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ABSTRACT   

This paper examines the impact of magnetohydrodynamic (MHD) over a thin film of an unsteady stretching sheet. Prandtl 

number model of dynamic viscosity and thermal conductivity is examined using Homotopy analysis method. By Makinguse of 

appropriate self-similar conversion, the system of model partial differential equations (PDEs) with strong nonlinearity is 

converted into a non-dimensional set of couple ODEs (Ordinary Differential Equations). Consequently, the system of these 

transformed equations is analytically explained by implementing Homotopy Analysis Method (HAM). The effects of embedded 

parameters such as magnetic parameter (M), radiation parameter Nrand Eckert number (Ec) on involved distributions are 

interpreted graphically to examine the heat transport features for both sorts of unsteadiness parameters S=0.8 and S=1.2. 

Moreover, the (Cf) skin friction along with the (Nu) heat transport rate (Nusselt number) is formulated for different values of 

relevant variables.  

Key words: Homotopy analysis method,  Magnetohydrodynamics; Non-uniform heat source/sink, Nanofluid . 

1. INTRODUCTION 

In recent times, a frequent suggestion of liquid film in the arena of engineering and applied sciences has been 

visualized by a copious number of scholars due to its tremendous applications.  

The research of liquid streaming and heat transport analysis under the impact of an induced magnetic field is of 

great importance due to its extensive ranges of technical, engineering and biotic uses such as crystal growing, 

freezing of metallic sheets, Hall generator, manufacture of magneto-rheostatic elements (smart liquids), metal 

molding, cured oil refinement and molten metal freezing blankets for nuclear reactors etc. In MHD mechanism the 

degree of heat transport can be organized using the MHD stream in electrically conducting liquids and therefore 

required features of cooling outcome can be attained effortlessly. In aforementioned streaming of liquid, a 

Lorentzian type of magnetic potential is produced crosswise to the path of the induced magnetic field which is 

helpful in modifying very high-temperature plasmas, energy instability along with the wetting oscillations.  

The studies of liquid film scattering have numerous applications for coating phenomena and have a dynamic part 

in mechanical engineering. These uses of coating need complete information to link the diffusion of liquid with 

numerous categories of sheets, discs, wires, and fibers, etc. All coating (varnish) methods mandate a flat polished 

surface to meet the necessities of the finest look and ideal presentation like roughness, clearness, and strength. The 

major element which controls the coating procedure is the heat transport rate inside the thin liquid film. Therefore, 

the analysis of heat transport in thin layer flow over a stretching surface is applicable with respects to the coating 

mechanism. Wang[1] studied the first time the streaming of thin liquid film over an extending surface. 

Consequently, many scholars extended the research of Wang to take different working fluids using various 

assumptions[2-5],  Narayana et al[6] examined the numerical computation of thermocapillary stream of thin nano-

liquid film through a stretchable surface. More recently, Gul[7] also discussed the mathematical modelling and 

computation of thin liquid streaming of variable thickness over a nonlinear extending surface. Andersson et 

al[8] have examined the unsteady flow of a thin film liquid over a stretching surface. 

The HAM (homotopy analysis method), which is an asymptotic scheme is used to achieve the series form solution. 

HAM is a suitable and effective technique used to control the convergence of the estimated solution. Moreover, 

HAM technique is dependable not only for small variables but also exemplify its usefulness and competency to 

solve the higher non-linear problem arising in sciences, engineering and modern technologies[9-14]. 

