number of the parameters of each estimated distribution within the 

maximum likelihood method, n is the sample size of the desired data.  

 ℓ(𝜃)  =  𝑙𝑜𝑔 ℓ(𝜃)  =  log∏𝑓(𝑋𝑖; 𝜃)

𝑛

𝑖=1

 =  ∑ log 𝑓(𝑋𝑖; 𝜃) 

1

𝑖=1

 (2.16) 

Maximizing ℓ(𝜃) with respect to 𝜃 will give us the MLE estimation. 

It is well-known fact that maximum likelihood method sometimes leads to nonlinear equations that need numerical methods 

to find their solutions. One of the best common method associated with the maximum likelihood method is well-known by 

the Newton-Raphson method that has the following general formula: 

 
𝑥𝒊+𝟏 = 𝑥𝑖 +

𝑓(𝑥)

�́�(𝑥)
,                       𝑖 = 1, . . , 𝑛 (2.17) 

3. Modification, and Simulation  

3.1. Modification, and Derivations  

In [15], it has shown in detail the log-likelihood of the ODEL-distribution, and the EODEL-distribution, respectively. Their 

general forms are   

ℓ1 = ln(𝑙1) = n ln 𝛼 − 𝑛 ln 𝜃 − n ln 𝜎 + (𝛼 − 1) ∑ln[1 +

𝑛

𝑖=1

𝑥𝑖

𝜎
] − ∑ 𝑊𝑖

𝑛

𝑖=1
− ∑𝑒−𝑊𝑖  

𝑛

𝑖=1

, 
     

(3.1) 

ℓ2 = ln(𝑙2) = n ln 𝛼 − 𝑛 ln 𝜃 − n ln 𝜎 + (𝛼 − 1) ∑ln[1 +

𝑛

𝑖=1

𝑥𝑖

𝜎
] − ∑ 𝑀𝑖

𝑛

𝑖=1
− ∑ 𝑒−𝑀𝑖  

𝑛

𝑖=1

, 
 

(3.2) 

where   𝑊𝑖 =
1

𝜃
[(1 +

𝑥𝑖

𝜎
)

𝛼

− (1 + 𝜆)] and 𝑀𝑖 =
1

𝜃
[(1 +

𝑥𝑖

𝜎
)

𝛼

− (1 + �̅�′𝑧̅)] 

We estimate the parameters of each distribution by implementing the maximum likelihood method the log-likelihood 

functions in (3.1), (3.2), so this yields the following functions 

𝑓1
∗(𝜃, 𝛼, 𝜎, 𝜆, �̌�) =

𝜕ℓ1

𝜕𝜃
=

−𝑛

𝜃
+

1

𝜃
∑ 𝑊𝑖

𝑛

𝑖=1

[1 − 𝑒−𝑊𝑖] = 0,      (3.3) 

𝑓2
∗(𝜃, 𝛼, 𝜎, 𝜆, �̃�) =

𝜕ℓ1

𝜕𝛼
=

n

α
+ ∑ln [1 +

𝑥𝑖

σ
]

n

i=1

−
1

θ
∑ln [1 +

𝑥𝑖

σ
] (1 +

𝑥𝑖

σ
)

α

n

i=1

[1 − e−𝑊𝑖] = 0,      (3.4) 

𝑓3
∗(𝜃, 𝛼, 𝜎, 𝜆, �̃�) =

𝜕ℓ1

𝜕𝜎
=

−n

σ
−

(α − 1)

σ2
∑

𝑥𝑖

(1 +
𝑥𝑖

σ
)

n

i=1

+
α

θσ2
∑xi (1 +

𝑥𝑖

σ
)

α−1

n

i=1

[1 − e−Wi] = 0,      (3.5) 

𝑓4
∗(𝜃, 𝛼, 𝜎, 𝜆, �̃�) =

𝜕ℓ1

𝜕𝜆
=

𝑛

𝜃
−

1

𝜃
∑ 𝑒−𝑊𝑖

𝑛

𝑖=1

= 0, 
                   

(3.6) 

We also need to show the elements of variance-covariance matrix, that are  
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𝜕𝑓1

