
Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 500- 509

500

Research Article

Research Article

Fuzzy Based Stable Maintainability Metric for Software Projects

Surender Singh

a, and Darpan an and b

A

 Dept. of CSE, Chandigarh University, Mohali, India
 bDept. Of CSE, Chandigarh University, Mohali, India

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: To make software better in view of its maintainability, its software development process must be controlled and
continuously observed. Researchers and software managers have stressed on the early measurement of maintainability starting
from design phase itself so that timely steps could be taken for producing maintainable software. This paper evaluates and

compares several methodologies for improving the numerical stability of a fuzzy-logic-based maintainability metrics system.

Fuzzy parameters are adjusted using heuristic methods. A number of alternates were considered, in which training data sets were
generated using different methods and these sets were used to evaluate objective functions in GA and accordingly fuzzy
parameters were tuned. After conditioning, real projects’ maintainability data is used to show that fuzzy model performance is
increased, however marginally, after conditioning

Keywords: Software maintainability, Fuzzy systems, Genetic algorithm.

1. Introduction

Software is described by several characteristics in its quality domain such as test-ability, maintainability,

flexibility etc. The degree to which, these characteristics satisfy the requirements of software specification,

expresses the quality of soft-ware. Usually a software management process has a main objective and that is to

develop a software product within specified or planned cost, schedule and quality [1]. For proper control of a

software development process, we need to measure software attributes at every step of software development. The

measured crisp value of an attribute provides right direction to software managers to take effi-cient and effective

decisions. All software attributes are not atomic; sometimes an attribute value is measured or integrated with the

help of several other atomic or hybrid attributes’ values. These attributes are integrated either using some math-

ematical formula or by using some other techniques such as fuzzy logic modeling. When contributing attributes

are of diverse nature (not having same unit of measurement) and are hard to be converted into a single crisp value

then it is very difficult to identify a mathematical model or formula. For such types of integra-tion, fuzzy modeling

is ideal [2]. In the last decade, several fuzzy based integrated measures have come up in the literature [3] [4].

Maintainability is one such hy-brid attribute, whose crisp value depends on many lower order attributes such as

source code size, comment ratio, software complexity, source code readability, documentation quality etc.

IEEE defines maintainability as “the ease with which a software system or component can be modified after

delivery to correct faults, improve performance or other attributes, or adapt to a changed environment” [5].

Software mainte-nance consumes nearly 60% to 80% [6] of software development and operations resources, so

emphasis must be put on developing such software systems, whose maintenance and enhancement are relatively

easy and with least possible error prone. Several researchers have stressed on the early measurement of maintaina-

bility starting from design phase itself so that timely steps could be taken for pro-ducing maintainable software [7]

Maintenance process is a summation of three main activities: program un-derstanding, impact examination and

finally regression testing. Program compre-hension is activity of analyzing the source code and software artifacts

in such a way to gain a complete understanding of the structure, behavior and functionality of the system being

modified. Impact analysis is the activity of assessing the po-tential affect of a change with an objective of

minimizing the side affects [8]. Re-gression testing is used to assess the side effects of the new changes or modifica-

tions introduced in the system as part of maintenance activities. Several models have been proposed for finding

maintainability of software in different perspec-tive [9, 10, 23]. Earlier researchers used to consider only source

code and its allied comments for program comprehension [11], but later with increased complexity of software,

understanding other software artifacts such as design documents were also assumed compulsory [3, 20, 22]. As

there are several diverse attributes collected from different artifacts of software, which are distinct in measurement

and performance scale, efforts are made to integrate these, in order to get a single crisp value of maintainability.

For this type of integration fuzzy modeling was used by several authors [3]. Some authors have used machine

learning of en-semble techniques for estimating maintainability of software products [21].

