T-ABSO and strongly T-ABSO Fuzzy second submodules and Related Concepts

Wafaa H. Hanoon ${ }^{\text {a }}$, Aseel S. Ibrahim ${ }^{\text {b }}$
${ }^{\text {a,b }}$ University of Kufa, Department of Mathematics, College of Education, Iraq.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract

In this search, we present the concepts T-ABSO fuzzy second submodules and strongly T-ABSO fuzzy second submodules, as well as some basic properties and characterizations of these concepts under the categories of multiplication fuzzy modules, cocyclic fuzzy modules, and comultiplication fuzzy modules. We also address the relationship among T-ABSO fuzzy second submodules, strongly T-ABSO fuzzy second submodules, and quasi T-ABSO fuzzy second submodules. Also, we study these concepts with other related fuzzy submodules.

Keywords: T-ABSO Fuzzy Second Submodules, Strongly T-ABSO Fuzzy Second Submodules, Quasi T-ABSO Fuzzy Second Submodules, Cocyclic Fuzzy Modules and Comultiplication Fuzzy Modules.

1. Introduction

In this study, M is a unitary R -module, and R is a commutative ring with identity. Zadeh [1], proposed the concept of fuzzy (in short F.) sets in 1965. Rosenfeld introduced the concept of F. groups in 1971, [2]. Deniz S. et al. presented the concept of a 2 -absorbing F. ideal in [3]. which is a generalization of prime F. ideal. Rabi [4] introduced the definition of the prime F. submodule (in short F. submd.). Hatam first proposed the definition of quasi-prime F.submd. in 2001 [5]. Wafaa investigated and introduced the T-ABSO F. submds definition in 2019, [6]. H.Ansari Toroghy introduced the dual notion of F.prime (that is,F. second) submds in the year 2019, [7].

There are two sections to this paper. Section (1) investigates and presents the definition of T-ABSO F.second submd. and the properties that are required, as well as some propositions, theorems, and examples. In section (2), we look at the concepts of strongly T-ABSO F.second submd., and relationship its concept with T-ABSO F.second submd., and quasi T-ABSO F.second submd.

2. Concepts Basic

Definition 2.1: Let S be a non-empty set and L be an interval [0,1] of the real line (real number). A F. set A in S (F. subset of S) is a function from S into L, [1].

Definition 2.2: Let $x_{u}: S \rightarrow$ L be a F. set in S, where $x \in S, u \in L$, define by
$x_{u}(y)=\left\{\begin{array}{l}u \text { if } x=y \\ 0 \text { if } x \neq y\end{array}, x_{u}\right.$ is called F. singleton in S, [8].
If $x=0$ and $u=1$, then $0_{1}(y)=\left\{\begin{array}{l}1 \text { if } y=0 \\ 0 \text { if } y \neq 0\end{array},[9]\right.$.
Definition 2.3: A F. subset K of a ring R is called F . ideal of R , if $\forall x, y \in \mathrm{R}$:

1. $K(x-y) \geq \min \{K(x), K(y)\}$
2. $K(x y) \geq \max \{K(x), K(y)\}$, [10].

Definition 2.4: Let M be an R-module (in short mod.). F. set Y of M is called F. md. of an R-md M if

1. $\quad Y(x-y) \geq \min \{Y(x), Y(y)\}$, for all $x, y \in M$.
2. $Y(r x) \geq Y(x)$, for all $x \in M, r \in R$
3. $X(0)=1(0$ is the zero element of M$),[10]$.

Definition 2.5: Let Y and A be two F. mds of an R-md. M. A is called F. submd. of Y if $A \subseteq Y$, [11].
Proposition 2.6: Let A be F . set of M. Then the level subset $A_{u}, \forall u \in \mathrm{~L}$ is a submd. of M iff A is F . submd. of F. md. of an R-md. M, [12].

Definition 2.7: Let A and B be two F. submds of F. md. Y. The residual quotient of A and B denoted by ($A: B$) is the F. subset of R defined by:
$\left(A:_{R} B\right)(r)=\sup \left\{v \in L: r_{v} . B \subseteq A\right\}$ for all $r \in R$.That $\left(A:_{R} B\right)=\left\{r_{v}: r_{v} \cdot B \subseteq A ; r_{v}\right.$ is a F. singleton of $\left.R\right\}$. If $B=\left\langle x_{k}\right\rangle$, then $\left(A:_{R}\left\langle x_{k}>\right)=\left\{r_{v}: r_{v}, x_{k} \subseteq A ; r_{v}\right.\right.$ is F. singleton of $\left.R\right\},[10]$ ".

Definition 2.8: Let A be a proper F. submd. of F. md. Y. The F. annihilator of A denoted by F-annA is defined by:
$(F-a n n A)(r)=\sup \left\{v: v \in \mathrm{~L}, r_{v} \mathrm{~A} \subseteq 0_{1}\right\}$, for all $r \in R,[11] "$.
Note that: $\mathrm{F}-\operatorname{ann} A=\left(0_{1}:_{R} A\right)$, hence $(F-\operatorname{ann} Y)_{v} \subseteq \operatorname{ann} Y_{v},[5]$ ".
Proposition 2.9: If Y is F. md. of an R-md. M, then F-ann Y is F. ideal of R, [11]".
Definition 2.10: A F. ideal \hat{H} of a ring R is called prime F . ideal if $\hat{\mathrm{H}}$ is a non-empty and for all $a_{s}, b_{l} \mathrm{~F}$. singletons of R such that $a_{s} b_{l} \subseteq \hat{\mathrm{H}}$ implies that either $a_{s} \subseteq \hat{\mathrm{H}}$ or $b_{l} \subseteq \hat{\mathrm{H}}, \forall s, l \in \mathrm{~L}$, [13].