∗

𝜕𝜃
=

𝑛

𝜃2
−

2

𝜃2
∑ 𝑊𝑖

𝑛

𝑖=1

+
1

𝜃2
∑𝑊𝑖𝑒

−𝑊𝑖(2 −
1

𝜃
𝑊𝑖)

𝑛

𝑖=1

 (3.7) 

 
𝜕𝑓1

∗

𝜕𝛼
=

1

𝜃2
∑Log[1 +

𝑥𝑖

𝜎
](1 +

𝑥𝑖

𝜎
)𝛼

𝑛

𝑖=1

−
1

𝜃2
∑𝑒−𝑊𝑖Log [1 +

𝑥𝑖

𝜎
] (1 +

𝑥𝑖

𝜎
)

𝛼

[1 − 𝑊𝑖]

𝑛

𝑖=1

  (3.8) 

 
𝜕𝑓1

∗

𝜕𝜎
= −

α

θ2σ2
∑ 𝑥𝑖 (1 +

𝑥𝑖

σ
)

α−1

n

i=1

+
α

θ2σ2
∑ 𝑥𝑖 (1 +

𝑥𝑖

σ
)

α−1

e−Wi

n

i=1

[1 − Wi]   (3.9) 

 𝜕𝑓1
∗

𝜕𝜆
= −

𝑛

𝜃2
+

1

𝜃2
∑𝑒−𝑊𝑖

𝑛

𝑖=1

[1 − 𝑊𝑖]    (3.10) 

 
𝜕𝑓2

∗

𝜕𝛼
= −

𝑛

𝛼2
−

1

𝜃
∑Log[1 +

𝑥𝑖

𝜎
]2(1 +

𝑥𝑖

𝜎
)𝛼

𝑛

𝑖=1

+
1

𝜃
∑(Log[1 +

𝑥𝑖

𝜎
])2(1 +

𝑥𝑖

𝜎
)𝛼𝑒−𝑊𝑖

𝑛

𝑖=1

[1 −
1

𝜃
(1 +

𝑥𝑖

𝜎
)𝛼],   (3.11) 

 

𝜕𝑓2
∗

𝜕𝜎
= −

1

𝜎2
∑

𝑥𝑖

(1 +
𝑥𝑖

𝜎
)

𝑛

𝑖=1

+
1

𝜃𝜎2
∑(𝑥𝑖 (1 +

𝑥𝑖

𝜎
)

𝛼−1

+ 𝛼Log [1 +
𝑥𝑖

𝜎
] 𝑥𝑖 (1 +

𝑥𝑖

𝜎
)

𝛼−1

)

𝑛

𝑖=1

[1 − 𝑒−𝑊𝑖]

+ 
𝛼

𝜃2𝜎2
∑ 𝑥𝑖 (1 +

𝑥𝑖

𝜎
)

2𝛼−1

(Log [1 +
𝑥𝑖

𝜎
])

𝑛

𝑖=1

𝑒−𝑊𝑖 , 

(3.12) 

 
𝜕𝑓2

∗

𝜕𝜆
=

1

𝜃2
∑Log[1 +

𝑥𝑖

𝜎
](1 +

𝑥𝑖

𝜎
)𝛼

𝑛

𝑖=1

𝑒−𝑊𝑖  (3.13) 

 

𝜕𝑓3
∗

𝜕𝜎
=

𝑛

𝜎2
+

(𝛼 − 1)

𝜎3
∑(

2𝑥𝑖

(1 +
𝑥𝑖

𝜎
)
−

𝑥𝑖
2

𝜎(1 +
𝑥𝑖

𝜎
)2

)

𝑛

𝑖=1

−
𝛼2

𝜃2𝜎4
∑ 𝑥𝑖

2 (1 +
𝑥𝑖

𝜎
)

2(𝛼−1)

𝑛

𝑖=1

𝑒−𝑊𝑖

+
𝛼

𝜃𝜎4
∑((𝛼 − 1)𝑥𝑖

2 (1 +
𝑥𝑖

𝜎
)

𝛼−2

+ 2𝜎𝑥𝑖 (1 +
𝑥𝑖

𝜎
)

𝛼−1

) [𝑒−𝑊𝑖 − 1]

𝑛

𝑖=1

, 

(3.14) 

 
𝜕𝑓3

∗

𝜕𝜆
= −

𝛼

𝜃2𝜎2
∑𝑥𝑖 (1 +

𝑥𝑖

𝜎
)