Fuzzy Based Stable Maintainability Metric for Software Projects

501

2. Model under Consideration

For assessment four-input-boundaries practicality measurements is processed with assistance of a fuzzy model

proposed by Aggarwal et. al. [3]. In these writers have considered normal average cyclomatic complexity (ACC),

readability of source code (RSC), Documents quality (DOQ) and understandability of software (UOS) as

significant ascribes for the estimation of viability. Practically all product that is valuable and fruitful requests

changes and enhancements in the wake of being operational for quite a while relying upon the current situation.

For that rea-son, maintainers need to appreciate source code and archives appropriately to comprehend the structure

and conduct of programming. It has been accounted for that program perception devours the greater part of all

upkeep assets. More mind boggling being the product, more troublesome it is to comprehend and hence less viable

it is. McCabe’s Cyclomatic Complexity [12] measures control flow complexity of software. Average Cyclomatic

Complexity (ACC) is characterized as normal of Cyclomatic complexities, all things considered. Above model

thinks about ACC as one of the contributing elements toward programming viability.

A source code must be upheld by enough remarks to make it intelligible with the end goal of programming

cognizance. In the above model RSC is estimated utiliz-ing remark proportion in source code. DOQ measures the

nature of archives with the assistance of haze's record [13]. Mist file checks the length of sentences and trouble of

words. Higher the haze's list less is the nature of documentation with the end goal of understandability. To gauge

the UOS, level of comparability of use of images between the language of documentation and language of source

code is viewed as utilizing Laitnen's apparatus [14].

Knowledge Base

Maintain

-ability

Data Base Rule Base

Fuzzification

Module

Inference

Engine

DeFuzzification

Module RSC
DOQ
UOS

ACC

Figure 1: Maintainability Fuzzy System

The fuzzy framework, as appeared in Figure1, proposed in [3], is includ-ed four essential components: fuzzifier,

fuzzy information base, fuzzy induction motor, and defuzzifier. Fuzzification module is utilized to change the fresh

esti-mations of contributions to fuzzy qualities dependent on the participation capaci-ties (MFs) characterized in

information base. Fuzzy information base is contained two sections: data set in which MFs are put away and rule

base which stores the choice component of model. It takes care of all the lower lying modules for figur-ing the

outcomes. Induction motor is the cerebrum of model. It registers the prac-ticality in fuzzy space comprises of three

sub modules; specifically rule piece, suggestion and total module. Rule piece changes the fuzzified precursor some

por-tion of the standard to single mathematical figure that is utilized to ensnare the yield of a standard. Total

module at that point totals the individual yields of rules to a solitary fuzzy set. Defuzzifier returns the fuzzy yield

of derivation module back to fresh qualities, which thus is the yield of the fuzzy framework. Fuzzy framework's

presentation to a great extent relies upon the exactness of meaning of participation capacity and accuracy of rule

base.

So as to fuzzify the sources of info, the accompanying MFs for the ACC, RSC, DOQ and UOS were picked by

the creators [3].

1
LOW AV HIGH

3 8 13

Figure 2: Input Variable ACC

Surender Singh a, and Darpan Anand b

502

GOOD AVG POOR

1

4 6 8

CR

5 7 0

Figure 3: Input Variable RSC

Fog Index

 1

HIGH
MED LOW

9 10 12 16 18 0

Figure 4: Input Variable DOQ
MODERATE

Number of

symbols

1

MORE LESS

500 700 900 0

Figure 5: Input Variable UOS

V_GOOD

GOOD

AVG

POOR
V_POOR

1

2 4 6 8 0 10

Figure 6: Output Variable Maintainability

In order to measure software maintainability using the four input metrics, the rulebase for the system consisted

of the eighty-one rules as follows:

1. If (ACC is LOW) and (RSC is GOOD) and (DOQ is HIGH) and (UOS is MORE) then

(MAINTAINABILITY is V_GOOD).

2. If (ACC is AV) and (RSC is GOOD) and (DOQ is HIGH) and (UOS is MORE) then

(MAINTAINABILITY is V_GOOD).

