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Abstract

This paper examines a class of impulsive Caputo fractional order neu-
ral networks(FONNs) having time varying delays.We investigate exponen-
tial synchronization for these FONNs. For this, we take into account an
appropriate Lyapunov function and obtain the synchronization results’
conditions as Linear Matrix Inequalities (LMI). The efficiency of the out-
come we have obtained is verified using an example.

Keywords— impulsive Caputo fractional order neural network · exponential synchro-
nization · time-varying delays · linear matrix inequality · Lyapunov function

1 Introduction

Artificial neural networks, or simply, neural networks, whose performance is relatively
established on how animal neurons function, are interconnected association of simple
processing units. The processing ability of the network is acquired by reviewing from
a set of training patterns. This ability is stored in the inter-unit connection strengths,
usually known as weight [11]. The last few decades have seen an increase in the im-
portance of neural networks due to its broad range of applications like pattern recog-
nition, independent component analysis, weather prediction, handwriting recognition,
autopilot, robotics and so on [1][2][20].As new results are established for neural net-
works its different dynamic behaviors are thoroughly studied on many kinds of neural
networks. For instance, the stability [4-8],synchronization [27-29] passivity [15], ex-
ponential stabilization [3][9][12][37],exponential synchronization [16-20], Mittag-Leffler
stability and/or synchronization [30-32], impulsive synchronization [21]-[26],H∞ con-
trol problem[33],bifurcation [10][36] and so on. We came into fractional calculus by
simply altering the usual integer order to non-integer order.[12]. Fractional-order
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model is preferred over integer-order model due to different advantages.The behavior
of real-world situations is accurately noted and practical processes are analyzed by
fractional-order model.[5][12][27]
Usually, one faces time-delay in many engineering structures such as airliner, con-
trol systems, communication systems and so on. Time delay results in instability,
divergence, chaos or other poor conducts of the system[20][14][8].In [15][31][32][34]
consequences of time delays in FONNs is discussed.
Synchronization primarily signify the dynamic behavior of a system designed to sim-
ulate another. This simply means that the state trajectory of the said systems are
similar in the end[20].Many applications of synchronization are seen in several ar-
eas namely parallel image processing, secure communication , transmission of digital
signals, [22] and so on. In order to achieve fast synchronization, exponential synchro-
nization is used[16].

In [12] exponential synchronization of fractional-order Cohen–Grossberg neural
networks is considered as a function of stabilization of fractional order impulse control
systems.Along with this, we also consider many synchronization conditions subsequent
to impulsive control. From [34], we only take the case where zero disturbance is taken
for FONNs and we find solution to the stabilization of H∞ control for the system.

Motivated by the aforementioned comments, this paper examines a class of impul-
sive Caputo FONNs having time varying delays. Its corresponding response system
is taken and hence the error system is found. Our aim is to establish exponential
synchronization of this system. The focus is on achieving the convergence in order for
the system to be exponentially synchronized faster than the studies done by now. For
that, we employ a convex Lyapunov function for our system and obtain the synchro-
nization results’ conditions as LMIs .
The remnant sections are along these lines; section 2 comprises of some preliminaries
required for the study. Also, our FONNs, its corresponding response system and the
resulting error system is introduced here.Section 3 covers the main results that we have
obtained: i.e. the conditions for the system taken to reach exponential synchroniza-
tion in terms of certain LMIs. Section 4 contains a numerical example which verifies
the result that was obtained in section 3. Section 5 sums up the paper and shows the
direction in which the forthcoming study in this topic can be taken.

Notations: Let Rn and Rn×m imply the set of n-dimensional real vectors and n ×m
matrices, respectively. In and 0n stands for the n × n dimensional identity and zero
matrix, respectively. 0n×m designate the n × m dimensional zero matrix. consider
matrices A,B ∈ Rn×n. sym(A) stands for A + AT . Matrix A is symmetric positive
definite, with notation A > 0 if A = AT and xTAx > 0 ∀ x ∈ Rn. Matrix B is sym-
metric semi-positive-definite, with notation B ≥ 0 if B = BT and xTBx ≥ 0 ∀ x ∈ Rn.
Set Pn and P̄n to be the set of symmetric semi-positive definite and set of symmetric
positive definite matrices in Rn×n and Gn the set of positive diagonal matrices i.e. a
matrix Λ = diag{λ1, ...λn} ∈ Gn if λi > 0(i = 1, 2, ..., n).
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2 Preliminaries and Model Description

Definition 1 (12). The Caputo fractional derivative CDµ
t f(t) for differentiable f :

[a, b]→ R, µ ∈ (0, 1) is defined as;

CDµ
t f(t) =

1

Γ(1− µ)

∫ t

0

f ′(s)

(t− s)µ ds t ≥ 0

Here Γ(.) denotes the gamma function;

Γ(s) =

∫ ∞
0

e−tts−1dt, s > 0

For our convenience we will also use Dµ
t f(t) to denote the Caputo fractional deriva-

tive.