𝛼−1

𝑒−𝑊𝑖

𝑛

𝑖=1

, (3.15) 

 𝜕𝑓4
∗

𝜕𝜆
= −

1

𝜃2
∑𝑒−𝑊𝑖

𝑛

𝑖=1

, (3.16) 

Note 

 

 
𝜕𝑓1

∗

𝜕𝛼
=

𝜕𝑓2
∗

𝜕𝜃
  ,                

𝜕𝑓1
∗

𝜕𝜎
=

𝜕𝑓3
∗

𝜕𝜃
 ,                 

𝜕𝑓1
∗

𝜕𝜆
=

𝜕𝑓4
∗

𝜕𝜃
 , 

 

 𝜕𝑓2
∗

𝜕𝜎
=

𝜕𝑓3
∗

𝜕𝛼
,              

𝜕𝑓2
∗

𝜕𝜆
=

𝜕𝑓4
∗

𝜕𝛼
,                  

𝜕𝑓3
∗

𝜕𝜆
=

𝜕𝑓4
∗

𝜕𝜎
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In particular, when 𝜆 = �̅�′𝑧̅, and when 𝑘 = 2, 𝜆 = 𝛽0 + 𝛽1𝑍1 we can find out that the function 𝑓∗
1
, 𝑓∗

2
, 𝑓∗

3
, 𝑓∗

4
 with respect 

to the linear model, they have the same forms in (3.3), (3.4), (3.5) and (3.6). Therefore, we only need to replace the function 

symbols like h to refer to the new obtained functions with that extension. In fact, due to the linear model 𝜆 = 𝛽0 + 𝛽1𝑍1, we 

obtain one more function of the parameter 𝛽1, that is  

 𝑓5
∗(𝜃, 𝛼, 𝜎, 𝜆, �̃�) =

𝜕ℓ2

𝜕𝛽1

=
1

𝜃
∑ 𝑍𝑖1

𝑛

𝑖=1

−
1

𝜃
∑𝑍𝑖1

𝑛

𝑖=1

𝑒−𝑀𝑖 = 0, (3.17) 

 
𝜕𝑓5

∗

𝜕𝜃
=

−1

𝜃2
∑𝑍𝑖1

𝑛

𝑖=1

+
1

𝜃2
∑ 𝑍𝑖1

𝑛

𝑖=1

𝑒−𝑀𝑖(1 − 𝑀𝑖) (3.18) 

 
𝜕𝑓5

∗

𝜕𝛼
=

1

𝜃2
∑ 𝑍𝑖1

𝑛

𝑖=1

g[1 +
𝑥𝑖

𝜎
](1 +

𝑥𝑖

𝜎
)𝛼𝑒−𝑀𝑖 (3.19) 

 
𝜕𝑓5

∗

𝜕𝜎
= −

𝛼

𝜃2𝜎2
∑𝑍𝑖1

𝑛

𝑖=1

𝑥𝑖 (1 +
𝑥𝑖

𝜎
)

𝛼−1

𝑒−𝑀𝑖  (3.20) 

 
𝜕𝑓5

∗

𝜕𝛽0

= −
1

𝜃2
∑ 𝑍𝑖1

𝑛

𝑖=1

𝑒−𝑀𝑖  (3.21) 

 
𝜕𝑓5

∗

𝜕𝛽1

= −
1

𝜃2
∑𝑍𝑖1

2

𝑛

𝑖=1

𝑒−𝑀𝑖  (3.22) 

We can see that the forms below are equivalent. 

 
𝜕𝑓5

∗

𝜕𝜃
=

𝜕𝑓1
∗

𝜕𝛽1

,       
𝜕𝑓5

∗

𝜕𝛼
=

𝜕𝑓2
∗

𝜕𝛽1

,        
𝜕𝑓5

∗

𝜕𝜎
=

𝜕𝑓3
∗

𝜕𝛽1

,      
𝜕𝑓5

∗

𝜕𝛽0

=
𝜕𝑓4

∗

𝜕𝛽1

  

In order to provide the remaining terminologies of the Newton-Raphson method in (2.17), we need to find the partial 

derivatives of the function in (3.3), (3.4), (3.5) and (3.6), and also the function in (3.17). 

