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Abstract

This paper examines Dirac delta impulse control for Caputo fractional
order neural network having time varying delay. With the help of an
appropriate convex Lyapunov function and LMI techniques, we give exponential
stability conditions for the system. A numerical example is given to show
the usefulness of the exponential stability conditions obtained.

Keywords-Impulsive Caputo fractional order neural network, time varying
delay, Lyapunov function, exponential stability, Linear Matrix Inequality
(LMI).

1 Introduction
A neural network is basically a network of neurons. In modern science, an artificial
neural network is a network consisting of artificial neurons or nodes [4]. Initially
people studied only integer calculus. But with time fractional calculus got introduced
by replacing the integer order with some non-integer order. Even though fractional
calculus was up in the air as integer calculus, it got attention among the researchers just
recently and is still a great field to work upon. Fractional order differential system can
explain fields like neural networks, hydromechanics, mechatronics, electromagnetism,
super capacitors, visco-elastic fluid that have materials and processes having memory
and hereditary properties more precisely than integer-order ones [3]. Because of greater
applications of fractional calculus on different splits of science and industry researchers
started paying more attention towards it [1, 16-23]. One of the most important
application of fractional calculus is Fractional Order Neural Network (FONN) [6].
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In the execution of neural networks, since there is a delay in transmission of signals,
the time lag phenomenon is unavoidable and will lead to some stability issues in the
network [2]. Oscillation and performance degradation of the system are mainly caused
by the time delay [5]. Thus it’s very meaningful to study time-delay system. Other
than the time-delay effect, impulse effect is also visible in neural networks. In neural
networks, a lot of abrupt and peaked changes can occur spontaneously in form of pulses
[2]. To make an unstable system into a stable one, any of the control methods can be
used. If the degree of stability of the controlled neural network is α then we will say
that the neural network is exponentially stable [7]. The non-linear problem is not fully
solved like the linear systems where mandatory conditions for stability are provided.
Despite of the current efforts, the problem of exponential stability of non-linear, non-
autonomous systems can be considered widely open [7]. Since many systems in real life
applications like automatic control systems, robotics, artificial intelligence, information
science can be designed by non-linear systems, they had been given more attention
since the last two decades [8,9,10,11,12]. Thus it’s very important to study the stability
of the non-linear systems having impulse effects [9,13,14,15]. Lyapunov’s method
and it’s alterations like Lyapunov-Krasovskii function methods and Ruzumikhin type
theorems is one of the greatest way to stability of differential systems [7]. Researchers
studied many problems like controllability problems [41,42,43], asymptotic stability
[24-28], synchronization analysis [38,39,40], Mittage-Leffler stabilization [29], guaranteed
cost control [36,37], passivity analysis [34,35], finite-time stability [30-33], exponential
stability [57-58] and so on.

A discontinous control method that makes the system chage it’s trajectories at
discrete times is called an impulsive control and is very cost effective too [3]. Back then,
impulsive control was put in to present the integer-order differential system’s dynamic
control [3, 50-55]. In many cases, some impulsive controllers were modelled using Dirac
delta function and based on the properties of the Dirac delta function, the controlled
integer-order differential system were changed into the impulsive ones [51-54]. Lately,
impulsive control was discerned to explore the dynamics of various fractional-order
systems which are more practical like economic models, neural network models and
biological models [48,49,55]. Many studies have been made on other control methods
like adaptive control [44], sliding-mode control [45], intermittent control and so on
[46,47].

So far the study of impulse control on neural network with time-delay was made
only when it’s integer order. Here we extend it to fractional-order impulsive control
neural network having time-delay. So we choose impulsive Caputo fractional-order
neural network having time-delay. Then we select an appropriate convex Lyapunov
function and use LMI techniques to make the system
exponentially stable. By doing so, the convergence rate can be made higher and thus
get the best possible result. An example is also included to depict the usefulness of
the result acquired.

The structure of this paper is as below: section 2 explains the notations used,
section 3 covers some basic concepts and the description of the system considered,
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section 4 projects the main result and section 5 gives an example that portray the
usefulness of the result obtained. We end the paper by a conclusion.