Property 1 (34). For any constants λ1 and λ2 and two functions f1(t) and f2(t),

Dµ
t (λ1f1(t) + λ2f2(t)) = λ1D

µ
t f1(t) + λ2D

µ
t f2(t)

Examine the subsequent fractional order neural network having a time varying
delay:

Dµ
t x(t) = −Lx(t) +Mh(x(t)) +Nh(x(t− g(t))) t 6= tk, t > 0

x(t+k ) = (
Dk

Γ (µ+ 1)
)x(t−k ) t = tk

x(t0) = φ(t) t ∈ [−g, 0]

(1)

where µ ∈ (0, 1), x(t) ∈ Rn is the neuron state vector, n is the number of neurons in
the fractional order neural networks,
h(x(t)) = (h1(x1(t)), h2(x2(t)), . . . , hn(xn(t)))T ∈ Rn denotes the neuron activation
function, L = diag{m1, . . . ,mn} ∈ Gn, M,N ∈ Rn×n are known constant matrices,
g(t) is a time varying delay satisfying 0 ≤ g(t) ≤ g where g is a known positive con-
stant, φ(t) is a vector valued continuous function, tk < tk+1 for each k ∈ N, and
Dk ∈ Rn×n and Dk > 0 and limk→+∞ tk =∞.
If we take (1) to be the drive system its response system is taken as

Dµ
t y(t) = −Ly(t) +Mh(y(t)) +Nh(y(t− g(t))) t 6= tk, t > 0

y(t+k ) = (
Dk

Γ (µ+ 1)
)y(t−k ) t = tk

y(t0) = ϕ(t) t ∈ [−g, 0]

(2)
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We take
e(t) = y(t)− x(t)

to be the synchronization error, then the error system is obtained from (1) and (2)
as

Dµ
t e(t) = −Le(t) +Mh(e(t)) +Nh(e(t− g(t))) t 6= tk, t > 0

e(t+k ) = (
Dk

Γ (µ+ 1)
)e(t−k ) t = tk

e(t0) = ψ(t) = ϕ(t)− φ(t)

(3)

Assumption 1 (34). Any activation function hi(.) is continuous, bounded and fulfills
the condition

l−i ≤
hi(c)− hi(d)

c− d ≤ l+i i = 1, 2, . . . , n

where hi(0) = 0, l+i , l
−
i are known real constants (i = 1, 2, . . . , n) , c, d ∈ R and c 6= d.

Lemma 1 (34). Given µ ∈ (0, 1], e(t) ∈ Rn be a continuous function and U : Rn −→
Rn be a convex and differentiable function on Rn such that U(0) = 0. We have

Dµ
t U(e(t)) ≤ 〈∆U(e(t)), Dµ

t e(t)〉 t ≥ 0

where ∆U(.) is the gradient of U and 〈, 〉 is the inner product.

Lemma 2. For real valued function U(t) on [a,∞) and a ∈ R, if there exists a constant
θ in a manner that

Dµ
t U(t) ≤ θU(t), 0 < µ ≤ 1

then

U(t) ≤ U(a)e
∫ t
a
θ(t−τ)µ−1dτ

Γ(a)

= U(a)e
θ(t−a)µ

Γ(a+1)
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3 Main Result

Theorem 1. Consider the case where Assumption 1 is true. System (3) is exponen-
tially synchronized if there exists Q,K ∈ P̄n, Y ∈ P3n, Λi = diag{λi1, λi2, . . . , λin} ∈
Gn(i = 1, 2, . . . , n),Kk ∈ R satisfying the subsequent LMI

gµµ−1ΥTYΥ +

3∑
i=1

Φi − βQ < 0 (4)

−KkQ+ (
Dk

Γ (µ+ 1)
)TQ(

Dk
Γ (µ+ 1)

) ≤ 0 (5)

and the condition, if 0 < tk+1 − tk ≤ τ ,

ln(Kk) <
−(ν − Z)τµ

Γ(µ+ 1)
(6)

