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Abstract: In this paper, we study the regularization method for solving the Fredholm integral equation first kind. The 

discretization algorithm with two variables has applied to formulate the problem into a linear operator equation for the first 

kind. The parallel computing method has used to obtain the approximation solution by using a set of regularization parameters 

of the Tikhonov regularization method. The inverse initial value problem for the heat equation used as an example to test 

parallel computing and compared with sequential computing.  
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Introduction 

 

Many papers have been used the discretization method as an important method of solving integral equations 

[1]–[4].The approximate solution error taking into account the discretization of an integral equation was estimated 

in [5][6].  

 

In this paper, the finite-dimensional approximation method used to create the finite-dimensional operator for 

the integral equation which has two variables. The estimation error computed by using the general discrepancy 

principle method. Parallel computing implemented by taking the value of the regularization parameter from a set 

of parameters and obtained the approximation solutions independently. 

 

1.  Problem Statement 

 

The following integral equation for the first kind has considered. 

( ) ( ) ( ) ( ), , ,

b

a

Au s P s t u s ds f t c t d= =      (1) 

where ( )   ( )  2 2,  ,  , ,u s L a b f t L c d   the function ( ),P s t represent the kernel operator ,A  

where ( ) ( )    ( )1,1, , , , ,tP s t P s t C a b c d   . We propose for 
0( ) ( )f t f t=   there exist a true 

solution 
0( )u s  for problem (1) in the set 

rM  

( ) ( ) ( )   ( ) ( ) ( ) 
2

2 2

2:  , , , 0, ,
LrM u s u s u s L a b a bu u u s r=  = =    (2) 

The function 
0( )f t  is unknown instead of we have 

2[ , ]f L c d   and 0   such that 

2

2 2

0( ) ( )
L

f t f t −  . For solving the problem (1) we need find the approximation solution ( )u s  by 

using the given information ( ),f t  and 
rM . Then we estimate the deviation of the  approximation solution 

( )u s  from the true solution 
0( )u s  in the metric of space  2 , ,L a b

2
0( ) ( )

L
u s u s −  

We need define an operator    2 2:  ,    , B L a b L a b→  by the following formula 

( ) ( ) ( ) ( ) ( )  2,  , ,  ,

s

a

u s Bv s v d v s Bv s L a b = =    (3) 

There is an operator named  𝐶 which can be defined by 

( ) ( ) ( )   ( )  2 2,   , ,  ,   ,  ,Cv s ABv s v s L a b Cv s L c d=     (4) 
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from (3) and (4) we follow that ( ) ( ) ( ), ,

b

a

Cv s K s t v s ds=  where ( ) ( ), , .

b

a

K s t P t d = −  

The finite-dimensional operator   , n mC  has been defined for computing the numerical solution for problem (1),  

the C  replaced with the operator   , n mC  and these operators satisfied the following relation 

where the value of the η n,m define by 

( ) ( )  max , ,   , ,
a s b

N t P s t t c d
 

=     (5) 

and  

( ) 1 max , :  , ,tN K s t a s b c t d=        (6) 

the ( )  , N t c d and 
1N  exist because the ( ) ( )    ( ), , , , ,tP s t P s t C a b c d   . 

We need divide the intervals [𝑎, 𝑏] and [𝑐, 𝑑] into 𝑛 and 𝑚 equal parts respectively. Where interval [𝑎, 𝑏]  

divided by points  𝑠𝑖 = 𝑎 +
𝑖(𝑏−𝑎)

𝑛
, 𝑖 = 0, 1, … , 𝑛 − 1, and interval [𝑐, 𝑑] divided by points 𝑡𝑗 = 𝑐 +

𝑗(𝑑−𝑐)

𝑚
, 𝑗 =

0, 1 … , 𝑚 − 1. 