Notations : Here Rn denotes the set of n-tuple of real numbers and Rn×m denotes the
set of real n ×m matrices. Let 0n and In denote zero matrix and identity matrix of
dimension n× n respectively. sym(X) denotes X +XT where X ∈ Rn×n. If a matrix
R ∈ Rn×n satisfies the conditions R = RT and yTRy > 0, ∀y ∈ Rn, y 6= 0 then we
will say that R is symmetric positive definite and is denoted by R > 0. If a matrix
R ∈ Rn×n satisfies the conditions R = RT and yTRy ≥ 0, ∀y ∈ Rn, y 6= 0 then we
will say that R is symmetric semi-positive definite and is denoted by R ≥ 0. Here An
and Cn represents the set of all real symmetric semi-positive definite and the set of all
real symmetric positive definite matrices of dimension n× n respectively. Bn denotes
the set of all positive diagonal matrices, that is, a matrix Q = diag{q1, ..., qn}∈ Bn if
qj > 0 (j = 1, 2, ...., n).

2 Preliminaries and Model Description
Definition 1 (3). Let f : [a, b] −→ R be a differentiable function. Then the Caputo
fractional derivative of order α of f where α ∈ (0, 1) denoted by cDα

t f(t) is defined as
follows:

cDα
t f(t) =

1

Γ(1− α)

∫ t

t0

f
′
(s)ds

(t− s)α t ≥ t0.

Property 1 (6). For any constants λ1,λ2 and functions h(t), p(t), we have

cDt
α(λ1h(t) + λ2p(t)) = λc1D

α
t h(t) + λc2D

t
αp(t)

From here on, we will use the notation Dt
α for cDt

α

Let us consider the following Caputo fractional order neural network having time delay:

Dα
t y(t) = −Ay(t) +Bg(y(t)) + Cg(y(t− p(t))) + v(t) t ≥ t0
y(t) = τ(t) t ∈ [−p, 0]

(1)

where α ∈ (0, 1), the neuron state vector y(t) ∈ Rn, n denotes the number of neurons
present in the fractional-order neural network, the control input v(t) ∈ Rn, the neuron
activation function g(y(t)) = (g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))T

∈ Rn, A = diag{a1, . . . , an} ∈ Bn, the known constant matrices B,C ∈ Rn×n, the
time delay function p(t) satisfies 0 ≤ p(t) ≤ p where p is a known positive constant,
τ(t) is a continuous vector valued function, v(t) = H

∑∞
k=1

u(tk)δ(t−tk)
Γ(α+1)

k ∈ N, H ∈ Rn×m, δ is the Dirac delta function and tk < tk+1 for each k ∈ N,
limk→+∞ tk = +∞.
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When t 6= tk

v(t) = H

∞∑
k=1

u(tk)δ(t− tk)

Γ(α+ 1)
= 0 (2)

When t = tk, δ(t− tk) = 1. Put u(tk) = Jy(t−k ) where J ∈ Rm×n

=⇒ v(t) =
Iky(t−k )

Γ(α+ 1)
where Ik = HJ ∈ Rn×n

y(t+k ) =
Dk

Γ(α+ 1)
y(t−k ) where Dk ∈ Rn×n

(3)

From (1),(2) and (3) we can rewrite the system as follows:

Dα
t y(t) = −Ay(t) +Bg(y(t)) + Cg(y(t− p(t))) t 6= tk, t ≥ t0

y(t+k ) =
Dk

Γ(α+ 1)
y(t−k ) t = tk

y(t) = τ(t) t ∈ [−p, 0]

(4)

Assumption 1. [6] The activation function gj(.) is a bounded, continuous fnction
satisfying the following condition

m−j ≤
gj(u)− gj(v)

u− v ≤ m+
j j = 1, 2, . . . , n

where gj(0) = 0 (j = 1, 2, . . . , n), u, v ∈ R, u 6= v and m+
j ,m

−
j are known real

constants.

Lemma 1. [6] Let U : Rn −→ Rn be a differentiable and convex function with
U(0) = 0, y(t) be a continuous function in Rn and α ∈ (0, 1]. Then

Dα
t U(y(t)) ≤ 〈∆U(y(t)), Dα

t y(t)〉 t ≥ 0

where 〈, 〉 denotes the inner product and ∆U(.) denotes the gradient of the function U .

