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1. Introduction

In this study, M is a unitary R-module, and R is a commutative ring with identity. Zadeh [1], proposed the
concept of fuzzy (in short F.) sets in 1965. Rosenfeld introduced the concept of F. groups in 1971, [2]. Deniz S. et
al. presented the concept of a 2-absorbing F. ideal in [3]. which is a generalization of prime F. ideal. Rabi [4]
introduced the definition of the prime F. submodule (in short F. submd.). Hatam first proposed the definition of
quasi-prime F.submd. in 2001 [5]. Wafaa investigated and introduced the T-ABSO F. submds definition in 2019,
[6]. H.Ansari Toroghy introduced the dual notion of F.prime (that is,F. second) submds in the year 2019, [7].

There are two sections to this paper. Section (1) investigates and presents the definition of T-ABSO F.second
submd. and the properties that are required, as well as some propositions, theorems, and examples. In section (2),
we look at the concepts of strongly T-ABSO F.second submd., and relationship its concept with T-ABSO F.second
submd., and quasi T-ABSO F.second submd.

2. Concepts Basic

Definition 2.1: Let S be a non-empty set and L be an interval [0,1] of the real line (real number). A F. set A in
S (F. subset of S) is a function from S into L, [1].

Definition 2.2: Let x,,: S= L beaF. setin S, where x € S,u € L, define by

_(uifx=y . . .
x,(y) = {0 ifx %y % is called F. singleton in S, [8].
1ify=0

If x =0 and u=1, then 0, (y) = {0 A
Definition 2.3: AF. subset K of aring R is called F. ideal of R, if V X,y € R:

1. K(x-y) = min{K(x), K(y)}
2. K(xy) = max{K(x), K(y)}, [10].

Definition 2.4: Let M be an R-module (in short mod.). F. set Y of M is called F. md. of an R-md M if
1. Y(x-y)=min{Y(x), Y(y)}, for all x,y € M.

2. Y(rx)>Y(x), for all xe M, re R

3. X(0)=1 (0 is the zero element of M), [10].

Definition 2.5: Let Y and A be two F. mds of an R-md. M. A is called F. submd. of Y if AC Y, [11].

Proposition 2.6: Let A be F. set of M. Then the level subset A,,, YUEL is a submd. of M iff A is F. submd. of
F. md. of an R-md. M, [12].
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Definition 2.7: Let A and B be two F. submds of F. md. Y. The residual quotient of A and B denoted by (A:B)
is the F. subset of R defined by:

(A:gB)(r) = sup{v € L:1,. B < A} for all r € R.That (A:zx B) = {r,:1,.B S A;r, is a F. singleton of R}. If
B=<x;>, then (A:g<x;>)={r,:1,.x; S A;1, isF. singleton of R }, [10]".

Definition 2.8: Let A be a proper F. submd. of F. md. Y. The F. annihilator of A denoted by F-annA is defined
by:

(F-annA)(r)=sup{v: v eL,,A € 0.}, forall r € R, [11]".
Note that: F — annd = (0,:z A), hence (F — annY), € annY,, [5]".
Proposition 2.9: If Y is F. md. of an R-md. M, then F-annY is F. ideal of R, [11]".

Definition 2.10: A F. ideal H of a ring R is called prime F. ideal if H is a non-empty and for all ag, b, F.
singletons of R such that a;b, € H implies that either a; € A or b, € H, vs,| € L, [13].

Definition 2.11: Let H be a non-empty F. ideal of R. Then H is called 2-absorbing F. ideal if for any F.
singletons as, b;, 1y, of R such that asb; r,, € H implies that either a;h, S Horasr, € Hor b, 1, € H, [3].

Definition 2.12: AF. md. Y of an R-md. M is called a multiplication F. md. if for each non-empty F. submd.
A of Y there exists a F. ideal H of R such that A=HY,[5]

Definition 2.13: Let Y be F. md. of an R-md.M, let A# 0, is called F.second submd. if V r € R we have 1,..A=A
or 1,.A=0, where 1, is F.ideal of R, [7].

Definition 2.14: F.md.Y of an R-md. M is called a comultiplication F.md. if A= F-ann,F — anngzA for each
F.submd. A of Y [6].

3. T-ABSO F. Second Submds.
In this section, we will provide some definitions, remarks, examples, theorems, and propositions.

Definition 3. 1: Let Y be F.md.of an R-md.M. A proper submd. A of Y is said to be completely irreducible (in
short irred.) F.submd.if A =N;¢; A;,where {A;}i¢; is a family of F.submds.of Y, implies that A=A;for some i€l. It
is easy to see that every F.submd.of Y is an intersection of completely irred.F.submd.of Y.