Now we need to define the following functions 

   ( ) ( ), ,i iK t K s t=     (7) 

( ) ( )  1, ; ,    , ,  0,1  ,  ,  1n i i iK s t K t s s s t c d i n+=    =  −   (8) 

( ) ( ), 1 1, ; ,  ,  0,1  ,  ,  1, 0,1  ,  ,  1,jn m i j i i jK s t K t s s s t t t i n j m+ +=     =  − =  −  (9) 

By using the equations (7–9) we define the operators   ,nC  and   , n mC  

( ) ( ) ( ), , [ , ],

b

n n

a

C v s K s t v s ds t c d= 

 ( ) ( ) ( ), , , , [ , ],

b

n m n m

a

C v s K s t v s ds t c d=    (10) 

where   ,nC  and   , n mC  map  2 , L a b  into  2 , L c d  

Next step we need to estimate the 
  ,  ,n mC C−  we will use the inequality relation 

  ,    ,    .n m n m n nC C C C C C−  − + −   

Since 

( ) ( ) ( ) ( ), , , ,n m n i i jK s t K s t K t K t−  −    (11) 

for 
1i is s s +   and 1,j jt t t +    0,1  ,  ,  1, 0,1  ,  ,  1,i n j m=  − =  −  from (6) 

( ) ( ) 1 ,i i j

d c
K t K t N

m

−
−   we find from (11)  that 

( ) ( ), 1, , ,n m n

d c
K s t K s t N

m

−
−     (12) 

By using the equality   ,    , 
1

sup ,n m
v

n m n nC C C vv C


− = −  we get 

( ) ( )
2

  ,  ,

2

1

s , ., )up . (n m n n m n

d b

v
c a

C C K s t K s t v s ds dt


 
− =  − 

 
    (13) 
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We derive from (12) and (13) the following 

 

2
2

2

  , 1

2

  .( )
c

n m n

d b

a

d c
C C N v s ds d

m
t



 

−   
−

 



 

     (14) 

Since 
2

( ) ,( )

b

L

a

bv a v ss ds  −  inequality (14) implies that 

  ,  1( )( ) .n m n b a
d c

C C Nc
m

d− −
−

 −    (15) 

Now the term  nC C−  can be estimated.  

Since 
  ( ) ( ( , ) ( ,( ) )) ( )

b

n n

a

C Cv s K s t K s t v s dsv s − = −  and 

( ) ( )
2

  ,

2

sup , , . ( ) : ( ) 1

b

n n n

d

c a

mC C K s t K s t v ds t v sds
  

= − 
 

 
−  

  
  . 

Taking into account (5)(7) and (8) and the inequality 

( ) ( ) ( ) ( ), , . ( ) , ,, . ( ) )) ((n

b b b

a a a

iK t
b

s t K s t v s ds K s t K s v s ds s
a

N st v d
n

−
− −    

we find the following 

2

 

2

, 

2

2

( ) ( ) .( ) ( )

d b

c

n m n

a

C
b a

N t v s ds dv s C s t
n

v
 − 

−    
   

    (16) 

The ( ) 1v s   and )( ()

b

a

v
a

s ds
b

v s
n

−
  with inequality (16) implies that 

2
  ( ) ( ) .n L

b a
C C Nb a t

n
 −

−
−    (17) 

Thus from (15) and (17) 

2
1, ( .( )( ( )) )n m L

d c b a
N Nb a d c b a t

m n
 = − −

− −
− +   (18) 

2.  Finite-dimensional of the Tikhonov regularization method  

We define subspaces 
nX  and 

mY  of spaces 
2( , )L a b and

2( , )L c d respectively. Those subspaces 

consisting of all functions on intervals   )1, , 0,1,..., 1,i is s i n+ = − for space 
2( , )L a b  and 

)1, , 0,1,..., 1,j jt t j m+
 = −  for space 

2( , )L c d . We denote by
nG  the metric projection operator where 

2: ( , ) ,n nG L a b X→  and 
mH  the metric projection operator where 

2: ( , ) .m mH L c d Y→  

The problem (1) reduce to linear operator problem first type. 