Lemma 2. Let H(t) be a continuous and real valued function on [b,+∞), ∀b ∈ R. If
there exists a constant k such that Dα

t H(t) ≤ kH(t), 0 < α ≤ 1 then

H(t) ≤ H(b)e
∫ t
b
k(t−τ)α−1dτ

Γ(α)

= H(b)e
k(t−b)α
Γ(α+1)
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3 Main Result
Theorem 1. Suppose that the assumption 1 holds. If there exists matrices Q,G ∈ Cn,
L ∈ A3n, Λi = diag{λi1, λi2, . . . , λin} ∈ Bn(i = 1, 2, . . . , n), Kk ∈ R satisfying the
following LMI’s:

pαα−1ΩTLΩ +

3∑
i=1

γi − βQ < 0 (5)

−KkQ+ (
Dk

Γ(α+ 1)
)TQ(

Dk
Γ(α+ 1)

) < 0 (6)

and the condition, if 0 < tk+1 − tk ≤ r,

ln(Kk) <
−(ν −W )rα

Γ(α+ 1)
(7)

where r, ν, β > 0 and
θ1 =

[
In 0n 0n 0n 0n

]
θ2 =

[
0n In 0n 0n 0n

]
θ3 =

[
0n 0n In 0n 0n

]
θ4 =

[
0n 0n 0n In 0n

]
θ5 =

[
0n 0n 0n 0n In

]
π1 = diag{m−1 , . . . ,m−n }

π2 = diag{m+
1 , . . . ,m

+
n }

Ω =
[
θT1 θT2 θT5

]T
Ω1 = θ3 − π1θ1

Ω2 = π2θ1 − θ3

Ω3 = θ4 − π1θ2

Ω4 = π2θ2 − θ3
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Ω5 = θ3 − θ4 − π1(θ1 − θ2)

Ω6 = π2(θ1 − θ2)− θ3 + θ4

γ1 = sym(θT1 Qθ5 − θT1 Gθ5 + θT1 GBθ3 + θT1 GCθ4 − θT5 GAθ1 + θT5 GBθ3 + θT5 GCθ4)

γ2 = θT1 [−GA−AG+Q]θ1 − θT2 Qθ2 + θT5 [−2G]θ5

γ3 = sym(ΩT1 Λ1Ω2 + ΩT3 Λ2Ω4 + ΩT5 Λ3Ω6)

then we are able to conclude that the system is exponentially stable.

Proof. Consider the Lyapunov function U(t) = U(t, y(t)) = yT (t)Qy(t) for our system.
Clearly U(t) is a differentiable and convex function on Rn and also U(t, 0) = 0. The
Caputo fractional derivative of order α of the system can be calculated using lemma
1 as follows:

Dα
t U(t, y(t)) ≤ 2yT (t)QDα

t y(t)

= ωT (t)sym(θT1 Qθ5)ω(t)

(8)

where ω(t) =
[
yT (t) yT (t− p(t)) gT (y(t)) gT (y(t− p(t))) (Dα

t y(t))T
]T

The inequality below holds for any L ∈ A3n

pαα−1φT (t)Lφ(t)−
∫ t

t−p(t)
(t− s)α−1φT (t)Lφ(t)ds ≥ 0 (9)

given φ(t) =
[
yT (t) yT (t− p(t)) (Dα

t y(t))T
]T

The following equality can be acquired from our system. For any G ∈ Cn,

[2yT (t) + 2(Dα
t y(t))T ]G× [−Dα

t y(t)−Ay(t) +Bg(y(t)) + Cg(y(t− p(t)))] = 0 (10)

From Assumption 1, we can say that that for any λji > 0 (j = 1, 2, 3, i = 1, 2, . . . , n)

2(gi(yi(t))−m−i yi(t))λ1i(m
+
i yi(t)− gi(yi(t))) ≥ 0
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2(gi(yi(t− p(t)))−m−i yi(t− p(t)))λ2i(m
+
i yi(t− p(t))− gi(yi(t− p(t)))) ≥ 0

2(gi(yi(t))− gi(yi(t− p(t)))−m−i (yi(t)− yi(t− p(t))))λ3i(m
+
i (yi(t)− yi(t− p(t)))

− gi(yi(t)) + gi(yi(t− p(t)))) ≥ 0

which imply

2ωT (t)ΩT1 Λ1Ω2ω(t) ≥ 0

2ωT (t)ΩT3 Λ2Ω4ω(t) ≥ 0

2ωT (t)ΩT5 Λ3Ω6ω(t) ≥ 0

(11)

Since U(t, y(t)) = yT (t)Qy(t), we suppose that for some real number ρ > 1

U(t+ s, y(t+ s)) < ρU(t, y(t)) ∀s ∈ [−p, 0]

we obtain
ρyT (t)Qy(t)− yT (t− p(t))Qy(t− p(t)) > 0 (12)