3. If (ACC is HIGH) and (RSC is GOOD) and (DOQ is HIGH) and (UOS is MORE) then

(MAINTAINABILITY is GOOD).

.

.

.

81. If (ACC is HIGH) and (RSC is POOR) and (DOQ is LOW) and (UOS is LESS) then (MAINTAINABILITY

is V_POOR).

3. Stability Analysis of the Fuzzy System

A fuzzy model is basically an exchange work, which guides input space to yield space. A decent model, be it

numerical model or heuristic model, must be steady predictable, strong and vigorous for its better presentation. A

model is called mathematically steady, whenever given little Perturbation in inputs, yield doesn't differ

insignificantly. This is likewise called basic steadiness [15]. Aggarwal et. al. in [4] completed affectability

investigation of a fuzzy model and a neural organi-zation model of a particular picked issue. At the appropriate

time, creators con-trasted the strength of the two models and the assistance of experimental proof. Strength of

framework is inferred by figuring condition number for each infor-mation boundary. Condition number of each

Fuzzy Based Stable Maintainability Metric for Software Projects

503

information must be low for the en-tire framework. Condition number is characterized as the most extreme estima-

tion of the proportion of the overall edge in the yield to the general change in in-formation over the difficult area

and can be communicated as a condition as demonstrated as follows:

x

x

zyxf

zyxfzyxxf

x
CN




−+

=

),,(

),,(),,(

(1)

where is condition number corresponding to input, is the fuzzy model function to measure maintainability

and are the input parameters and is the perturbation in the input parameter . Perturbation must be tiny and, in

our trials, we have accepted this as 0.1 percent of information boundary. The condition number is a proportion of

the mathematical steadiness/molding of any model. For issues whose yield differs persistently as an element of the

info, condition numbers measure "the most pessimistic scenario affectability to little bothers." [16]. Capacities with

a condition number more like one are "steadier" or "very much adapted" when contrasted with capacities with a

condition number more prominent than one.

Authors in [4] reasoned that neural organization-based models are more steady than fuzzy models. Yet,

inaccessibility of adequate preparing information and huge preparing season of neural organization are obstruction

in receiving neural organization plot for demonstrating reason. Further in the event that the frame-work for which,

model is readied, is another framework, at that point we don't have any other option yet to create fuzzy model for

such frameworks. According-ly, fuzzy framework models must fulfill the security standard. At the point when the

framework is nonstop and boundaries are monotonic, plunges and steep-changes in the arrangement space (surface

view) shows a not well molded and in-secure framework. These plunges and steep changes are estimated utilizing

the idea of condition number as portrayed previously. In this way, on the off chance that we have to make

framework stable, which must be, the condition number should be limited. In past paper [17], an endeavor has

been made to improve the soundness of a fuzzy model-based estimation of three-inputs programming via-bility

metric [2] by changing the unconditioned framework to the molded one uti-lizing hereditary calculation. The

measure of molding/target work was picked as the general strength of framework, which is totaled by taking mean

squared esti-mation of condition number of each info. The minimization of the characterized target work results

into characterizing reexamined limits of the enrollment ele-ments of every one of the contributions viable. Our

investigation inferred that framework can be made steadier to sudden changes by tuning boundaries of a framework

dependent on condition number rule. This criterion has special rele-vance where previous modeling experience

and/or data is unavailable. In our pre-vious methodology, we have only considered the tuning of MFs by training

fuzzy model by equispaced points training data set. A training data set is made by tak-ing equispaced points from

each input and then merging these in all permutations, which in turn is used in objective function. The results in

previous paper were quite encouraging and prompted us to experiment with new alternatives of different training

data sets and try to find out the best method for tuning MFs of fuzzy sys-tem with minimum condition number.

4. Fuzzy System Conditioning using Genetic Algorithms

Genetic Algorithms (GA) are based on Darwin’s theory of ‘survival of the fittest’ that takes a sample of possible

solutions (individuals) and employs mutation, crossover, and selection as the primary operators for optimization

[18]. These are random but directed search algorithms, which have been used for optimization of difficult and

discontinuous multidimensional engineering problems.

