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ABSTRACT 

In structural dynamics, several problems are solved with the help of formulations using matrices of frequency 

response functions. This article focuses on the exploitation and evaluation of these matrices. A technique of 

structural modifications, based on knowledge of the introduced modifications as well as the frequency response 

functions relating to the original structure, will first be described. Then, we will be interested in the evaluation 

of the used flexibility matrices. These can be either calculated from a mathematical model, or derived from 

experimental observations. In practice, only a limited number of the dynamic flexibility matrix columns can be 

measured. A technique to complete this matrix is proposed, following the description of the conventional 

techniques. The idea is combined with a procedure which makes it possible to choose, for the numerical tests, an 

optimal placement of the excitations. The proposed formulation is based on the use of clean solutions and is 

validated by a digital example. 

 

Keywords: Frequency responses, structural modification, dynamic flexibility matrix, reconstruction, modal 

analysis. 

 

1 INTRODUCTION 

To optimize the calculations in structural dynamics, we are often faced with formulations using 

matrixes of frequency response functions (FRF), such as the problems of dynamic substructuring or 

structural modifications. [1, 2]. In practice, this resolution is based on the knowledge of the matrix 

H(ω) of the frequency response function (FRF). 

This matrix can be estimated either from an analytical or a numerical simulation model, similar to the 

real model, or from experimental data. In the experimental case, the matrix H(ω), at each frequency in 

the analyzed band, is often evaluated either by reconstruction from the eight identified solutions of the 

system, which requires a prior modal identification [3], or by direct measurement of all its 

independent elements. The latter situation is rarely applied, because it is not economical, so only a 

very limited number of columns of the dynamic flexibility matrix can be measured, thus the other 

columns must be estimated. 

In this work, we first develop a technique of structural modifications based on the knowledge of the 

frequency response functions with respect to the original structure and the introduced modifications. 

Then, after having exposed the conventional estimation techniques of the dynamic flexibility matrix, 

we propose a technique which allows us to evaluate the complete matrix without using a modal 

identification. A similar principle has already been proposed in [4, 5] and the idea is extended and 

combined with a procedure which makes it possible to choose, for numerical simulations, an optimal 

placement of the excitations [6]. 

An example of numerical simulation will be proposed to validate the proposed formulations, and to 

discuss the effects of the choice of the number and the positions of the exciters, used to measure the 

flexibility matrices, and the effect of the damping on the quality of the evaluation. 

 

2 STRUCTURAL MODIFICATION PROBLEMS THROUGH TRANSFER FUNCTIONS 

2.1 General Formulation 

The modified structure can be represented by an assembly of two subsystems: the initial structure and 

an additional system consisting of the introduced modifications. 
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The equation representing the particular solution of the structure in its initial state, under a harmonic 

excitation, is expressed in matrix form as: 

𝑍(𝑠) = 𝐻(𝑠)𝑓,    𝑠 = 𝑗𝜔                           (1) 

Where 𝐻(𝑆) ∈ ℂ𝑐,𝑐 is the symmetrical FRF matrix of the initial structure (abbreviated IS), at the 

frequency 𝜔, 𝑐 is the number of degrees of freedom of capture (DOF) and 𝑍(𝑠), 𝑓 ∈ ℂ𝑐,1 represent 

the response vectors and the external force respectively. 

To reduce the writing, we eliminate the s argument. The above equation is partitioned into the form: 

(
𝑧𝑖

𝑧𝑎
) = (

𝐻𝑖𝑖 𝐻𝑖𝑎

𝐻𝑎𝑖 𝐻𝑎𝑎
) (

𝑓𝑖

𝑓𝑎
) 

(2) 

Where: the index a designates the degrees of freedom (abbreviated DOF) affected by the 

modification, and i designates the other DOF. 