Theorem 3.2: For F.submd. A of Y F.md. of an R-md.M the following statements are equivalent:

a) AisF.second submd. of Y.

b) A=#0;and1,.Ac K, where r eR and K is F. submd.of Y denotes either 1,.A=0, or Ac K.

c) A#0,and1,.Ac H, where re Rand H is a completely irred. F. submd.of Y implies either 1,.A=0, or AC
H

Proof

a) =(b) AisF. second submd. then 1..A=Aor 1..A=0,, V r€ R, hencel,.Ac K since A€ K

b) = (c) Every F. submd. of Y is an intersection of completely irred. F. submd. of Y. A is F. second submd.
Then1,.A=A, 1, ACH—->ACH.

c) (c)= (a) Suppose that re R and 1,.A# 0,. If 1,.A < H for some completely irred. F. submd. H of Y by
assumption A € H. Hence 1,.A € A.

Definition 3.3: Let A = 0,, A be called Prime (Strongly prime) F. second submd. if F.singleton a, of R and B
be completely irred. F. submd (B be F.submd.). ag AC B, then ASB or ag € F-ann (A).

Definition 3.4: Let A= 0, be F.submd. of F.md of Y of an R-md.M. A is called T- ABSO F. second submd. if
whenever F.singletons ag, b; of R, B is completely irred.

f.submd. and ag b; A € B then either a;, AS Borb; A € B orag b; € F-ann (A).
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Definition 3.5: Let A#0, be F.submd. of F.md of Y of an R-md.M. A is called quasi-prime (strongly quasi-
prime) F.second submd. if whenever F.singletons ag, b; of R, B is completely irred. F. submd.(B is F. submd.) and
ag by A € B then either ag AcSB or b, A € B.

The following proposition specicates of T-ABSO F. second submd. in terms of its level subm.

Proposition 3.6: Let A#0 be F.submd. of F.md of Y of an R-md.M. Then A is T-ABSO F. second submd. iff
the level submd. A,, A, # 0is T- ABSO F. second submd.of Y, forall u € L.

Proof: =) Let ab A, € B, for every a, be R and A, #0 be submd. of Y, B, be completely irred. submd. of
Y, we haveaby e B, forally € A,, then B(aby)= u.So (aby) , < B,implies that a;b,y; € B,V y; € A where u=
min{s,k,I}, hence a;b, A € B.

Since A is T-ABSO F. second submd. then either ag A< B or by A € B or ag b, S F-ann (A). Hence agy; € B
or by, € B or agby € F-ann ((y;)) so that (ay), € B or (by), S B or(ab), € F-ann(y;). Thus either ay € B, or
by e B,orabeann((y)),vye A,soaA, SB,orbA, € B,orabeann(A,). Therefore A, is T- ABSO second
submd.of Y.

&)Let agb, A € B for all F.singletons ag, by, of R and B be completely irred. F. submd. of Y. Subsequently
agby y; € B, Vy; € Aso (aby) , € B where u=min {s,k,1}, hence B(aby)> u,thenaby € B,, Yy € A, indicates
abA, € B,,but A, is T- ABSO second submd.of Y,,s0 that either aA, € B, or bA, € B, or ab € ann(A,)
subsequently ay € B, or bye B, or ab € ann((y)), V y € A, hence either (ay), < B or (by), € B or(ab), S F-
ann((y;)) so either ag AS Borby A € B orag by S F-ann (A). Thus A is T- ABSO F. second submd.of Y.

Remarks and Examples 3.7
1. Every prime F. second submd. is T-ABSO F.second submd.

Proof: Let A be prime F. second submd. of Y F.md of an R-md M, let a; b; A € B where ag, b; are F.singletons
of R, B is completely irred. F.submd. as(b; A) € B, but A is prime F.second submd. hence bj A € B orag < F-
ann (A), so that A is T-ABSO F. second submd. But, the converse incorrect in general for example:

lify € 7,
LetY:Zs — L where Y(y) =
0 o.w.

Itis evident Y F.md. of Z4 as Z-md.

uify € Zg
Let A:Zg — L where A(y) =
0 o.w.

Itis evident A is F.submd. of Y.
Now, A, = Z¢ is T-ABSO second submd. of Y,= Z¢ as Z-md.

Since 2.3Z¢ S(2) - 2.Z4 S(2) or 2.3eann (Zg) = 6Z. But A, = Z4 is not prim second submd. since
2.7Z¢ S(2) but Zg £(2) and 2¢ F — ann(Z¢) = 6Z. So that Ais T-ABSO F.second submd., but it is not prim
F.second submd.

2. ltisevident every quasi-prime F.second subm. is T-ABSO F. second submd.
3. Let A, B be two F. submds. non zero F.submds.of F.mds. X and Y resp.of an R-md. M, and BCA. If A is
T-ABSO F.second submd. of Y then it is not necessary that B is T-ABSO F.second submd. for example:

lify € Z;o
Let X:Z;, — L where X(y) ={ ,
0 o.w.
lif y € Zg
Y:Zg = L whereY(y) = i
0 o.w.