As illustrated in Figure 7, initially, GA generates a random population of individuals called chromosomes and

then based on an objective function it ranks and selects individuals to build a mating pool in order to generate next

generation offsprings using genetic operators such as crossover or mutation, which have the higher possibility of

being fitter than the present individuals. Each individual in population is a candidate of being a solution to the

problem under consideration with varying fitness values. Being a multidimensional problem, fuzzy system

conditioning is also a GA application. In fuzzy system conditioning, boundaries of membership functions of

already unconditioned system are varied and each individual in population defines new revised boundaries, which

is also a solution to the problem, however with a varying fitness. Now each solution is checked for its fitness based

on the condition criterion described in section 3.

Fuzzy framework information base has two primary segments: MFs of data sources and yields and the standard

base. These segments are made utilizing master information. Some of the time, when the framework isn't an

inheritance framework, there are sufficient possibilities that meanings of participation capacities and rule base are

not ideal [19]. This is the primary wellspring of shakiness in the framework and same is valid for the model viable.

Consequently our concern is diminished to advance the MFs and the standard base with the end goal that condition

quantities of all contributions of the framework diminishes. In the current examination, we have considered

advancement of the MFs just utilizing distinctive option of preparing informational collections so as to decree the

best strategy for preparing so as to get a stable fuzzy model. We have done investigations in Matlab structure, in

which MFs of fuzzy model depicted above are tuned utilizing GA with the end goal that general state of the

framework is decreased. As there is no assurance of settling season of a condition number to a base indicated

Surender Singh a, and Darpan Anand b

504

esteem, accordingly GA is iterated for a fix number of times. In our experimentation arrangement there are 4 runs

of 100 age each for one GA advancement.

Figure 7: Major Steps of a GA algorithm

5. Genetic Encoding of Fuzzy System

In the four-data sources and single-yield framework examined over, every MF is trapezoidal (three-sided MFis

a unique instance of trapezoidal MF), along these lines every MF has four boundaries, which must be balanced for

enhancement. So a chromosome (plausible arrangement) will contain singular qualities as the boundaries of the

apparent multitude of MFs of information sources and yields. In the model viable, there are all out 17 enrollment

capacities. So there will be 17*4=68 qualities in a chromosome. So as to tune a MF, we permitted 10% variety in

the current scope of every boundary. Subsequently if a boundary estimation of a MF of an information is 5 and

information range is 1 to 13, at that point this boundary esteem is tuned inside the scope of 5-0.1*(13-1) and

5+0.1(13-1) i.e inside the scope of 3.8 to 6.2. A pictorial encoding plan is appeared beneath in figure 8.

1
LOW AV HIGH

3 8 13

…

…

…
V_GOOD

GOOD

AVG

POOR
V_POOR

1

2 4 6 8 0 10

MFs of Input1... MFs of Input2... MFs of Input3... MFs of Input4... MFs of output
1 2 3 4 5 6 7 8 9 10 1

1

1

2

:::::::::::::::::::::: 6

1

6

2

6

3

6

4

6

5

6

6

6

7

6

8

0 1 3 8 3 8 8 1

3

8 13 1

3

1

5

:::::::::::::::::::::: 6 8 8 1

0

8 1

0

1

0

1

2

Figure 8. Defining a chromosome

Fuzzy Based Stable Maintainability Metric for Software Projects

505

5.1 Objective function definition

This is a multi-target issue, as we have to diminish the condition number of each info. The condition number

of each information can be determined utilizing condition 1 and is appeared beneath in type of condition 2-5:

 .