Noor et al[15-16] examined the heat transfer analysis in a thin film flow over a stretching sheet using the a 

homotopy analysis method. They observed the magnetic and thermal aspects of the embedding parameters during 

fluid motion. Liao[17] introduced a new version of this method for the error analysis called optimal homotopy 

analysis method (OHAM) in its package named BVPh 2.0. Gul and Firdous[18] utilized OHAM BVPh 2.0 package 

to find the solution of non-linear differential equations involved in the experimental and theoretical models. Guled 

and Singh[19-20] investigated the effect of MHD flow on heat and mass transfer over stretching sheet by homotopy 

method. Authors [21-24] have studied various effects of thin liquid film flow over a stretching sheet by 

numerically.  
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The major outcome of the present communication is to analyze the combined effects of dissipation and radiation 

of liquid thin layer and heat transport analysis through a horizontal moving with unsteady stretching plate. The 

principal equations of a model problem for velocity and thermal field are transformed developing the suitable 

match quantities. So, the final form of the transformed problem is analytically simplified with help of HAM 

(Homotopy Analysis Method). The physical developing model variables are depicted through tables and graphs 

for both s=0.8 and S=1.2. Furthermore, the surface drag force and heat transport rate are also deliberated. 

2. Mathematical model 

The governing boundary layer equation of the flow problem is 
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Where the notations mentioned in (1), (2) and (3) are,   velocity components of fluid in flat and perpendicular 

directions respectively are u and v,the dynamic viscosity-μ, the absorption coefficient-k∗, electrical conductivity- 

σ, specific heat at constant pressure - Cp, StefenBoltzman constant - σ∗, temperature-T and fluid density-ρ . 

Here, equation (1) shows the conservation law of mass and equation (2) represents the momentum equation. 

Furthermore, the velocity components in horizontal and vertical directions are denoted by u and v respectively. It 

is assumed that there is no liquid motion 0.t   

2.1. Initial and Boundary conditions 

 

Hence we have the following initial conditions:  

0, 0 (5)wu v T T for t   
 

The boundary layer equations (1) to (3) are to be solved in the domain 0t   subject to the boundary conditions:  
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Here, we note that the mathematical problem is implicitly formulated only for 0.x   

Furthermore, it is assumed that, the surface of the planar liquid is smooth so as to avoid the complications due to 

surface waves. The viscous shear stress and the heat flux vanish at the adiabatic free surface.  

 

2.2. Method of solution 

We now introduce the following similarity variables 
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The Velocity components u and v in terms of the stream function 
( , , )x y t

 are given by  
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Assuming 
n 

( a dimensionless film thickness to be determined as an integral part of the computation) at the 

free surface and using equation (10), the film thickness can be expressed as  
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Where a prime represents the derivative with respect to  . Using similarity transformation represented in equations 

(8) to (10), governing boundary layer equation (2)–(3) yield the following point boundary value problem: 
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 Here  S =
α

b
  represents the unsteadiness parameter, Pr =

kf

knf
 represents the Prandtl number of the base 

liquids, γ is the film thickness and the constants ϕ1 and ϕ2  that depends on the volume fractions  are represented 

by  
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The parameters for engineering interest in heat transfer problems are the skin friction coefficients Cf and Nussult 

number Nux  .These parameters characterize the surface drag and heat transfer rates. The shear stress at the 

stretching surface τw is defined as  
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The skin friction coefficient at the stretching surface is given by  



Turkish Journal of Computer and Mathematics Education  Vol.12 No.13 (2021), 949-959 

 

952 

 

 
 

Research Article  

 
 1/ 2

5
22

2
Re ''(0) (20)

1 1
2

w
fC f

U





  


 

The surface heat flux qw is defined as 
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and the local Nussult number is given by  
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3. HAM Solution 

To obtain analytical solution of Eqs. (15)-(16) subject to the boundary conditions (17)-(19), we select  initial 

guess approximations as [19-20] 

f0(η) = 1 − ⅇ−η (22) 

θ0(η) = ⅇ−η (23) 

and the auxiliary linear operators as 

ℒf =
∂3

∂η3
−

∂

∂η
 (24) 

ℒθ =
∂2

∂η2
− 1 . (25) 

The operators in the above equations satisfy  

ℒf[C1 + ⅇηC2 + ⅇ−ηC3] = 0 (26) 

ℒθ[ⅇηC4 + ⅇ−ηC5] = 0 (27) 

in which Ci,  for i = 1,2, … . ,5 are arbitrary constants. 