τ, ν, β > 0, Z ∈ R

Π1 =
[
In 0n 0n 0n 0n

]
Π2 =

[
0n In 0n 0n 0n

]
Π3 =

[
0n 0n In 0n 0n

]
Π4 =

[
0n 0n 0n In 0n

]
Π5 =

[
0n 0n 0n 0n In

]
Θ1 = diag{l−1 , . . . , l−n }

Θ2 = diag{l+1 , . . . , l+n }

Υ =
[
ΠT

1 ΠT
2 ΠT

5

]T
Υ1 = Π3 −Θ1Π1

Υ2 = Θ2Π1 −Π3
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Υ3 = Π4 −Θ1Π2

Υ4 = Θ2Π2 −Π4

Υ5 = Π3 −Π4 −Θ1(Π1 −Π2)

Υ6 = Θ2(Π1 −Π2)−Π3 + Π4

Φ1 = sym(ΠT
1 QΠ5 − ΠT

1Ke5 + ΠT
1KMΠ3 + ΠT

1KNΠ4 − ΠT
5KLΠ1 + ΠT

5KMΠ3 +
ΠT

5KNΠ4)

Φ2 = ΠT
1 [−KL− LK +Q]Π1 −ΠT

2 QΠ2 + ΠT
5 [−2K]Π5

Φ3 = sym(ΥT
1 Λ1Υ2 + ΥT

3 Λ2Υ4 + ΥT
5 Λ3Υ6)

Proof. First we will look at the case when t 6= tk. Let

U(t) = U(t, e(t)) = eT (t)Qe(t)

be the Lyapunov function for system (3)

We observe that U(t) is a differentiable and convex function on Rn and U(t, 0) = 0.
Hence on applying Lemma 1, Caputo fractional derivative of the system (3) of order
µ is calculated in this way:

Dµ
t U(t, e(t)) ≤ 2eT (t)QDµ

t e(t)

= γT (t)sym(ΠT
1 QΠ5)γ(t)

(7)

where

γ(t) =
[
eT (t) eT (t− g(t)) hT (e(t)) hT (e(t− g(t))) (Dµ

t e(t))
T
]T

For any matrix Y ∈ P3n, the following holds

gµµ−1ζT (t)Y ζ(t)−
∫ t

t−g(t)
(t− s)µ−1ζT (t)Y ζ(t)ds ≥ 0 (8)

where
ζ(t) =

[
eT (t) eT (t− g(t)) (Dµ

t e(t))
T
]T

1184



Then again, for any K ∈ P̄n, the following equation can be attained from the
system (3)

[2eT (t) + 2(Dµ
t e(t))

T ]K × [−Dµ
t e(t)− Le(t) +Mh(e(t)) +Nh(e(t− g(t)))] = 0 (9)

From Assumption 1, we get that for any λji > 0 (i = 1, 2, . . . , n, j = 1, 2, 3)

2(hi(ei(t))− l−i ei(t))λ1i(l
+
i ei(t)− hi(ei(t))) ≥ 0

2(hi(ei(t− g(t)))− l−i ei(t− g(t)))λ2i(l
+
i ei(t− g(t))− hi(ei(t− g(t)))) ≥ 0

2(hi(ei(t))− hi(ei(t− h(t)))− l−i (ei(t)− ei(t− h(t))))λ3i(l
+
i (ei(t)

−ei(t− h(t)))− hi(ei(t)) + hi(ei(t− g(t)))) ≥ 0

which imply

2γT (t)ΥT
1 Λ1Υ2γ(t) ≥ 0

2γT (t)ΥT
3 Λ2Υ4γ(t) ≥ 0

2γT (t)ΥT
5 Λ3Υ6γ(t) ≥ 0

(10)

Since
U(t, e(t)) = eT (t)Pe(t)

taking some real number σ > 1 we presume that

U(t+ s, e(t+ s)) < σU(t, e(t)) ∀s ∈ [−g, 0]

which gives
σeT (t)Qe(t)− eT (t− g(t))Qe(t− g(t)) > 0 (11)