),,,(

),,,(),,,(

ACC

ACC

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQRSCACCACCf

ACC
CN





−+

= (2)

RSC

RSC

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQRSCRSCACCf

RSC
CN





−+

=

),,,(

),,,(),,,(

 (3)

DOQ

DOQ

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQDOQRSCACCf

DOQ
CN





−+

=

),,,(

),,,(),,,(

 (4)

UOS

UOS

UOSDOQRSCACCf

UOSDOQRSCACCfUOSUOSDOQRSCACCf

UOS
CN





−+

=

),,,(

),,,(),,,(

(5)

An incorporated target work is determined by taking the mean square estimation of all condition numbers,

relating to every one of the information sources. This number is called condition number of the framework CNSYS

and is utilized as target work for GA.

CNSYS = MSE(CNACC, CNRSC, CNDOQ, CNUOS) (6)

5.2 Generation of Training Data for MFs Tuning

In our experimentations, we have developed two modules for the purpose of genetic optimization. First is the

main genetic module and is based on the algorithm described above. Second module defines an objective function

which is used to calculate system condition for a given data set of inputs (here called training data set and is a

matrix of 2401×4 size) based on equation 2, 3, 4, 5 and 6. Main GA module generates various acceptable solutions.

For each chromosome in each population, GA module changes only membership functions’ parameters from the

unconditioned fuzzy model keeping rule base unchanged and then in objective function, fuzzy inference system

evaluates output of system with respect to inputs provided in form of training data. Subsequently, an input is

perturbed throughout in the training data set, and again same fuzzy system, which is changed by GA module, is

used to evaluate outputs with respect to this perturbed data set. These two output sets are used then to calculate

condition number of the system w.r.t the particular input by following equation 2 to 5. Same procedure is repeated

for other inputs and then following equation 6, we get overall system conditioning for particular chromosome. In

this way, all chromosomes are evaluated in objective function. We have formulated six methods for constructing

training data for GA optimization as described below:

a) Conditioning with different random data set for each solution in population:

In this method a new random numbers data set of 2401 points are generated for each chromosome in population

of one generation of GA algorithm for evaluating condition number of inputs and whole system. This data set is

generated in the objective function each time, when this function is called by main GA module.

b) Conditioning with same random data set for each solution in population:

This method generates random numbers data set of 2401 points once in Main GA module and same is used for

finding fitness for each chromosome in each population of GA algorithm. Thus, we never create training data in

objective function in this method.

c) Conditioning with one input equispaced and same random numbers data set for each of rest inputs for each

solution in population:

Here main function generates two data sets of 2401 points each from all inputs’ ranges. One data set contains

equispaced points from all inputs and another set contains random numbers from all inputs. Then both of these sets

are used to find the condition numbers of all inputs. When the objective function calculates condition number for

the first input then first column is taken as the equispaced vector of first input in the training set and rest three

columns are taken from the random numbers generated already for another three inputs. Similar procedure is used

to compute the condition number for other three inputs. So, in this method four different training data sets of 2401

points are used to calculate condition number for each input.

d) Conditioning with one input equispaced and different random numbers data set for each of rest inputs for

each solution in population:

Here main GA function generates one data set which contains equispaced numbers from all inputs and another

set which contains random numbers from all inputs is created by the objective function each time for each

chromosome. Then these both sets are used to create four training data sets for all inputs by following the same

Surender Singh a, and Darpan Anand b

506

procedure as described in method three. Here equispaced points set remains permanent for each calculation and

second data set is changed in every calculation.

e) Conditioning with all permutation generated by taking equispaced points from each input for each solution

in population :

In this method seven equispaced points are taken from each input space and then these are combined in all

permutations to form a training data set of 2401(7^4) points, which is used to calculate condition numbers for each

input. We have taken only seven equispaced points from each input. However it can be less or more. But with the

increasing size of equispaced points training set size increases exponentially and it becomes hard to complete the

GA optimization within reasonable time limit. Here, this training set is created once in main module and is used

for all generations and chromosomes in each population.

f) Conditioning with each input equispaced points summation for all solutions in population:

Here from each input space 2401 equispaced points are generated and then these are clubbed together to form

a training data set of 2401 points. This is created in main module permanently and is used to calculate condition

numbers for each input.