By choosing q  as an embedding parameter, we construct the zeroth order deformation equations as 

(1 − q)ℒf[f ̂(η, q) − f0(η)] = q ℏf𝒩f[f ̂(η, q)] (28) 

(1 − q)ℒθ[θ ̂(η, q) − θ0(η)] = q ℏθ𝒩θ[θ ̂(η, q)] (29) 

 Subject to the boundary conditions 

f ̂(0, q) = 0, f ̂′(0, q) = 1, f ̂′(∞, q) = 0  (30) 

θ ̂(0, q) = 1, θ ̂′(∞, q) = 0 (31) 

where the prime denotes the partial derivatives w.r.t. η, ℏf and ℏθ are non-zero auxiliary parameters. The 

nonlinear differential operators 𝒩f and  𝒩θ are given by 
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Obviously, for q = 0and q = 1, we have 

f ̂(η, 0) = f0(η), f ̂′(η, 1) = f(η) (34) 

θ ̂(η, 0) = θ0(η), θ ̂′(η, 1) = θ(η) (35) 

By using Taylor’s theorem and Eqs. (34) and (35), we have 
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We assume that both ℏf and ℏθ are properly chosen in such a way that the series (36) and (37), respectively, are 

convergent at q = 1. Then, due to Eqs. (34) and (35), we have 

f(η) = f0(η) + ∑ fm(η)

∞

m=1

 (40) 

θ(η) = θ0(η) + ∑ θm(η)

∞

m=1

 (41) 

and respectively. 

The m-th order deformation equation cab be obtained by differentiating the zeroth order deformation equations 

(28) and (29) m –times w.r.t. q and then dividing by m! and finally setting q = 0, we have 

ℒf[fm(η) − χmfm−1(η)] = ℏfRm,f(η) (42) 

ℒθ[θm(η) − χmθm−1(η)] = ℏθRm,θ(η) (43) 

with the boundary conditions 

fm(0) = fm
′ (0) = fm

′ (∞) = 0  (44) 

θm(0) = θm(∞) = 0 (45) 

where 

χm = {
0 , m ≤ 1
1 , m > 1

 . (46) 

and 
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′′′ − ϕ1γ
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Here MATHEMATICA is used to solve the linear homogeneous Eqs. (42) and (43) one after the other in the 

order of  m = 1 ,2, 3, … … 

4. Results and discussion  

The exploration of an unsteady uniform flow with thermal radiation of a thin film nanofluid was observed 

analytically using HAM.  The thermo-physical property of a nanofluid was considered for volume fraction. The 

governing PDE’s will transform to ordinary ones by similarity transformations. The obtained nonlinear BVP’s 

which are nonlinear in nature are given by equations (15)-(19) and are solved by Homotopy Ananlysis Method. 

The dimensionless film thickness β has been determined by solving an equation (19). The velocity equation (15) 

is decoupled from the temperature equation (16). The nanoparticle volume fraction ϕ   and an unsteadiness 

parameter S are the two parameters which will affect in the flow and heat transfer. Also Prandtl number was kept 

constant at 6.2 for the base fluid and same is used throughout our observation.  

 

Fig (1) stands for the variation of unsteadiness parameter S with film thickness γ.  With this plot, we conclude 

that, the film thickness decreases for an increase in S from 0 to 2.  

 

Fig (2) represents the effects of volume fraction ϕ1 on the axial velocity profile f ′(η) for two different values of 

S.  With this plot, we conclude that, decreases in velocity profile for an increase in volume fraction 

parameter ϕ1.  

 

Fig (3) represents the effects of volume fraction ϕ2 on the temperature profile θ(η) for two different values of S.  

With this plot, we observe that, decreases in the temperature profile for an increase in volume fraction 

parameter ϕ2.  

 

Fig.(4) demonstrate the effect of Prandtl number Pr on the temperature profiles for two different values of 

unsteadiness parameter S.  These plots reveal the fact that for a particular value of Pr the temperature increases 

monotonically from the free surface temperature to wall velocity.  The thermal boundary layer thickness decreases 

drastically for high values of Pr i.e., low thermal diffusivity. 