The relation of FRF of the IS subjected to the forces of connections 𝑓𝑎𝑙, due to the introduced 

modifications on the DOF of type a is written: 

𝑓𝑎𝑙 = 𝛥𝑍𝑎𝑎 �̂̆�𝑎 ∈ 𝐶𝑎,1                                (3) 

Where: �̂̆�𝑎 is the displacement of the DOF of the additional system on the points of connection with 

the IS 𝑓𝑎𝑙 represents the external forces exerted by the IS on the introduced modification. 
 

(
�̂�𝑖

�̂�𝑎
) = (

𝐻𝑖𝑖 𝐻𝑖𝑎

𝐻𝑎𝑖 𝐻𝑎𝑎
) (

𝑓𝑖

𝑓𝑎

)                         (4) 

Where: 𝑓𝑖 = 𝑓𝑖 ∈ ℂ𝑐−𝑎,1 et 𝑓𝑎 = 𝑓𝑎 + 𝑓𝑎𝑙 ∈ ℂ𝑎,1 

The additional system, consisting of a few known parametric modifications which do not modify the 

order of the system, is represented by the dynamic stiffness matrix: 

𝛥𝑍𝑎𝑎 = [𝛥𝐾𝑎𝑎 + 𝑠𝛥𝐵𝑎𝑎 + 𝑠2𝛥𝑀𝑎𝑎] ∈ ℂ𝑎,𝑎             (5) 

Where 𝛥𝐾𝑎𝑎, 𝛥𝑀𝑎𝑎, 𝛥𝐵𝑎𝑎 ∈ ℝ𝑎,1 are the symmetrical matrices of rigidity, mass and damping of the 

structural modification, respectively. 

The matrices 𝛥𝐾𝑎𝑎, 𝛥𝑀𝑎𝑎 and 𝛥𝐵𝑎𝑎 have the following general form: 

𝛥𝐾 = (
0 0
0 𝛥𝐾𝑎𝑎

) 

𝛥𝑀 = (
0 0
0 𝛥𝑀𝑎𝑎

) 

𝛥𝐵 = (
0 0
0 𝛥𝐵𝑎𝑎

) 

 

 

Connection conditions: 

�̂̆�𝑎 = �̂�𝑎;    𝑓𝑎𝑙 + 𝑓𝑎𝑙 = 0                            (6) 

 

After using equations (3) and (6), equation (4) can be formulated as: 

(
�̂�𝑖

�̂�𝑎
) = (

𝐻𝑖𝑖 − 𝐻𝑖𝑎𝛥𝑍𝑎𝑎𝐺𝐻𝑎𝑖 𝐻𝑖𝑎(𝐼𝑎 − 𝛥𝑍𝑎𝑎𝐺𝐻𝑎𝑎)
𝐺𝐻𝑎𝑖 𝐺𝐻𝑎𝑎

) (
𝑓𝑖

𝑓𝑎
)       (7) 

Where 𝐺 = [𝐼𝑎 + 𝐻𝑎𝑎𝛥𝑍𝑎𝑎]−1 

Using equation (7), we can express the forced responses of the MS, without resorting to an exact but 

expensive reanalysis, using only the dynamic flexibility matrix of the SI and the dynamic stiffness 

matrix of the introduced modification. The modal parameters of the EM are then accessible by 

applying a method of modal identification on the preceding frequency responses. In order to assess 

the FRF of the EM from (7), we need to determine the matrix G(s) at each frequency 𝜔. This 

evaluation cost depends on the number a of DOF affected by structural changes. 