3856



Preparation of Investment Guidelines of the Thai and Foreign Elderly Housing Center Project, Nong Khai
Province, Thailand

Itis evident X is F.md. of Z,, as Z- md. and Y is F.md. of Zg as Z-md.

ulfy € Zlo,vu € L
Let A: Z,, = L where A(y) =
0 o.w.

uify € Zg,YVu € L
B: Zg — L where B(y) =

0 o.w.

it is evident A is F.submd. of X and B F.submd. of Y.

Now, A, = Z;, as Z-md. and B, = Zg as Z-md. where B, € A, and A, is T-ABSO second submd., but B, is
not T-ABSO second submd. since 2.2Zg € (4), but 2Zg ¢ (4) and 2.2¢ ann(Zg) = 8Z.

4. Let A and B be F. submds. of F.md. Y of an R-md. M and AcB. If A is T-ABSO F. second submd. of Y
then A is T-ABSO F. second submd. of B.

Proof: If B=Y then don't need to proved

Letag by ACH, ag, b; are F.singletons of R, H be a completely irred.F.submd. of B. Since B is F.second submd.
of Y then H is F. submd. of Y, H is a completely irred. F. submd. of Y, we have either a;, AS Horb; A € H or ag
b; € F-ann (A). (Since A is T-ABSO F. second submd. of Y) so that A is T-ABSO F. second submd. of B.

5. Every non zero F.submd. of F.md. Y of an R-md M define as follows is T-ABSO F. second submd. for
example:

lify € Z,,n = porn = pq
LetY:Z, —» LwhereY(y) =
0 o.w.

Where p,q are prime integers. It is evident Y is F.md. of Z,, as Z- md.

Uy €z, orzy

Let A: Z, — L where A(y) = {
0 o.w.

Itis evident A is F.submd. of Y.
Now, A, =Z, or Z,, is T-ABSO second submd. So that A is T-ABSO F. second. submd. by Proposition(3.6)

6. Every non zero F.submd. of F.md. Y of an R-md M define as follows is not T-ABSO F. second submd.of
Y:

lifye Z
LetY:Z— Lwhere Y(y) =

0 o.w.

Itis evident Y is F.md. of Z as Z- md.

uye€?27Z

Let A:Z - L where A(y) = { 0 0.

It is evident A is F.submd. of Y.

Now, A,=2Z is not T-ABSO second submd.of Y,, =Z as Z-md., since 2.2.2Z<8Z where 8Z is a completely
irred. submd of Y,, =Z as Z-md., but 2.2Z& 87 and 2.2¢ ann(22)=(0).

So that A is not T-ABSO F. second submd.

7. The sum of two T-ABSO F. second submds. of Y F. md. of an R-md. M, is T- ABSO F. second submd. of
Y.
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Proof: Let A,B two T-ABSO F. second submds. Assume that ag, b; are F. singletons of R, H is a completely
irred. F.submd. of F.md. Yof an R-md. M, such that ag b;( A+B) SH— (as b; A+ ag bB) € H, so that ag b; AC
Hand ag bB < H.But A and B are T-ABSO F.second submds. of Y. Thus either ag Ac HorbjAS Horagb, S
F-ann (A) and either agB € HorbB S H orag b; S F-ann (B), so that either ag (A+B)< H orb( A+B) € H
orag b, € F-ann (A+B). thus A+B is T-ABSO F. second submd.

Theorem 3.8: Let Y be F.md. of an R-md. M.If either A is F.second submd. of Y or A is a sum of two F.second
submd. of Y then A is T-ABSO F.second submd.of Y.

Proof: The first assertion is clear. To see the F.second submd. assertion, let A; and A, be two F.second
submds.of F.md. Y, we show that A; + A, is T-ABSO F. second submd. of Y. Assume that F. singletons ag, b; of
R,H is a completely irred. F.submd. of Y and ag b;(A; + A,)SH. Since A; is F. second submd.ag b,A;=0,0r A;
CH by theorem (3.2). Similarly ag bjA,=0, or A, €H. If agbjA;=0; = a4 bjA, (resp. A; €H and A, <H). then
we are done. Now let a;b;A; € 0, and A, €H, then a;A; € 0, or bjA; € 0, because F-ann(A,) is a prime
F.ideal of R. Ifag A; € 04, thenag(A; + A,)S agA;+A, € A, cH Similarly if bjA;=0,, we get b;(A, + A,)SH
as desired.

Proposition 3.9: Let K be F.ideal of R and A be T-ABSO F.second submd.of F.md.Y of an R-md. M. If a; KAC
H for ag f.singleton of R and H is a completely irred.F.submd. of Y, then either a; A€ H or KAC H or ag K € F-
ann(A).

Proof: Let ag AZ H and ag K & F-ann(A). Then there exists b; € K, so ag bjA # 0,. Nowas A is T-ABSO
F.second submd. of Y, bjag A< H implies that b; AC H.

we show that KAC H, let r; be an arbitrary F.singleton of K. Then (b, + r;) ag AS H.