, ( ) ( ),m

n mC v s f t=     (19) 

where ( ) ( ) .m

mf t H f t =  

The approximation solution for problem (1) can be obtained by using the generalized discrepancy method 

proposed in [7] and studied in [8]. The method reduce the problem (19) to the conditional extremum variational 

problem. 
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 2

, ,inf ( ) : ( ) , ( ) ( ) ( ) ,m

n n m n mv s v s X C v s f t v s   −  +   (20) 

In [8] there was proved that it under the condition 

0 .( ) ( ) ,m

n mf t u s  = +     (21) 

The variational problem (19) has a unique solution 
,, ( )

n m
v s  such that 

, ,, , , ,( ) ( ) ( ) .
n m n m

m

n m n mC v s f t v s      − = +  

The conditional problem (19)  is reduced to the unconditional problem by following from [8] 

 2 2

,inf ( ) ( ) ( ) : ( ) , 0,m

n m nC v s f t v s v s X  − +      (22) 

The (21) it is a  finite-dimensional version of the Tikhonov regularization method [9]. 

There is a unique solution ( )v s

  for problem (21) . this solution should satisfy the general discrepancy 

principle [10]. 

 

, ,( ) ( ) ( ) .m

n m n mC v s f t v s 

    − = +    (23) 

 

Under condition (20) the equation (22) has unique solution ( )v s

  with respect of regularization parameter 

( , )n m . That condition known in [8] and by theorem defined 
,

( , )

, ( ) ( )
n m

n mv s v s

  =  where the 

approximation solution 
, ,, ,( ) ( )

n m n m
u s Bv s   = . 

For solving the problem (22) we get the equation 

, , ,( ) ( ) ( ).T T m

n m n m n mC C v s v s C f t+ =    (24) 

 

In spaces 
nX  and 

mY , the orthonormal bases have introduced  ( ), ( )i js t  by following 

)
1,

1,

;     
( )

     0;         , , 0,1,..., 1,

i i
i

i i

n
s s s

s b a
s s s i n

 +

+


  

=  −
  = −

 

and 

)
1,

1

;     
( )

     0;         , , 0,1,..., 1,

j j
j

j j

m
t t t

t c d
t t t j m

 +

+


 

=  −
  = −

 

With these bases we define the isometric operators 
xJ  and yJ  where : n

x nJ R X→  and 

: m

y mJ R Y→  by following. 

 

 

 

1

0 1 1

0

1

0 1 1

0

( ) ( ), ( , ,...., ),

( ) ( ), ( , ,...., ),

n

x i i n

i

m

y j j m

j

J x s x s x x x x

J y t y t y y y y





−

−

=

−

−

=

= =

= =





   (25) 

The problem (22)  
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2 2

1 1 1 1

,inf ( ) ( ) ( ) : ( ) , 0,m

y n m y x x nJ C v s J f t J v s J v s X  − − − −   − +       

where 

1

1 ( ) ( )

j

j

t

m

y

t

m
J f t f t dt

c d


+

−   =  −    

 
1

1 ( ) ( )
i

i

s

x

s

n
J v s v s ds

b a

+

− =
−   

we can rewrite the equation (24) in matrix and vector form as the following  

 

, , ,( ) ( ) , 0,1,... 1, 0,1,..., 1,T T

j i j i i i j i jC C v v C f i n j m+ = = − = −  

Where  

 

1

0

2

1

1

0

11

1

( )

( )
( )

( )
n

n

s

s

s

i x s

s

n

s

v v s ds

v v s dsn
v J v s

b a

v v s ds

−

−

−

 
= 

 
 
 =
 = =

−  
 
 
 =
 
 







 

1

0

2

1

1

0

11

1

( )

( )
( )

( )
m

m

t

t

t

m

j y t

t

m

t

f f t dt

f f t dtm
f J f t

c d

f f t dt



−

−

−

 
= 

 
 
 =
  = =  −  
 
 
 =
 
 







 