The proposed modification considers that we have to set an initial value to each parameter in (3.1), (3.2).  

In this case, we set 𝜃 = 𝜎 = 𝛼 = 1 and 𝜆 = 10, while the extra parameters 𝛽0, 𝛽1 have the initial values 𝛽0 = 10, 𝛽1 = 0. 

By implementing the Newton-Raphson general form, we can write the estimation formula of each parameter, by the 

following way     

 �̂�𝛿+1 = �̂�𝛿 + 𝛾1 (3.23) 

 �̂�𝛿+1 = �̂�𝛿 + 𝛾2 (3.24) 

 �̂�𝛿+1 = �̂�𝛿 + 𝛾3 (3.25) 

 �̂�𝛿+1 = �̂�𝛿 + 𝛾4 (3.26) 

By replacing �̂� with a linear model �̂�𝑜 + �̂�1𝑧1, the formula in (3.26), can be written as. 

 

                                                                    �̂�𝑜
𝛿+1

= �̂�𝑜
𝛿

+ 𝛾4    (3.27) 

                                                                    �̂�1
𝛿+1

= �̂�1
𝛿

+ 𝛾5    (3.28) 

                                     𝛾𝑗 = −𝐴−1𝑓̅∗
𝑗
(𝑥),                   𝑗 = 1, … ,5    (3.29) 
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𝑓̅∗(𝑥) =

[
 
 
 
 
 
𝑓1

∗

𝑓2
∗

𝑓3
∗

𝑓4
∗

𝑓5
∗]
 
 
 
 
 

     𝑎𝑛𝑑    𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 𝜕𝑓1

∗

𝜕𝜃
𝜕𝑓2

∗

𝜕𝜃

𝜕𝑓1
∗

𝜕𝛼
𝜕𝑓2

∗

𝜕𝛼

𝜕𝑓1
∗

𝜕𝜎
𝜕𝑓2

∗

𝜕𝜎

𝜕𝑓1
∗

𝜕𝛽0

𝜕𝑓1
∗

𝜕𝛽1

𝜕𝑓2
∗

𝜕𝛽0

𝜕𝑓2
∗

𝜕𝛽1

𝜕𝑓3
∗

𝜕𝜃
𝜕𝑓4

∗

𝜕𝜃
𝜕𝑓5

∗

𝜕𝜃

𝜕𝑓3
∗

𝜕𝛼
𝜕𝑓4

∗

𝜕𝛼
𝜕𝑓5

∗

𝜕𝛼

𝜕𝑓3
∗

𝜕𝜎
𝜕𝑓4

∗

𝜕𝜎
𝜕𝑓5

∗

𝜕𝜎

𝜕𝑓3
∗

𝜕𝛽0

𝜕𝑓3
∗

𝜕𝛽1

𝜕𝑓4
∗

𝜕𝛽0

𝜕𝑓5
∗

𝜕𝛽0

𝜕𝑓
4
∗

𝜕𝛽1

𝜕𝑓5
∗

𝜕𝛽1 ]
 
 
 
 
 
 
 
 
 
 
 

 (3.30) 

The estimation technique considers an initial value to each parameter, then find the other values of the required estimated 

parameter within the new estimated value from the forms in ((3.23), (3.24), (3.25), (3.26), (3.28), (3.29)), this technique 

requires repeating the estimation over the forms above until the absolute value of the previous estimated parameter with the 

next estimated parameter is less than or equal a to a small value of epsilon. In fact, this value of epsilon represents the error 

ratio, and the also the stop condition that yields the optimal value of the estimated parameter.   

3.2 Simulation Technique  

In this part, we present a simulation technique that depends on generating data set from the generated distribution functions 

of the ODEL distribution and the EODEL distribution, respectively. The algorithm of simulation can be written as follows. 