In order to validate the methodologies, these need to be tested with a new data set. So once the training is

completed, these methods are tested with a data set of 10000 points. This data set is randomly generated for all

inputs and is same for all above defined alternatives. To fully randomize the output, we repeated this process ten

times and then average system condition number of all ten outputs are taken for comparison. Table 1. lists condition

number of unconditioned and conditioned system for all six alternatives.

TABLE 1: Comparison of condition numbers of unconditioned and unconditioned systems

Methods CNACC CNRSC CNDOQ CNUOS CNSYS

Unconditioned System 5.0622 11.945 13.314 4.4294 96.087

Conditioned System

with 1st Method
2.9006 11.943 11.973 5.629 82.631

Conditioned System

with 2nd Method
2.1427 4.7642 5.5817 2.2429 16.064

Conditioned System

with 3rd Method
2.7784 5.8229 5.9942 3.0474 22.023

Conditioned System

with 4th Method
3.6703 4.5191 6.5657 3.657 23.258

Conditioned System

with 5st Method
1.895 7.6208 4.4021 8.7757 40.451

Conditioned System

with 6st Method
2.384 13.577 5.8428 4.6509 62.599

Figures 9(a) to 15(a) show the graph of input UOS versus maintainability while taking constant values of other

three inputs. Figure 9(a) shows Maintainability curve with respect to UOS input parameter in unconditioned

System. There are steep changes and dip (marked by arrow) in the maintainability curve. Figures 9(a) to 15(a)

show surface view of fuzzy model with UOS & RSC on input axes and Maintainability on output axes. Figures

9(b) shows surface view of fuzzy model with UOS & RSC on input axes and Maintainability on output axes in

unconditioned system. This is also comprised of steep changes in maintainability with a gradual increase in input-

parameters.
(a)UOS Vs Maintainability (b) UOS & RSC Vs Maintainability

Figure 9: unconditioned System

Fuzzy Based Stable Maintainability Metric for Software Projects

507

Figure 10: System is conditioned with first method

Figure 11: System is conditioned with second method

Figure 12: System is conditioned with third method

Figure 13: System is conditioned with fourth method

Figure 14: System is conditioned with fifth method

Figure 15: System is conditioned with sixth method

6. Results and Discussions

Trial results are appeared in table 1 for unconditioned and adapted frameworks. Condition number for each

information boundary is diminished in every one of the six techniques. These can be decreased further on the off

chance that we take a bigger preparing informational collection and condition fuzzy framework with expanded

number of emphases in GA calculation.

From table, it can be deduced that Second Method is best, in which overall system condition has been reduced

from 96.087 to 16.064. This is a six-fold decrease in condition number of the system. It is a significant improvement

in the stability and system can be further stabilized with increased number of GA iterations. Others better methods

are third and fourth methods, for which condition numbers are 22.023 and 23.258 respectively. In these three

methods, which yield good conditioning, condition numbers of all the inputs as well as whole system have been

less as compared to unconditioned system while on the other side first, fifth and sixth methods one or two inputs

Surender Singh a, and Darpan Anand b

508

condition number is larger than unconditioned system. Although in these methods, whole system condition number

is reduced but these also destabilize system at other inputs. Figure 9(a) is of unconditioned system, in this as

pointed by an arrow, there is a dip at axis (3.65, 870) which violates model consistency and continuity. In all other

figures this dip has been removed completely. If we analyze the surface view of fuzzy model with UOS & RSC on

input axes and Maintainability on output axes of figure 9(b), there are steep changes in maintainability given small

variations in inputs for unconditioned system. These steep changes in maintainability have been replaced by

smoother curves in figures 10(b) to 15(b) for conditioned system for the same surface view. If we compare the

surface view of maintainability versus RSC & UOS of unconditioned system (figure 9(b)) with conditioned system

of second method (Figure 11(b)) which has the least condition number, surface view is smoothest of all other

methods. So from these results, we can deduce that system can be made stable or well conditioned by following

second alternatives in which training data set is generated randomly and is same for each calculation throughout

the GA program for the purpose of evaluation of condition number of the system. Other methods, which improve

the system stability with low condition number, are method number 3 and 4.