0 0 1 0 1 0

0 1 1 1 1 1

,

0 1 1 1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i j i j i n j

i j i j i n j

j i

i j m i j m i n j m

K t K t K t

K t K t K td c b a
C

m n

K t K t K t

= = = = = − =

= = = = = − =

= = − = = − = − = −

 
 

− −  =
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0 0 0 1 0 1

1 0 1 1 1 1

,

1 0 1 1 1 1

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

i j i j i j m

i j i j i j mT

j i

i n j i n j i n j m

K t K t K t

K t K t K td c b a
C

m n

K t K t K t

= = = = = = −

= = = = = = −

= − = = − = = − = −

 
 

− −  =
 
 
  

 

 

 

3.  Estimating the error of the approximate solution 
,, ( )

n m
u s   to equation (1) 

 

In order to estimate the approximation solution we define the following function 

( )  , sup ( ) : ( ) ( ), ( ) , ( ) , , 0.
u

r u s u s Bv s v s r Au s r   = =     

From the theorem, formulated in [11],it follows 

Theorem 1. let 
,, ( )

n m
u s   approximate solution for equation (1), and 

0( )u s the exact solution, then 

( )
,, 0 ,( ) ( ) 2 2 ,

n m n mu s u s r r    −  +  

 

 

 

 

4.  Solving the inverse initial value problem for heat conduction problem 

 
The inverse initial value problem for heat equation described by the following liner partial differential equation. 

( ) ( )
( 

2

2

, ,
     0    ,  0, ,

u x t u x t
x l t T

t x

 
=   

 
   (26) 

( ) ( 0, 0,  0, ,u t t T=      (27) 

( ) ( , 0 , 0, ,u l t t T=      (28) 

( ) ( ),0 , 0   ,u x u x x l=       (29) 

where the 𝑢(0, 𝑡) and 𝑢(𝑙, 𝑡) are boundary conditions, 𝑢(𝑥) initial condition which is need to find. This problem 

solved in [12] by using the Tikhonov’s regularization inversion method and it solved by Picard’s method in [13].  

 

 

4.1 Direct problem 

 

In direct problem (26 - 29), the initial condition has been specified. In order to reduce this problem to a 

Fredholm integral equation first kind the separation of variables method used to get the Fourier series as the 

following:  

( )
( )

2

2

1

,   sin( ),

n t

l
n

n

n x
u x t a e

l




−

=

=    (30) 

( ) ( )
1

,0  sin( ),n

n

n x
u x u x a

l



=

= =    (31) 

( )0

0

2
   sin( )  ,

l

n

n x
a u x dx

l l


=     (32) 

 From (30-32) we get  
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( )
( )

( )

2

2

10

2
  ,       sin( )sin( )    ,

n tl

l

n

n x n y
u x t e u x dx

l l l


 

−

=

=    (33) 

The formula (33) can be rewriting such as integral equation first kind as following: 

( ) ( ) ( )
0

  , , ,       ,0   ,

l

u x y T P x y u x dx y l=      (34) 

( ) ( ) ( ) ( )
0

   ,      ,0   ,

l

Au x P x y u x dx g y y l= =      (35) 

where the kernel ( )    ( ),  0, 0,  ,P x y C l l   ( )  1

2 0,u x H l and ( )  2 0, ,g y L l . The 

kernel of the operator A  is closed. This is the direct problem for heat conduction equation the initial temperature 

( )u x  known and need to find the temperature with specific time ( )g y . 

4.2 Inverse Problem 

The inverse problem defined as finding the initial temperature ( )u x . In order to estimate the ungiven initial 

temperature the measurement temperature given at specific time T  over the space interval 0  x l  .  

( ) ( ), y, g ,   T 0,0 y  ,u x T y l=       (36) 

The measurement temperature contains some noise g where δ > 0 and
2

0 L
g g −  . Furthermore, 

the inverse operator 
1A−

 is unbounded where 
1A− =  , it means the solution typically poor approximated or 

unstable even the   has a small value. 