Hence either (b; + r;) AS Hor (b, + 1;) ag € F-ann(A). If (b; + r;) AS H, then since by AC H we have r; AC
H. If (b; + 1;) ag € F-ann(A) then r; ag € F-ann(A), but r; agA € H. Thus r; A € H. Hence we conclude that KA
H.

Proposition 3.10: Let K and N be two F.ideals of R and A be T-ABSO F.second submd. of F. md. Y of an R-
md. M. If H is a completely irred. F.submd. of Y and KNAC H, then either KAS H or NAS H or KNS F-ann(A).

Proof: Let KAZ H and NAZ H.We show that KNS F-ann(A). Assume that C; € Kand d, SN. By assumption
there exists ag € K such that ag AZ H, but ag NAC H.

Now Proposition (3.9) shows that agN € F — ann(A) and so(K\ (H:gA)) NS F-ann(A). Similarly there exists
b; € (N \ (H:g A)) such that K b; €F-ann(A) and also K (N \ (H:g A)) €F-ann(A). Thus we have ag b; < F-
ann (A), ag d, < F-ann (A)andc; b; € F-ann (A). As (ag + ¢;) €K and (b; + d,) €N, we have (ag + ¢;) (b +
d,)AC H. Since A is T-ABSO F.second submd. Therefore (a5 + ¢;) AS H or (b, + d,)AS Hor (a5 + ¢;) (b +
d.) € F-ann (A). If (ag + ¢;) AC H then ¢; AZ H.Hence ¢; €K\ (H:g A), which implies that ¢;d. S F-ann (A).
Similarly if (b; + d.)AS H,we can deduce that c;d. € F-ann (A). At last if (as + ¢;) (b; + d;) € F-ann (A). Then
(ag by +ag d. +c¢; by +¢;d,) € F-ann (A), so that c;d, < F-ann (A) therefore KNS F-ann(A).

Corollary 3.11: Let Y be F.md. of an R-md. M, and A be T-ABSO F.second submd. of Y. Then KA is T-
ABSO F. second submd. of Y,for all F.ideals K of R with K £ F-ann(A).

Proof: Let K be F.ideal of R with K & F-ann(A), ag, b; be F.singletons of R, H be a completely irred. F.submd. of
Y and ag bjKAC H, then ag AC H or bjKAC H or ag b; SF-ann(KA) = (0,: KA) (i.e. a5 bjKAZ 0, by Proposition
(3.9

If ag bjKAC H or. ag bKACS 04, then we are done.
If ag AC H, then ag KAC ag A implies that ag KAC H it is required.

Corollary 3.12: Let Y be a multiplication F.md.of an R-md. M, then every F.submd. A # 0, of Y is T-ABSO
F.second submd.

Proof: This follows from Corollary (3.11)

3858



Preparation of Investment Guidelines of the Thai and Foreign Elderly Housing Center Project, Nong Khai
Province, Thailand

The following example shows that the condition Y is a mulutiplication F. md. cannot delete.
1ly€Zy
Example 3.13: Let Y: Zyeo — L where Y(y)=

0 o.w.

where p is any prime integer. It is evident Y F.md. of Z-md. Z e

UyE &+17)
Let A: Zy — L where A(y)= p

0 o.w.
it is evident A F.submd. of Y.

Now, A= (p% + Z) is submd. of Y,=Z,» as Z-md., A, is not T-ABSO second submd. since p? (p% +7Z) c
(% +Z) but p(p1—3 +7) ¢ (% +7Z)yand P2 ¢ ann((p1—3 + 7))=(0)

so that A is not T-ABSO F.second submd. of Y by Proposition (3.6)

Definition 3.14: A F.md.Y of an R-md. M is said to be a cocyclic F.md. if F-soc(Y) is large and simple
F.submd. of Y.[Here F-soc(Y) denotes the sum of all minimal F. submds.of Y]

Note that: H is a completely irred. F.submd. of Y iff Y/ H is a cocyclic F.md.

Lemma 3.15: Let H be a completely irred. F.submd. of Y F.md. of an R-md. M and a4 be F.singleton of R then
(H:y ay) is a completely irred. F.submd. of Y.

Proof: This follows from the fact that F.submd. H of Y is a completely irred. F.submd. of Y iff Y/H is a
cocyclic F.md.and that Y/ (H:y ag) =(asY+H) /H, we use the following basic fact without comment.

Proposition 3.16: Let A be T-ABSO F. second submd.of F.md. Y of an R-md. M. Then we have the following:

If H is a completely irred. F.submd. of Y such that AZH, then (H:g A) is T-ABSO F.ideal of R.

If Y is a cocyclic F.md.,then F-ann(A) is T-ABSO F.ideal of R.

If F. singleton a, of R, then a A =al*! A, v n>2.