2.1.1 Program Code 

The rearrangement code of the dynamic flexibility matrix: 

function Mr=rearrangement(matrice) 

matricenouelle=matrice; 

rep=input('entrez le nombre de lignes/colonnes que vous voulez supprimer:\n'); 

for i=0:rep-1 

num=input('entrez les numéros de lignes/colonnes que vous voulez réaranger:\n'); 
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element(i+1)=num; 

num=num-i; 

disp(num); 

matricenouelle(num,:)=[]; 

matricenouelle(:,num)=[]; 

end 

matricenouelle=padarray(matricenouelle,[size(matrice,1)-size(matricenouelle,1),size(matrice,1)-

size(matricenouelle,1)],0,'post'); 

h=0; 

for k=rep:-1:1 

matricenouelle(size(matrice,1)-h,:)=matrice(element(k),:); 

matricenouelle(:,size(matrice,1)-h)=matrice(:,element(k)); 

h=h+1; 

end 

Mr=matricenouelle; 

end 

2.2 Case Of DOF Connection To Earth 

For the problems concerning the attached the DOF to the ground, in the simplest case, we choose for 

the disturbance matrices 𝛥𝑀𝑎𝑎 = 0 and 𝛥𝐾𝑎𝑎 as a diagonal matrix with very large diagonal elements. 

Then, the perturbation of the rigidity connects in a quasi-rigid way the DOFs to the fixed reference. 

Equation (7) reduces to: 

�̂�𝑖 = �̂�𝑓𝑖                                         (8) 

Where �̂� = 𝐻𝑖𝑖 − 𝐻𝑖𝑎𝛥𝐾𝑎𝑎𝐺𝐻𝑎𝑖; 

= [𝐼𝑎 + 𝐻𝑎𝑎𝛥𝑍𝑎𝑎]−1 

If we take 𝛥𝐾𝑎𝑎 in the following form: 

𝛥𝐾𝑎𝑎 = 𝑘𝐼𝑎, 𝑘  is a positive scalar and et 𝐼𝑎 is the unit matrix of 𝑎 order. 

The matrice 𝐺 and �̂� become: 

𝐺 =
1

𝑘
[
1

𝑘
𝐼𝑎 + 𝐻𝑎𝑎]−1 

�̂� = 𝐻𝑖𝑖 − 𝐻𝑖𝑎[
1

𝑘
𝐼𝑎 + 𝐻𝑎𝑎]−1𝐻𝑎𝑖 

And for 𝑘 tending to infinity, �̂� is written as: 

�̂� = 𝐻𝑖𝑖 − 𝐻𝑖𝑎[𝐻𝑎𝑎]−1𝐻𝑎𝑖                        (9) 

In this formulation, the introduction of structural modifications is avoided, but we are still faced with 

the inversion of the sub-matrix 𝐻𝑎𝑎 of equal order to the number of fixed DOFs. 

We can find the same formulation as (9), but established in a different way, by using (4) and by 

imposing the constraint �̂�𝑎 = 0. 

 

3 FRF MATRIX EVALUATION 

To solve the problems of structural modifications defined in point (7), for example, we need to know 

the dynamic flexibility matrix of the IS which can be estimated in different ways. 

3.1 Estimation From An Updated Finite Element Model 

In the dynamics of mechanical structures, a continuous system is often discretized and represented by 

models made up of a limited number 𝑛 of FRFs [7, 8]. A first way to determine the FRF matrix 

𝐻(𝜔) ∈ ℂ𝑛,𝑛, at a frequency ω, is through a calculation from an available finite element model. If one 

notes 𝑀, 𝐵 et 𝐾, respectively the matrices of mass, damping and rigidity of the structure, the matrix 

FRF is then calculated by the following relation: 

𝐻(𝜔) = (𝐾 + 𝑗𝜔𝐵 − 𝜔2𝑀)−1                   (10) 

This may be a very intensive computation in the case of component models comprising a large 

number of DOFs and / or a wide range of excitation frequencies. After all, the dynamic stiffness 

matrix needs to be reversed for every discrete frequency in the frequency range of interest to us. 

3.2 Estimation Using Experimental Measurements 
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In the case where the data come from the measurements, one is often forced to operate with a reduced 

sub-matrix 𝐻𝑐𝑐 ∈ ℂ𝑐,𝑐 where 𝑐 (𝑐  𝑛) represents the limited number of sensors placed on the tested 

structure. 