1. Generate data set from 𝑈(0,1). 

2. Generate the required data from the cdf of ODEL, or EODEL by setting  

 𝑥 = 𝜎 ([(1 + 𝜆) − 𝜃 ln(− ln 𝑢)]
1
𝛼 − 1), 

𝑥 = 𝜎 ([(1 + 𝛽0 + 𝛽1𝑍𝑖1) − 𝜃 ln(− ln 𝑢)]
1
𝛼 − 1) 

Where                                                        𝑧𝑖 = 𝑖 −
(𝑛+1)

2
 ,                𝑖 = 1…𝑛 

 

3. Implementing the Newton-Raphson method in (2.17) with setting initials of each parameter. 

4. Estimate the next parameter value within the previous value (initial value), by implementing the Newton-Raphson 

general form, that we mentioned in equations (3.23), (3.24), (3.25), (3.26), (3.27), and (3.28).  

5. Repeal this process to find the required vale of each parameter. 

6. Stop condition    |𝜏𝑗
𝛿+1 − 𝜏𝛿| < 𝜖   where  𝜖 is the ration of error.  

The simulation technique consists of generating data set from continuous uniform distribution in order to analysis them 

within the ODEL-distribution, and the EODEL-distribution. This analysis is useful to find out which distribution is better. 

Analysis of data set that have been generated by the simulation technique is proposed to compare the analysis of the ODEL-

distribution to the EODEL-distribution, and to specify which of them is better.  

We have a real data set from Colorado Climate Center, Colorado state University (http://ulysses.atmos.colostate.edu). These 

data consist of 100 annual maximum precipitation (inch) for one rain gauge in Fort Collins, Colorado, from 1900 through 

1999. The data set are: 

                                    Table 4.1: The data from 

Aarset [11]. 
        

   

23

9 

23

2 

43

4 
85 

30

2 

17

4 

17

0 

12

1 

19

3 
71 

11

2 

21

8 
71 

24

9 

24

0 

15

2 

18

5 

21

3 

30

6 

21

2 

16

8 

14

8 

11

6 

13

2 

13

2 

14

4 

18

3 

22

3 
96 

26

9 

13

4 
95 

11

0 

20

3 

32

1 

12

9 

19

9 

35

4 

16

9 

44

3 

29

8 
97 

11

6 

14

6 
84 

23

0 

13

8 

17

0 

11

7 

16

2 
96 95 

28

5 

12

1 

16

1 

10

2 

46

3 

10

8 

18

4 

14

6 

11

5 

13

2 

12

5 

15

6 

12

4 

18

9 

19

3 
71 

17

6 

11

5 

27

1 

18

7 

21

5 

15

1 

13

6 

16

2 

24

1 

21

5 

98 94 

http://ulysses.atmos.colostate.edu/
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Secondly, we separately present the MLE’s of the parameters of ODEL-distribution alone, and then EODEL-distribution 

when 𝑘 = 1. This estimation has been accomplished by using Matlab 2015. Table 4.2 shows the following values of the 

estimated parameters, that are 

The estimated parameters in the ODEL-distribution and EODEL-distribution have approximately the same values. The 

impact of the linear model in the odd distribution can be recognized with the exceeded of the number of parameters in the 

EODEL-distribution within the analysis of data set. 

Next, we evaluate the maximum log-likelihood functions (ℓ1, ℓ2) with the desired data set so that we can compute the values 

of AIC, BIC, CACI and HQIC. This provides the required comparison between the two distribution. In fact, Table 4.3 shows 

the values of each measure of quality, that are  

               Table 4.3: Log-likelihood, AIC, AICC, BIC and HQIC values of models fitted 

Model �̂� AIC BIC CACI HQIC 

ODEL -19371.74 38751.48 38761.90 38751.90 38755.7 

EODEL -14606.66 29223.32 29236.35 29223.96 29228.59 

The simulation part shows that the log-likelihood of the EODEL-distribution has a better value than the value of the log-

likelihood of the ODEL-distribution. This fact led to conclude that the linear model is a good approach that can be used to 

enhance data analysis.  

7. Conclusion 

The generated odd distribution (ODEL-distribution) with its extension yields several modern characteristics. The simulation 

technique has a very good impact, it has a proper way to estimate the parameters of the ODEL-distribution, and the EODEL-

distribution.  The employing of Newton-Raphson method and the modified way that have been proposed was crucial in 

finding the estimated values of each parameter. The part of application and analysis of data set shows an enhancement on the 

log-likelihood value of the EODEL-distribution comparing with the ODEL-log-likelihood value. There are other results that 

have been obtained but we cannot find a wider range to present via this study.  
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