Combining estimates (7-11),

Dµ
t U(t, e(t)) ≤ γT (t)Φ̄γ(t)−

∫ t

t−g(t)
(t− s)µ−1ζT (t)Y ζ(t)ds (12)

is attained, where

Φ̄ = gµµ−1ΥTXΥ + Φ1 + Φ̄2 + Φ3

1185



Φ̄2 = ΠT
1 [−KL− LK + σQ]Π1 −ΠT

2 QΠ2 −ΠT
5 [−2K]Π5

Since σ > 1 is arbitrary and does not affect Dµ
t U(t, e(t)), as σ −→ 1+,

the inequality (12) becomes

Dµ
t U(t, e(t)) ≤ γT (t)Φγ(t)−

∫ t

t−g(t)
(t− s)µ−1ζT (t)Y ζ(t)ds (13)

=⇒ Dµ
t U(t, e(t)) < γT (t)Φγ(t)

Take Φ < βQ where β ∈ R and β > 0

Dµ
t U(t, e(t)) < γT (t)βQγ(t)

< βγT (t)sym(Π1QΠT )γ(t)

= −ZeT (t)Qe(t)

where Z ∈ R
Hence

Dµ
t U(t, e(t)) < −ZU(t, e(t)) (14)

Let

(1 +
dk

Γ (µ+ 1)
)TQ(1 +

dk
Γ (µ+ 1)

) ≤ KkQ

U(tk, e(tk) ≤ eT (t−k )KkQe(t
−
k )

= Kke
T (t−k )Qe(t−k )

Thus
U(tk) ≤ KkU(t−k )

Hence we have

Dµ
t U(t, e(t)) < −ZU(t, e(t)) t 6= tk

U(t+k , e(t
+
k ) ≤ KkU(tk, e(tk)) t = tk

U(t, e(t)) = U(t0) t = t0

(15)
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For any t ∈ [t0, t1) we have from lemma 2

U(t) ≤ U(t0)e
Z(t−t0)µ

Γ(µ+1)

which leads to

U(t−1 ) ≤ U(t0)e
Z(t1−t0)µ

Γ(µ+1)

Set
U(t+1 ) = U(t1)

Considering any t ∈ [t1, t2) we get

U(t) ≤ U(t1)e
Z(t−t0)µ

Γ(µ+1)

≤ U(t0)K1e
Z((t−t1)µ+(t1−t0))µ)

Γ(µ+1)

Similarly for any t ∈ [tk, tk+1),

U(t) ≤ U(t1)e
Z(t−tk)µ

Γ(µ+1)

≤ U(t0)K1K2...Kke
Z((t−tk)µ+(tk−tk−1))µ+....+(t1−t0)µ)

Γ(µ+1)

By the condition if

0 < tk+1 − tk ≤ τ, ln(Kk) <
−(ν − Z)τµ

Γ(µ+ 1)

where τ, ν > 0, we obtain

U(t) ≤ U(t0)e
−(ν−Z)kτµ

Γ(µ+1) e
−Z(k+1)τµ

Γ(µ+1)

≤ U(t0)e
−νkτµ
Γ(µ+1) e

−Zkτµ
Γ(µ+1) e

−Zτµ
Γ(µ+1)

Thus,
U(t) ≤ U(t0)e−(νk+Z)τµ (16)

where
νk + Z > 0

As k →∞ and τ →∞ we have
U(t) ≤ 0

This proves the exponential synchronization of the system (3).
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4 Example

Given below is an example to depict the results proved;

Consider the following parameters for system (1);

n = 2, µ = 0.1, L=

[
1 0
0 2

]
, M=

[
2 −0.1
−5 0.75

]
and N=

[
0.15 0.1

0 0.3

]
.

Dk=

[
0.95 0

0 0.95

]
We take the time varying function as

g(t) =
t

1 + t
, t ≥ 0

Activation function and delay term are given by

h(x(t)) = (
1

1 + e−x1(t)
,

1

1 + e−x2(t)
) ∈ R2

h(x(t− g(t)) = (
1

1 + e−x1(t−g(t)
,

1

1 + e−x2(t−g(t))
)

Initial condition is x(0) = (0.15, 0.1)
The corresponding response system (2) has the same parameters as above with initial
condition y(0) = (0.45, 0.3)
Hence we get the error system as (3), the same parameters as above and initial

condition e(0) = (0.3, 0.2)

Solution:

Upon considering the above parameters and conditions for system (3) and substituting
theses values in the conditions given in the theorem we can see that these conditions
are satisfied and hence we get that the system is exponentially synchronized.

5 Conclusions

In view of this paper, we explored the exponential synchronization of impulsive neural
networks having fractional order having a time delay.We introduce a convex Lyapunov
function for our system and use certain LMI conditions to achieve synchronization .The
research in the same problem can be lead forward by broadening the result obtained
into complex valued neural networks.
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