The elements of 𝐻𝑐𝑐(𝜔) are generally evaluated 

either by reconstruction from the eigen solutions identified, or by direct measurement of its c (c + 1)/2 

independent elements. 

3.2.1 Reconstitution Using The Identified Own Solutions 

A second way to determine the FRFs of a damped structure consists in using an FRF synthesis based 

on a finite number of eigenvectors and eigenfrequencies of the structure. If we consider a structure 

with 𝑛 DOF whose behavior is represented on the basis of its 2𝑛 complex modes, the relation between 

the synthesized FRF matrix 𝐻(𝜔) and the eigenvectors is expressed by. 

𝐻(𝜔) = 𝑌(𝑗𝜔𝐼 − 𝑆)−1𝑌𝑇 + �̅�(𝑗𝜔𝐼 − 𝑆̅)−1�̅�𝑇           (11) 

Where: 𝑌 ∈ 𝐶𝑛,𝑛;  𝑆 ∈ ℂ𝑛,𝑛 and 𝐻(𝜔) ∈ ℂ𝑛,𝑛 represent respectively the modal base, the spectral 

matrix and the dynamic flexibility, with the pulsation 𝜔, of the dissipative structure. 

In a given frequency band, we can, with sufficient precision, express (8) approximately by: 

𝐻(𝜔) ≅ 𝐻𝑠(𝜔) + 𝐻𝑑(𝜔)                      (12) 

Where 𝐻𝑠(𝜔); 𝐻𝑑(𝜔) ∈ 𝐶𝑛,𝑛 represent respectively the static part of 𝐻(𝜔) relating to the 

unidentified modes and the part of 𝐻(𝜔) relating to the identified modes. 

𝐻𝑑(𝜔) = 𝑌1(𝑗𝜔𝐼𝑚 − 𝑆1)−1𝑌1
𝑇 + �̅�1(𝑗𝜔𝐼𝑚 − 𝑆1̅)−1�̅�1

𝑇           (13) 

Where : 𝑌1 ∈ ℂ𝑛,𝑚; 𝑆1 ∈ ℂ𝑚,𝑚 represents the identified modal sub-base, of the dissipative structure. 

The introduction of the static part, 𝐻𝑠(𝜔), of 𝐻(𝜔) is introduced in order to partially compensate for 

the unidentified 𝑛 − 𝑚 modes. This compensation has an important role in the regions outside the 

resonances of 𝐻𝑑(𝜔) regions where the static contributions of the truncated modes play a 

preponderant role. 

In practical cases, only the sub-matrix 𝐻𝑐𝑐 ∈ 𝐶𝑐,𝑐  calculated or measured (𝑐  𝑛) is used frequently 

exploited. The equation (4.2) is then written as: 

𝐻𝑐𝑐(𝜔) ≅ 𝐻𝑐𝑐
𝑠 (𝜔) + 𝐻𝑐𝑐

𝑑 (𝜔)                      (14) 

With: 

𝐻𝑐𝑐
𝑑 (𝜔) = 𝑌1𝑐(𝑗𝜔𝐼𝑚 − 𝑆1)−1𝑌1𝑐

𝑇 + �̅�1𝑐(𝑗𝜔𝐼𝑚 − 𝑆1̅)−1�̅�1𝑐
𝑇  𝑌1𝑐 ∈ 𝐶𝑐,𝑚(𝑚 < 𝑐)                                 (15) 

is the modal sub-base identified on the 𝑐 sensors. 

The construction of 𝐻𝑐𝑐(𝜔) requires the identification of the matrices: 𝑌1𝑐 , 𝑆1 and 𝐻𝑐𝑐
𝑠 ∈ 𝐶𝑐,𝑐. To 

identify 𝑌1𝑐 and 𝑆1 a few 𝑝 (𝑝  𝑐) columns or a few rows of 𝐻𝑐𝑐(𝜔) are sufficient (in the limited case 

a column or a row is sufficient). As an example, one can quote as reference of modal identification 

methods: the method known as of linear smoothing 1 and the total method 2. 