If F-ann(A) is a prime F.ideal of R then (H:g A) is a prime F.ideal of R for all completely irred. F.submd
H of Y such that AZH.

oo o

Proof: a) Since A € H, we have (H:g A) is proper F.ideal of R, let F.singletons ag, b, ¢; of R and agb;c; <
(H:ig A). Then agbjA € (H:yc;)thus agA € (H:iyc;) or bjA € (H:yc;)or aghjA € 0,Since A is T-ABSO
f.submd. (H:y (c;)) is completely irred.F.submd. of Y by Lemma (3.15).Therefore asc; © (H:g A) or byc; €
(H:ig A) oragh; € (H:ig A).

b) Since Y is a cocyclic F.md.the zero F.submd. 0, of Y is completely irred.F.submd. of Y. Thus F-ann(A) is
T-ABSO F.ideal of R by part (a).

¢) It is enough to show that a2A = a3A. It is clear that a3A < a2A. Let H be completely irred.F.submd. of Y
such that a3A < H then a2A < (H:ga, ). Since A is T-ABSO F.second submd. and (H:g ag ) is a completely
irred.F.submd.of Y by Lemma (3.15) a; A € (H:ga, ) or a2A € 0,. Therefore a2A < H this implies that a2A c
asA.

d) Let F.singletons ag, b, of R, H be a completely irred.F.submd. of Y such that AZH and agb; < (H:g A) then
aZA S HorbAc HoragbA S 0. Since Ais T-ABSO

F.second submd. If a;bj A € 04, then by assumption a,A € 0, or bjA € 0,. Thus is any case we get that
agA € HorbA C H.

Theorem 3.17: Let A be T-ABSO F.second submd. of Y F.md. of an R-md. M.Then we have the following:

a. If /F—ann(A) = P for some prime F.ideal P of R and H is a completely irred. F.submd. of Y such that
AgH, then \/(H:g A) is a prime F.ideal of R containing P.

b. If \/F—ann(A) = Pn Q for some prime F.ideals P and Q of R, H is a completely irred.F.submd. of Y such
that A¢H and P < /(H:g A) then \/(H:g A) is a prime F. ideal of R.
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Proof: a) Assume that F.singletons ag, b, of R and asb; € /(H:g A). Then there is a positive integer t such that
albiA € H. By hypotheses, A is T-ABSO F.second submd. of Y, thus a A< H or bf A< H or atbf € F —
ann(A). If either aA S H or bfAS H we are done. So assume that albf € F —ann(A). Then agb, S

JF—ann(A) = P and so ag € P or b; € P since P is prime F.ideal of R. It is clear that P = \/F — ann(A) <
+ (H:g A). Therefore a; € /(H:g A) orb; € /(H:g A)

b) The proof is similar to that of part (a).

Proposition 3.18: Let Y be F.md. of an R-md. M and let {K;};; be a chain of T-ABSO F.second submd. of Y.
Then Ui K; is T-ABSO F.second submd. of Y.

Proof: Let ag, b; be F.singletons of R and H be acompletely irred.F.submd.of Yand asb; (Uie; K;) € H. Assum
that ag(Uier K;) € H and by (Ui K;) € H. Then there are m,n € I, where ack, € H and bk, € H. Hence for
every k, € k. and k,, € kg, ¢,d €I, we have agk. € H and bjky € H. Therefore for each F.submd. k;, such that
k, € ky, and k;,, € ky, we have agb; ky, © 0,. Hence agb; (Ui K;) € 04, so thatagb; € F — ann(Ui¢ Kj).

Definition 3.19: We say that T-ABSO F.second submd.A of F.md. Y of an R-md. M. is a maximal T-ABSO
F.second submd.A of submd. K of Y, if ASK and there does not exist T-ABSO F.second submd. H of Y such that
Ac Hc K.

Lemma 3.20: (Fuzzy Zorn's lemma) let X be F.ordered set with F.order R. If everyF.chain in X has an upper
bound,then X has a maximal element, [14].

Proposition 3.21: Let Y be F.md. of an R-md. M. Then every T-ABSO F.second submd. of Y is contained in
a maximal T-ABSO F.second submd. of Y.

Proof: This proved easily by using F. Zorn’s lemma and proposition (3.18).
4. Strongly T-ABSO F. Second Submds.

In this section, we will define a strongly T-ABSO F.second submd., and discuss its relationship to T-ABSO
F.second submd., and a quasi T-ABSO F.second submd.

Definition 4.1: Let A # 0, be F.submd. of F.md. Y of an R-md. M. We say that A is a strongly T-ABSO
F.second submd. of Y if whenever F.singletons ag, by of R, and H;, H, are completely irred.F.submd. of Y and
agbjA € H; n H,, thenagA € H; n H, orbjA € H; N H, oragb; € F — ann(A).

Remark 4.2: A is T-ABSO F.second submd. of F.md. Y of an R-md. M iff A is strongly T-ABSO F.second
submd. of Y.

Proof: =) Let ag, b; are F.singletons of R and H is completely irred.F.submd. of Y such that a;, bbA € H N H,
thenagAC Hn HorbjAS HnN Horagb; € F—ann(A) Then A is strongly T-ABSO F.second submd. of Y.
&) This is clear.