 

The effect of radiation parameter R on the horizontal velocity profiles is depicted in Fig. (5) for two different 

values of unsteadiness parameter S. From both these plots one can make out the increasing values of radiation 

parameter R decreases the temperature in the fluid film. i.e., increasing value of R contributes in thickening o the 

boundary layer. 

The effect viscous dissipation is found to increase the dimensionless free-surface temperature θ(η) for the fluid 

cooling case which is depicted in fig(6). The impact of viscous dissipation on θ(η) diminishes in the two limiting 

cases: Pr → 0  and  Pr → ∞, in which situations θ(η) approaches unity and zero respectively.  

 

The wall shear stress −f″(0) increases for increasing values in volume fraction [ref. fig(7)] and  where as the wall 

heat flux −θ′(0) also increase for higher negative values [ref. fig.(8)].  

 

The quantity f ′′(0) curve for special values of ϕ1 for S = 1.2 using 11th - order HAM approximation is shown 

through fig.(9).  

The h-curve for the HAM approximation solution over −θ′(0)   for special values of ϕ1 for S = 1.2  is shown 

through the fig.(10) 

Table 1 represents the analytical results on the effects of the unsteadiness parameter S and nanoparticle volume 

fraction on the flow and heat transfer. It is noted that, for the range  0 ≤ S ≤ 2  the solution exists and for S → 0, 
the result come up to analytical solution and observed a thick layer of liquid (i. ⅇ. , for γ → ∞) while S → 2  

corresponds to  γ → 0 i. ⅇ., infinitesimal thickness of liquid film.  Here HAM solutions were attained for the 0 ≤
ϕ ≤ 0.2 and 0 ≤ S ≤ 2  
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Fig.2  Variation of film thickness  with unsteadiness

           parameter S with Mn = 0.0

 

 

 

 

Fig:2: Effects of volume fraction on Velocity Profile  

 

 

Fig:3: Effects of Volume fraction on temperature Profile 

𝛾 

Fig. 1. Film thickness parameter  γ  vs. unsteadiness parameter 

S  

Fig. 1. Film thickness parameter  γ  

vs. unsteadiness parameter S  
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Fig:4: Effects of Prandtl number on temperature Profile 

 

 

Fig:5: Effects of Radiation parameter on temperature Profile 

 

 

Fig:6: Effects of dissipation parameter on temperature Profile 
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Fig.(7). Wall shear stress  −f ′′(0)  vs.  S  for special values of  ϕ1 and ϕ2 

 

 

Fig.(8). Wall temperature gradient – θ′(η)   vs.  S  for special values of  ϕ1  

 

 

Fig. (9).  The hf curve for special values of volume fraction ϕ1 for S = 1.2 using 11th -order HAM 

approximation 
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Fig. (10).  hθ-curve for the HAM approximation solution over −θ′(0) for S = 1.2 

 

Table-1: Wall skin friction coefficient −f ′′(0)  and wall temperature gradient −θ′(0) for different values of an 

unsteadiness parameter S 

𝐒 −𝐟′′(𝟎) −𝛉′(𝟎) 

0.4 0.5734 -0.4436 

0.6 0.6054 -0.3693 

0.8 0.6363 -0.3219 

1.0 0.6662 -0.2889 

1.2 0.6949 -0.2646 

1.4 0.7227 -0.2458 

1.6 0.7496 -0.2304 

1.8 0.7754 -0.2179 

1.9 0.7881 -0.2124 

 

5. Conclusion 

The significant conclusions from the current study  by HAM technique are as follows.  

(i) The unsteadiness parameter S constantly thickens the velocity boundary layer and nanofluids boundary 

layer approaches towards thinning. 

(ii) An increase in volume fraction parameter ϕ  decreases the dimensionless film thickness γ  
(iii) An enhancement in ϕ could improve θ(η), hence thickens the thermal boundary layer.  

– f ′′(0) enhances the volume fraction ϕ 

(iv) Dimensionless wall temperature gradient – θ′(0) declines the  volume fraction ϕ 
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