The problem is that for the matrix of static residue 𝐻𝑐𝑐
𝑠  we can identify only p columns. The missing 

information can induce some effects on the unknown columns of 𝐻𝑐𝑐(𝜔), especially in the regions 

where the residual terms have a preponderant role. To get around this problem and that of the 

extraction of the clean solutions we are interested in the direct reconstruction of the dynamic 

flexibility 𝐻𝑐𝑐 ∈ 𝐶𝑐,𝑐  from the knowledge of a submatrix 𝐻1 ∈ 𝐶𝑐,𝑝 of 𝐻𝑐𝑐. 

3.2.2 Direct Evaluation Of FRF Matrices 

For this purpose, the contributions of all structural modes are taken into account. The set of 

knowledge of 𝐻𝑐𝑐(𝜔) requires c sensors and c excitations. Usually, for economic reasons, only a 

limited number p of linearly independent excitation configurations is available. 

Problem: Knowing 𝑝 (𝑝 <  𝑐) columns of 𝐻𝑐𝑐(𝜔) denoted by the submatrix 𝐻1(𝜔) ∈ 𝐶𝑐,𝑝 , we need 

to estimate (at best) the remaining 𝑐 −  𝑝 columns without performing a modal identification. 

We describe below a technique that helps to resolve this problem. We can find references to a similar 

method [4, 5]. 

Pour préciser les inconnues du problème, la matrice FRF 𝐻𝑐𝑐(𝜔) is divided into sub-matrices as 

follows: 

𝐻𝑐𝑐 = [𝐻1 𝐻2] = [
𝐻11 𝐻12

𝐻21 𝐻22
]                    (16) 

Where: 𝐻1 ∈ ℂ𝑐,𝑝 is the known part of 𝐻𝑐𝑐, 𝐻11 ∈ ℂ𝑝,𝑝 a square sub-matrix of 𝐻1et 𝐻2 ∈ ℂ𝑐,𝑐−𝑝 is 

the unknown part of 𝐻𝑐𝑐. 

We only consider the cases where the matrix 𝐻𝑐𝑐(𝜔) of the FRF is asymmetric: 
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𝐻12 = 𝐻21
𝑇 , 𝐻11 = 𝐻11

𝑇 , 𝐻22 = 𝐻22
𝑇                          (17) 

In this case, the number of unknown elements of the rectangular matrix 𝐻2 is contained in the matrix 

𝐻22 reduces to (𝑐 − 𝑝) ∗ (𝑐 − 𝑝 + 1) 2⁄  

2.2.5 Evaluation By Spectral Factorization Of The Square Sub-Matrix 𝑯𝟐𝟐 

The eigenvalues 𝛾𝑖 and the eigenvectors 𝜑𝑖(𝑖 = 1, . . . , 𝑝) of the matrix 𝐻11 are defined by the problem 

of the eigenvalues [12]: 

(𝐻11 − 𝛾𝑖𝐼𝑝)𝜑𝑖 = 0,    𝑖 = 1, … , 𝑝                 (18) 

One can then write the complex symmetric matrix 𝐻11 in the form: 

𝐻11 = 𝜙11𝛤𝜙11                                        (19) 

Where: 𝛤, 𝜙11 ∈ 𝐶𝑝,𝑝 are the diagonal matrix of the eigenvalues and the modal matrix of the 

eigenvectors of 𝐻11, respectively. These eigenvectors are normalized so that: 

𝜙11𝜙11
𝑇 = 𝜙11

𝑇 𝜙11 = 𝐼𝑝                          (20) 

The factorization (19) is valid for the matrices having distinct eigenvalues and possibly for the 

matrices having multiple eigenvalues. 