Theorem 4.3: Let A be F.submd.of Y F.md.of an R-md.M.The following statements are equivalent:

a. Aisastrongly T-ABSO F.second submd. of Y F.md. of an R-md. M.

b. If A+ 0,, KNAC C for some F.ideals K,N of R and F.submd. C of Y, Then KA<S C or NA<S C or KNS
F-ann(A).

c. A # 0, and for each F.singletons agq, b; of R we have ag bjA = agAoragbjA = bjAoragb; =0,

Proof: (a)—(b) Assume that KNACH for some F.ideals K,N of R, H F.submd.of Yand KNZF-ann(A). They
by

Proposition (3.10) for all completely irred. F.submd. H of Y with CcH either KASH or NACH. If KAcCH
(resp. NACH) for all completely irred.F.submds. H of Y with CSH, we are done

Now suppose that H; and H, are two completely irred.F.submds. of Y with C< H,, C< H,, KAZ H, and NAZ
H,. Then KAS H, and NAC H,.Since KNAS H, NH,,
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We have either KAS H,;NH, or NAC H; NH,. As KA< H; NH,, we have KAC H; which is a contradiction.
Similariy from NA< H; NH, we get a contradiction.

(b) —(a) this is clear.

(@) —(c) By Part (a), A # o4, letag, b; be F.singletons of R, then ag bjA € ag bjA indicates that ag A € ag bjA
orbjA € agbjAoragbA=o0;,.ThusagbhA=agA

or ag bjA =bjA oragbA =0,

(c) »(a) This is clear.

Proposition 4.4: Let A be a strongly T-ABSO F.second submd. of Y F.md. of an R-md. M. Then we Have the
following:

F-ann(A) is T-ABSO F.ideal of R

If Cis F.submd. of Y F.md. of R-md. M, that A € C then (C:g A) is T-ABSO F.ideal of R

If T is F.ideal of R, then T®A = T"*1A, vn > 2.

If (H, N H,:g A) is aprime F.ideal of R for all completely irred. F.submd. H; and H, of Y, such that A #
H; N H, then F-ann(A) is a prime F.ideal of R.

ooope

Proof: a) Let aq,b;,c; be F.singletons of R and agbyc; © F-ann(A). Then ag bjA € ag bjA implies that agA <
agbjAorbjA € ag bjAoragb)A = 0; by Theorem (4.3) ag bjA = 0, then we finished.If a;A € agbjA, then cjagA ©
c;aghjA = 04. In other

case we do the same.

b) Let Let ag,by,c; be F.singletons of R and agb;c; € (C:gA). Then agc;A € C or bic;A € Cor aghjgA = 0,. If
agciA € Cor byc;A < C, then we are done.

If aghjc;A = 04, then the result follows from part (a).

¢) It is enough to show that T?A = T3A. It is clear that T3A < T2A. Since A is strongly T-ABSO F.second
submd. T3A € T3A implies that T2A < T3A or TA € T3A or T3A = 0, by theorem (4.3). If T2A € T3Aor TA €
T3A then we are done.

If T3A = 04, then the result follows from part (a).

d)Suppose that ag,b; be F.singletons of R and agh;A = 0,. Assume contrary that a;A # 0, and bjA # 0,.Then
there exist completely irred.F. submds. H; and H, of Y,
such that agA ¢ H;, and bjA ¢ H,. Now since ((H, n H,):g A) is a prime F.ideal of R

0,=ag bjA € H; n H, implies that ag A € H; N H, or bjA € H; N H,.

In any cases we have a contradiction.

Proposition 4.5: If T is T-ABSO F.ideal of R then on of the following statements must hold:

a. T =P isaprime F.ideal of R such that P> € T.

b. VT=PnQ, PQC T and VT2 C T, where P and Q are the only distinct prime F.ideals of R that are minimal
over T.[6]

Theorem 4.6: If A is a strongly T-ABSO F.second submd. of F.md. Y of an R-md. M,and A € N,then either
(N:g A) is a prime F.ideal of R or there exists an element a¢ F.singleton of R such that (N:g agA) is a prime F.ideal
of R.

Proof: By Proposition(4.4) and Proposition (4.5) we have one of the following two case.

a. Let./F—ann(A) =P, wherePisaPrime F. ideal of R, we show that (N:g A) is a prime F.ideal of R when
P < (N:g A). Assume that ag,b; be F.singletons of R and agb; € (N:g A). Hence agA € N or bjA S N or
agbh; € F-ann(A).

b. Ifeither a;A € N or bjA € N, we are done. Now assume that ag, by € F-ann(A). Then agb; €P and so ag
CPorb; €P. Thusag © (N:g A) or b; € (N:g A) and the assertion follows. If € (N:g A). Then there exists
ay CP such that a;A ¢ N By Proposition (4.5), P2 € F-ann(A) € (N:g A), thus P € (N:g agA). Now a
similar argument shows that (N:g agA) is a prime F.ideal of R.

c. Let/F—ann(A) =PnQ, where P and Q are distinct prime F.ideals of R. If P € (N:g A) then the result
follows by a similar proof to that of part (a). Assume that P & (N:g A) then there exist a; P such that
agA € N. By Proposition (4.5) we have PQ < F-ann(A) € (N:g A) thus Q< (N:i a;A) and the result follws
by a similar proof to that of part (a).