 

5.  Parallel algorithm for selecting regularization parameter  

 

The integral equation form for the inverse initial value problem will be  

( ) ( ) ( ) ( )
0

   ,      ,

l

Au x P x y u x dx g y= =   (37) 

Where the kernel ( ), P x y  is an infinite series and we cannot handle infinite sum, so we need to finite the 

sum of series to 10 times 

( )
( )

2

2
10

1

2
,     sin( )sin( ),   0,

n T

l

n

n x n y
P x y e T

l l l


 

−

=

=    (38) 

For giving the approximate solution for ( )u x  we can rewrite the problem as linear operator equation 

,Cv g= . 

( )
( )

( )

( )
( )

( )

0 0

2 2

1 1

,

n n

v x g y

v x g y
C

v x g y− −

   
   
   =
   
   
      

    (39) 

where  
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( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

,  ,  , 

,  ,  , 0
,

,  ,  , 

n

n

n n n n

K x y K x y K x y

K x y K x y K x yl
C

n

K x y K x y K x y

−

−

− − − −

 
 

−  =
 
 

  

  (40) 

The bounded injective operator C  is ill-conditioned that is mean any numerical attempt to solve the problem 

directly  will be failed. 

 

We created an algorithm can implement in parallel form to find best estimation solution by choosing a good 

regularization parameter depending on  a  finite-dimensional version of the Tikhonov regularization method as 

shown in (22). Selection parameter α will be based on the general discrepancy method equation (23). we can use 

the interval (0,1) and divide this interval to sequence of pattern for example 

1 2{ 0.1, 0.01,..., 10 }k

k k    −= = = =   then we compute the approximation solution for each 
k  in 

parallel computing by using the following 
1(( ) ) ( ) , 1,2,...

k

T T

kv C C I C f k  −= + =   (41) 

k k
u Bv =     (42) 

 Where I  is identity operator, the best result will be selected by (23). After that we can create new 

regularization parameters pattern start from the previous step to get more accrue approximation solution. The main 

goal of the parallel computing is to find the best solution with low time. 

 

6.  Numerical example 

 

The initial temperature ( )0u x  will find by using the known function ( ) 0, ( )u x T g x=  where 0,1T =

, for checking the approximation solution we have the exact initial temperature ( )0 sin( )u x x=  as shown in 

fig. 1.  

 
Fig. 1. Direct solution for measurement temperature 𝑔0(𝑥) 

 

We can add a noise value 
0( ) ( )g x Noise g x+ = . By using the equation (41) we find the approximation 

solutions with parameters  . Selection parameter   will be based on the (23) we can use the set of regularization 

parameters to obtain the best estimated solution  1 2 k  ,   ,   ,  k   =  , as shown in fig. 2. 
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Fig. 2. Estimate solutions 
k

u  with 𝛼𝑘 =  {𝛼1, 𝛼2, . . . ,  𝛼𝑘} 

 

We can compare between two types of computing sequential computing and parallel computing with n  

number of equal-length subdivisions of interval [0,1] see fig 3. 

 

 
 

Fig. 3. Speedup of the parallel and sequential  computing 

 

We have prepare the following parameter set 

 1 2 3 4 5 6  0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001k      = = = = = = = , 

then we used the sequential computing to find the best approximation solution. For parallel computing  we define 

6 workers and assigned for each of them a task to  compute  the approximation solution by using  one parameter 

from parameter set 
k . 

 

 

Conclusion 

 

This work deals with the discretization method as base way for solving the Fredholm integral equation of the 

first kind. The discretization algorithm which explained in this work  it is converted integral equation to linear 

operator equation and using the Tikhonov’s regularization method for find the approximation solutions. 

Parallel

sequential

0

1

2

3

4

5

6

100 200 500 1000 2000

Ti
m
e

n
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Regularization parameter α has been selected by general discrepancy principle method and used the parallel 

computing method to find approximation solution. The numerical analyses successfully apply to solve the inverse 

heat conducting. From the example, we noted that the algorithm was efficient to estimate the initial temperature 

depending on given measurement temperature with known noise level δ.  
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