Authors in [3] have validated their model by collecting empirical data of maintenance time of eight software

projects and same has been used to evaluate the performance of the model. In this paper, we have used the same

data to check the effect of conditioning on fuzzy system performance. Table 2 shows the computed maintainability

values from unconditioned fuzzy model and other fuzzy model conditioned with all the six alternatives, we have

discussed above, against input data from eight projects. In the last row of table 2 computed maintainability values

are correlated with average maintenance time of eight projects. Here, we find that conditioning does not deteriorate

the correlation in all the methodologies, rather it has been increased in each method. However, in case of best

methodology, which condition the system most this increase is negligible but fourth method, which is one of the

best methods for conditioning, correlation increased to 96%, which is a significant improvement. Although these

methodologies are not targeted to increase correlation between maintainability and average maintenance time but

this favorable change further proves the merit of our proposed methodologies for conditioning the system

Table 2: Correlation between observed maintenance time and computed maintainability values

Project

Number

ACC

RSC

DOQ

UOS

Corrective

maint-

time

Maintainability of system when conditioned with

Uncon

system

First

Method

Second

Method

Third

Method

Fourth

Method

Fifth

Method

Sixth

Method

1 8.5 3.8 11 355 11.300 3.610 3.615 3.888 3.640 3.212 3.983 4.460

2 12 7.7 15 528 21.700 7.370 6.726 6.332 6.674 6.958 7.124 6.700

3 13 5.7 11 492 18.300 5.110 5.538 5.400 5.277 5.542 5.543 5.707

4 5.4 8.3 12 567 18.000 6.810 6.027 5.311 5.546 6.116 5.966 5.692

5 15 8.9 12 363 21.100 8.000 7.492 6.750 7.331 7.275 7.409 7.051

6 7.5 7.4 8.9 390 16.100 4.560 4.826 4.948 5.127 5.290 5.152 5.763

7 11 9.2 12 451 17.900 7.070 6.758 6.473 6.438 6.375 6.942 6.543

8 9.1 6.9 13 479 17.200 6.000 6.240 6.046 6.024 5.986 6.456 6.087

Correlation between computed maintainability

values and observed maintenance time → 0.873 0.902 0.875 0.913 0.961 0.899 0.912

7. Conclusion

This paper has presented six different alternatives to generate training data in order to find out the best possible

method of conditioning. Subsequently each of the methods was evaluated using a new data set of 10000 points.

Our initial study indicates that if training data set is created randomly from each input space and system is

conditioned using this training data then this method outperforms other methods by making system more stable on

average basis. However if we condition the system using training data sets generated either with one input

equispaced and same random numbers data set for each of rest inputs for each solution in population or with one

input equispaced and different random numbers data set for each of rest inputs for each solution in population, then

these two more alternatives are also giving better results as compared to the rest three methods. These alternatives

are also validated against eight real projects average maintenance time by computing maintainability from the

conditioned systems and favorable change in correlation between observed maintenance time and computed

maintainability values also proves the worthiness of these methodologies.

References

1. Almugrin, A.,Albattah W. , Melton, A. (2016) Using Indirect Coupling Metrics to Predict Package

Maintainability and Testability The Journal of Systems & Software , doi: 10.1016/j.jss.2016.02.024.

2. Alsolai, H., Roper, M., Nassar, D. (2018) Software Maintainability in Object-Oriented Systems Using

Ensemble Techniques IEEE International Conference on Software Maintenance and Evolution Predicting,

DOI 10.1109/ICSME.2018.00088, 716-721.