Theorem 4.7: Let A be F.submd. of F.md. Y of a comultiplication R-md. M. Then we have the following:
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a. If F-ann(A) is T-ABSO F.ideal of R,then A is a strongly T-ABSO F.second submd. of Y. In particular, A
is T-ABSO F.second submd. of Y.

b. IfYisacocyclic F. md. and A is T-ABSO F.second submd. of Y,then A is a strongly T-ABSO F.second
submd. of Y.

Proof:

a) let ag,b; be F.singletons of R,K be F.submd.of Yand agb;A € K.Then we have F-ann(K) agh)A = 0,

so by assumption, F-ann(K) agA = 0, or F-ann(K) bjA = 0, or agh;A = 0,.If agb;A = 0,,we are done.If F-
ann(K) agA = 0,0r F-ann(K) b;A = 0,,then F-ann(K) < F -ann(a;A) or F-ann(K) < F -ann(b;A).

Hence a;A € K or bjA € K since M is a comultiplication R-md.

b) By proposition(2.17), F-ann(A) is T-ABSO F.ideal of R. Thus the result follows from part (a).

Lemma 4.8: Let X,Y be F.mds. of M, M an R-mds. resp. and let F: X— Y be a F-monomorphism of R-mds. If
H is a completely irred. F.submd. of F(X) then F~1(H) is a completely irred.F.submd. X.

Proof: This is strighat forward.

Lemma 4.9: Let F: X— Y be F-monomorphism of R-md. If H is a completely irred. F.submd. of X F.md. of an
R-md. M,then F(H)is a completely irred.F.submd.of F(X).

Proof: Let {A,}i¢; be a family of f.submds. of F(Y) such that F(H) = N A,.

Then H=F~'F(H) = F~* (N A) = Ny F71(A,). This denotes that there exists i € I such that H = F~1(A))
since H is a completely irred. f.submd. Y. Therefore,
F(H) = FF~1(A,)) = F(X)n A,= A, as needed.

Theorem 4.10: Let F:X— Y be F-monomorphism of R-md.Then we have the following:

a. If Alisastrongly T-ABSO F.second submd. of F.md. X, then F(A) is T-ABSO F.second submd. of Y.
If Ais T- ABSO F.second submd. of X, then F(A) is T- ABSO F.second submd. of F(X).
If A is a strongly T- ABSO F.second submd. of Y and A € F(X), then F~1(A) is T-ABSO F.second submd.
of X.

d. IfAis T- ABSO F.second submd. of F(X), then F~1(A) is T-ABSO F.second submd. of X.

Proof: a) Since A# 0, and F is F-monomorphism, we have F(A)# 0,. Let ag, b; F. singltons of R, H be a
combletely irred. F. suomd. of Y and asb,F(A) € H, then agbA € F~1(H). As A is strongly T- ABSO F.second
submd. a;A € F~1(H) or bjA € F~1(H) or agb)A = 0,. Therefore a,F(A) € F(F~'(H))= F(X)n A € H, b)F(A) S
F(F~(A))= F(X)n H € A or a;b;A = 0,, as needed.

¢) IFF~1(A) = 04, then F(X)n A= F(F~*(A))= F(0,)=0,. Thus A = 0,, is a contradiction.Therefore F~1(A)
# 0,. Now let ag, by F.singltons of R, H be a combletely irred. F. submd. of X and agb;F~*(A) < H then agb)A =
agsb (F(X) N A)=asb, F~1(A)S F(H). As A is strongly T- ABSO F.second submd. a;,A € F(H) or b; A € F(H)
oragb; A = 0,. Hence a,F~(A) € F~'F(H) = Hor b)F'(A) € F~*F(H) = H or agh;F~*(A) = 04, as required.

d) By using lemma (4.8), this is similar to the part (c).

Corollary 4.11: Let Y F.md. of an R-md. M and A< K be two F.submds. of Y. Then we have the following:

a. If Alisastrongly T- ABSO F.second submd. of K then A is T- ABSO F.second submd. of Y.
b. If Alisastrongly T-ABSO F.second submd. of Y,then A is T-ABSO F.second submd.of K.

Proof: This follows from Theorem (4.10) by using the natural F-monomorphism K- Y.
Theorem 4.12: Let A be F.submd. of Y F.md. of an R-md. M. Then the following statements are equivalent:

a. Adsastrongly quasi-prime F. second submd. of Y

b. F-ann of any nonzero homomorphic image of A is Prime F.ideal.

c. A=# 0, and ajbjA € H, where ag, by F.singltons of R and H is a finite intersection of completely irred.F.
submds.of Y, implies either agA € H or bjA € H.

d. A= 0, and for each ag, b; F.singltons of R either a;bjA = b;A or agb)A =a A.
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e. F-ann(A) isaprime F.ideal of R and the set {(K:g A): K is a proper completely irred. F.submd. of Y with
AZK} is a chain of Prime F.ideals of R.