To estimate the set of the FRF matrix, let us find the matrix 𝜙21 ∈ 𝐶𝑐−𝑝,𝑝 such that: 

[
𝐻11

𝐻21
] = 𝜙1𝛤𝜙11

𝑇 , 𝜙1 = [
𝜙11

𝜙21
]                     (21) 

We can conclude that : 

𝐻𝑐𝑐
𝑟𝑒𝑐 = (

𝜙11

𝜙21
) 𝛤(𝜙11

𝑇 𝜙21
𝑇 )                              (22) 

In general, the eigenvalues of a matrix do not give precise information on its rank. If we wish to 

control the rank of the matrix H11, it is preferable to use a decomposition in singular values [5, 13]. 

 

4 RESULTATS AND DISCUSSION 

To illustrate the procedure relating to the evaluation of the FRF, we consider the following examples: 

4.1 Exemple 1 

We consider a first example of a shock absorber mass system with the following parameters: 

K = [80   -40     0     0     0 

-40    80   -40     0     0 

0   -40    80   -40     0 

0     0   -40    80   -40 

0     0     0   -40    40]; 

M = [5     0     0     0     0 

0     5     0     0     0 

0     0     5     0     0 

0     0     0     5     0 

0     0     0     0     5]; 

B = [0.6000   -0.3000         0         0         0 

-0.3000    0.6000   -0.3000         0         0 

0   -0.3000    0.6000   -0.3000         0 

0         0   -0.3000    0.6000   -0.3000 

0         0         0   -0.3000    0.3000]; 

 
Figure 1: Graphs between the direct calculation and the method of equation (7). 

4.2 Exemple 2 
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We consider a second example shown in Figure 2. The structure is modeled using a finite element 

code. This model is discretized into 42 beam elements, it contains 43 unconstrained nodes with 3 

DOF per node. The grid has the following physical and geometric characteristics: 

Its characteristics are as follows: 

Young’s modulus E = 0.499 = 109 N m-2; 

the density = 7800 kg m-3; 

the moment of inertia I = 0:279 = 10-4m4; 

the cross-section A = 0.001m2; 

the length L = 1.5m; 

 
Figure 2: Free recessed beam divided into 42 elements. 

A proportional damping ( 𝐵𝑀 −1𝐾 =  𝐾𝑀 −1𝐵) is introduced and the "exact" FRF matrix H(ω ) is 

calculated, at each frequency ω in the analyzed band, by using the clean modes of the dissipative 

structure. We note that 𝑎𝑖 = |𝑅𝑒(𝑠𝑖)| 𝐼𝑚(𝑠𝑖)⁄  is the ith modal damping factor; 𝑠𝑖 = −𝑎𝑖𝜔𝑖 + 𝑗𝜔𝑖 is 

the 𝑖𝑡ℎ eigenvalue of the structure. The frequency band considered [0, 300 Hz] contains the first 10 

natural frequencies of the structure (see table 1). 

Table 1: The proper frequencies of the initial structure by finite element method. 

Mode number Frequencies (Hz) 

1 10.5 

2 42.15 

3 65.84 

4 126.53 

5 184.37 

6 211.08 

 
Figure 1: Exact FRF to calculate and the one to calculate with the approximate method. 

 

4 CONCLUSIONS 

The objective was to contribute to the resolution of certain problems of dynamic structures established 

from the FRF matrices. For this, in section 2, we presented a formulation dealing with the reanalysis 

of the problems of modified structures, and discussed the case where some FRFs can be rigidly 

connected to the ground. In general, the quality of the frequency responses of the modified structure 

depends on the quality of the estimation of the flexibility matrices of the original structure. To do this, 

we have proposed a method, based on a spectral decomposition of a square sub-matrix of FRF; in 

some regions of low amplitude. 
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Through numerical simulations, we have seen that the quality of the estimation of the FRF Hcc(ω) 

matrix depends on several factors. In the case where a degradation in the quality of the estimate is 

observed, even with a better choice of the positions of the exciters, an increase in the number of 

exciters can correct this defect. The increase in damping also makes it possible to improve the quality 

of the estimate and to attenuate the parasitic peaks which appear in the spectrum. 
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