3. D. E. Goldberg, Genetic Algorithms in search, Optimization & Machine Learning, Addison-Wesley, 1989.

4. D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed., Brooks/Cole

– Thomson Learning Press, CA, USA, 2002.

5. Foster, J. R., “Cost Factors in Software Maintenance”, Ph.D. Thesis, Computer Science Department,

University of Durham, Durham, UK, 1993.

6. http://en.wikipedia.org/wiki/Structural_stability

Fuzzy Based Stable Maintainability Metric for Software Projects

509

I. Rojas, J. Gonzalez, H. Pomares, F. J. Rojas, F. J. Fernandez, A. Prieto, “Multidimensional

and Multideme Genetic Algorithms for the Construction of Fuzzy System”, International

Journal of Approximate Reasoning, Vol. 26, 2001, Page(s): 179-210.

7. IEEE Standard Glossary of Software Engineering Terminology, Report IEEE Std 610.12-1990, IEEE,

1990.

8. J. F. Peters; W. Pedrycz, Software Engineering: An Engineering Approach, John Wiley & Sons lnc., 2000.

9. J. K. Chhabra, K.K. Aggarwal, Y. Singh, “Maintainability of Object-Oriented Software”, International

Journal of Management And Systems IJOMAS, 2004.

10. K. K. Aggarwal; Y. Singh; J. K. Chhabra, “A Fuzzy Model for Measure-ment of Software Maintainability

& Its Performance”, Int. Journal of Computer Science, USA Vol 6, No2, 2004 pg 31-43.

11. K. Laitnen, “Estimating Understandability of Software Documents”, ACM SIGSOFT, Volume 21, July

1996, Page(s): 81-92.[Lamb1988] Lamb, D. A., Software Engineering: Planning for Change”, Prentice

Hal;l, Engineering Cliffs, NJ.1988

12. K.K. Aggarwal; Y. Singh; P. Chandra; M. Puri, “Sensitivity Analysis of Fuzzy and Neural Network

Models”, ACM SIGSOFT Software Engineering Notes, Vol. 30(4), July 2005 Page(s):1-4.

13. Kumar, R. & Dhanda, N. (2015). Maintainability Measurement Model for Object- Oriented Design.

International Journal of Advanced Research in Computer and Communication Engineering, 4(5), 68-71.

14. Lenarduzzi, V., Sillitti, A. & Taibi, D. (2017). Analyzing Forty Years of Software Maintenance Models.

IEEE/ACM 39th IEEE International Conference on Software Engineering Companion, 146-148.

15. M. Kiewkanya, N. Jindasawat, P. Muenchaisri, “A Methodology for Constructing Maintainability Model

of Object-oriented Design” Proceedings of Fourth International Conference on Quality Software, QSIC,

2004 Page(s):206 – 213.

16. P. Oman; “HP-MAS: A Tool for Software Maintainability Assessment”, U.I. Software Engineering Test

Lab Report #92-07-ST, August 1992.

17. Pigoski, T. M., “Practical Software Maintenance – Best Practices for Managing Your Software

Investment”, John Wiley & Sons, New York, NY, 1997.

18. Queille, J. P., Voidrot, J. F., Wilde, N., Munro M. “The Impact Analysis Task in Software Maintenance:

A Model and a Case Study”, Proceedings of the International Conference on Software Maintenance,

Victoria, Canada, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 234-242.

19. R. Walker, Software Project Management: a Unified Framework, 4th Edition, Pearson Education

(Singapore) Pvt. Ltd., 2004.

20. Surender Singh Dahiya, Jitender kumar Chhabra and Shakti Kumar, “Use of Genetic Algorithm for

Software maintainability Metrics’ Conditioning” 15th International Conference on Advanced Computing

and Communications, ADCOM- 2007 (accepted for publication)

21. T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software Engineering, Vol. SE-2, No. 4,

Dec 1976, pp 308-319.

22. W. Pedrycz, J. F. Peters, “Computational Intelligence and Software Engineering”, World Scientific,

Singapore, 1998.