Proof : (a) —»(b) and (a) —(c) there are clear.
(c) —»(a) Assume that agb;A < Q, where ag, by F.singltons of R and Q is submd. of Y, but a;A £Q
and bjA Q. There exists a collection {K;};c; of completely irred.F. submds. of Y such that Q=N;¢ K;

Therefore a;A € K; and bjA & K; for some |,j€ 1. But by assumption, agbjA € Q < K; N K; implies either
asA € K; N Kj orbjA € K; N K;. Thus in any case, we have a contradiction.

(a) —(d) Let A be a strongly quasi-prime F.second submd. of Y and ag, by F.singltons of R.Then agb;A € agbA
implies that agA S agb;A or bjA € agbjA as needed.

(d) —(a) Suppose that A has the stated property and agbjA S Q, where ag, b; F. singltons of R and Q is F.
submd. of Y. Then either a;,A = a;bjA € Q or bjA = a;bj)A € Q.

(a) —(e) By part (b), for each proper completely irred. submd. K of Y with A & K,we have (K:g A) is a prime
f.ideal of R. Let K; and K, be two proper completely irred. F. submds. of Y such that (K;:g A) € (K,:g A) and
(K,:gr A) € (K;:g A). Then there exist ag, by f.singltons of R such that a;A € K;, a,A € K,, bjA € K,,and bjA &
K;. Hence agbjA € K; N K,. Since A is strongly quasi-prime F.second submd., this implies that either a;,A € K,
or bjA € K;. In any case we have a contradiction.

(e) —(a) Let ag, by F. singltons of R, Q be F.submd. of Y with agh)A € Q,a;A € Q and bjA € Q. Then there
exist completely irred. F. submds. K, and K, of Y such that Q € K;, a;A € K;, Q € K, and bjA € K,. By
assumption, we may assume that (K;:g A) € (K,:g A) but aghjA € Q € K, and (K;:g A) is a prime F.ideal of R by
assumption. Hence either ag € (K;:g A) or b; € (K;:g A) € (K,:g A) in any case we have a contradiction, and the
proof is completed.

Remark 4.13: Every strongly quasi prime F.second subm. of Y F.md. of an R-md. M is strongly T-ABSO
F.second submd. but the converse is not true in general, for example:

1ify€ Zpoo @Zqoo
Lety: Zyo®Zgqe — L where Y(y) =

0 o.w.
Itis evident Y is F.md. of Z,0@®Zq as Z-md.
Wifye C+2)® ¢ +12)
Let A: Z,0@®Zqo — L w here A(y) = P q

0 o.w.

Where p, g are prime. It is evident A is F.submd. of Y.

Now,A,= (% +7)® (i + Z) is strongly T-ABSO second submd. of Y, = Z,« @©Z4e as Z-md. since pgA, =

Oy, and pg € ann(A,), but A, is not strongly quasi prime second submd. since pA,= 0®Zs~ # 0y, and gA,=
Z,» @0 # Oy, . Thus A strongly T-ABSO F. second submd., but it is not strongly quasi prime F. second submd.

Proposition 4.14: Let A be a non zero F. submd. of Y F.md. of an R-md. M. Then A is a strongly quasi-prime
F. second submd.of Y iff A is a strongly T-ABSO F.second submd.of Y and F-ann(A) is a prime F.ideal of R.

Proof: Distinctly if A is a strongly quasi-prime F.second submd. of Y, then A is a strongly T- ABSO F.second
submd. of Y and by Theorem(4.12), F-ann(A) is a prime F.ideal of R. For the convers, let a;b;A € H for some
ag, by F.singltons of R and F. submd. K of Y such that neither agA € H nor bjA € H. Then agb; € F-ann(A) and
so either ag © F-ann(A) or b; € F-ann(A). This contradiction shows that A is strongly quasi-prime F.second
submd.

Definintion 4.15: A non-zero F.submd. A of F. md. Y of an R-md. M is called a quasi T-ABSO F. second
submd. if F-ann(A) is T-ABSO F. ideal of R.

Example 4.16: Every strongly T-ABSO F..second submd. is a quasi T-ABSO F.second submd., but the
converse is not true in general, See Remarks and Example (3.7) part (6),
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where Ais a quasi T-ABSO F.second submd. since F-ann(A)is T-ABSO F. ideal,but it’s not T-ABSO F. second
submd., then it’s not strongly T-ABSO F..second submd.by Remark(4.2).

Proposition 4.17: Let Y be comultiplication F.md. of an R-md. M.Then F.submd. A of Y is strongly T-ABSO
F.second submd. of Y iff it is a quasi T-ABSO F. second submd. of Y.

Proof: This follows from Proposition (4.4) and Theorem(4.7).
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