Combining estimates (8)-(12), we obtain

Dα
t U(t, y(t)) ≤ ωT (t)γ̄ω(t)−

∫ t

t−p(t)
(t− s)α−1φT (t)Lφ(t)ds (13)

where

γ̄ = pαα−1ΩTLΩ + γ1 + γ̄2 + γ3

γ̄2 = θT1 [−GA−AG+ ρQ]θ1 − θT2 Qθ2 + θT5 [−2G]θ5

Since ρ > 1 is an arbitrary parameter and Dα
t U(t, y(t)) doesnot depend on ρ, taking

ρ −→ 1+, the inequality (13) becomes

Dα
t U(t, y(t)) ≤ ωT (t)γω(t)−

∫ t

t−p(t)
(t− s)α−1φT (t)Lφ(t)ds (14)
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where γ = pαα−1ΩTLΩ + γ1 + γ2 + γ3

=⇒ Dα
t U(t, y(t)) < ωT (t)γω(t)

Take γ < βQ, whereβ ∈ R and β > 0

Dα
t U(t, y(t) < ωT (t)βQω(t)

< βωT (t)sym(θ1Qθ
T
1 )ω(t)

= −WyT (t)Qy(t)

where −W ∈ R

Thus,
Dα
t U(t, y(t)) < −WU(t, y(t)) (15)

Take ( Dk
Γ(α+1)

)TQ( Dk
Γ(α+1)

) ≤ KkQ

U(t+k ) ≤ yT (t−k )KkQy(t−k )

≤ Kky
T (t−k )Qy(t−k )

< Kkω
T (t−k )sym(θT1 Qθ1)ω(t−k )

Thus,
U(t+k , y(t+k )) ≤ KkU(t−k , y(t−k )) (16)

Hence,

Dα
t U(t, y(t)) < −WU(t, y(t)) t 6= tk

U(t+k , y(t+k )) ≤ KkU(t−k , y(t−k )) t = tk

U(t, y(t)) = U(t0) t = t0

(17)

For any t ∈ [t0, t1), we have
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U(t) ≤ U(t0)e
−W (t−t0)α

Γ(α+1)

which gives U(t−1 ) ≤ U(t0)e
−W (t1−t0)α

Γ(α+1)

Set U(t+1 ) = U(t1)

For any t ∈ [t1, t2) we have

U(t) ≤ U(t1)e
−W (t−t1)α

Γ(α+1)

≤ U(t0)K1e
−W [(t−t1)α+(t1−t0)α]

Γ(α+1)

Similarly for any t ∈ [tk, tk+1) we have

U(t) ≤ U(tk)e
−W (t−tk)α

Γ(α+1)

≤ U(t0)K1K2...Kke
−W [(t−tk)α+(tk−tk−1)α+...+(t1−t0)α]

Γ(α+1)

By the condition if 0 < tk+1 − tk ≤ r, ln(Kk) < −(µ−W )rα

Γ(α+1)
, where r, µ > 0, we

obtain

U(t) ≤ U(t0)e
−(µ−W )krα

Γ(α+1) e
−W (k+1)rα

Γ(α+1)

≤ U(t0)e
−µkrα
Γ(α+1) e

Wkrα

Γ(α+1) e
−Wkrα

Γ(α+1) e
−Wrα

Γ(α+1)

Thus,

U(t) ≤ U(t0)e
−(µk+W )rα

Γ(α+1) (18)

where µk +W > 0 and k −→∞, r −→∞ then U(t) ≤ 0

Thus our system is exponentially stable.

1172



4 Example
This segment gives an example to depict the usefulness of the result obtained.

We consider a FONN having time delay that can be defined as (4) with the parameters
below:

A =

[
5 0
0 10

]
, B =

[
2 1

0.5 3

]
, C =

[
0.2 −0.3
0 1

]
, Dk =

[
0.7 0
0 1

]

p(t) = 1
1+t

, t ≥ 0 is choosen as the time varying function.
g(y(t)) = (tanh y1(t), tanh y2(t))T is chosen as the activation function and g(y(t −
p(t))) = (tanh y1(t− p(t)), tanh y2(t− p(t))) ∈ R2 is taken as the delay term. Choose
α = 0.99. Initial condition is taken as y(0) = (0.2,−0.1).

Solution:
The FONN having time varying delay which is described as system (4) with the above
parameters satisfies the LMI’s (5), (6) and the condition (7). Thus the system is
exponentially stable.

5 Conclusion
Here a fractional order neural network having impulses and delay time is considered
and its exponential stability is examined. We introduced a convex Lyapunov function
for our system and used certain LMI conditions to achieve exponential stability. The
future research can be taken forward by broadening the obtained criterion to complex
valued neural networks.
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