Definition 2.11: Let \hat{H} be a non-empty F. ideal of R. Then \hat{H} is called 2-absorbing F. ideal if for any F. singletons a_{s}, b_{l}, r_{k} of R such that $a_{s} b_{l} r_{k} \subseteq \hat{\mathrm{H}}$ implies that either $a_{s} b_{l} \subseteq \hat{\mathrm{H}}$ or $a_{s} r_{k} \subseteq \hat{\mathrm{H}}$ or $b_{l} r_{k} \subseteq \hat{\mathrm{H}}$, [3].

Definition 2.12: A F. md. Y of an R-md. M is called a multiplication F. md. if for each non-empty F. submd. A of Y there exists a F. ideal \hat{H} of R such that $A=\hat{\mathrm{H}} Y$,[5]

Definition 2.13: Let Y be F. md. of an $R-m d . M$, let $A \neq 0_{1}$ is called F.second submd. if $\forall r \in R$ we have $1_{r} . A=A$ or $1_{r} \cdot A=0_{1}$ where 1_{r} is F.ideal of R, [7].

Definition 2.14: F.md. Y of an $\mathrm{R}-\mathrm{md}$. M is called a comultiplication F.md. if $\mathrm{A}=\mathrm{F}-a n n_{Y} F-a n n_{R} A$ for each F.submd. A of Y [6].

3. T-ABSO F. Second Submds.

In this section, we will provide some definitions, remarks, examples, theorems, and propositions.
Definition 3. 1: Let Y be F.md.of an R-md.M. A proper submd. A of Y is said to be completely irreducible (in short irred.) F.submd.if $A=\bigcap_{i \in I} A_{i}$, where $\left\{A_{i}\right\}_{i \in I}$ is a family of F.submds.of Y, implies that $A=A_{i}$ for some $i \in I$. It is easy to see that every F.submd.of Y is an intersection of completely irred.F.submd.of Y.

Theorem 3.2: For F.submd. A of Y F.md. of an R-md.M the following statements are equivalent:
a) A is F . second submd. of Y .
b) $A \neq 0_{1}$ and $1_{r} . A \subseteq K$, where $r \in R$ and K is F. submd. of Y denotes either $1_{r} \cdot A=0_{1}$ or $A \subseteq K$.
c) $A \neq 0_{1}$ and $1_{r} . A \subseteq H$, where $r \in R$ and H is a completely irred. F. submd.of Y implies either $1_{r} . A=0_{1}$ or $A \subseteq$ H

Proof

a) $\Rightarrow(b) A$ is F. second submd. then $1_{r} \cdot A=A$ or $1_{r} \cdot A=0_{1}, \forall r \in R$, hence $1_{r} . A \subseteq K$ since $A \subseteq K$
b) \Rightarrow (c) Every F. submd. of Y is an intersection of completely irred. F. submd. of Y. A is F. second submd. Then $1_{r} \cdot A=A, 1_{r} . A \subseteq H \rightarrow A \subseteq H$.
c) $(c) \Rightarrow$ (a) Suppose that $r \in R$ and $1_{r} . A \neq 0_{1}$. If $1_{r} . A \subseteq H$ for some completely irred. F. submd. H of Y by assumption $A \subseteq H$. Hence $1_{r} . A \subseteq A$.

Definition 3.3: Let $A \neq 0_{1}$, A be called Prime (Strongly prime) F. second submd. if F.singleton a_{s} of R and B be completely irred. F. submd (B be F.submd.). $a_{s} A \subseteq B$, then $A \subseteq B$ or $a_{s} \subseteq F-a n n$ (A).

Definition 3.4: Let $A \neq 0_{1}$ be F.submd. of F.md of Y of an R-md.M. A is called T- ABSO F. second submd. if whenever F.singletons a_{s}, b_{1} of R, B is completely irred.
f.submd. and $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{~B}$ then either $\mathrm{a}_{\mathrm{s}} \mathrm{A} \subseteq \mathrm{B}$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{~B}$ or $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \subseteq \mathrm{~F}-\mathrm{ann}(\mathrm{A})$.

Definition 3.5: Let $A \neq 0_{1}$ be F.submd. of F.md of Y of an R-md.M. A is called quasi-prime (strongly quasiprime) F.second submd. if whenever F.singletons a_{s}, b_{1} of R, B is completely irred. F. submd.(B is F. submd.) and $a_{s} b_{1} A \subseteq B$ then either $a_{s} A \subseteq B$ or $b_{1} A \subseteq B$.

The following proposition specicates of T-ABSO F. second submd. in terms of its level subm.
Proposition 3.6: Let $A \neq 0$ be F.submd. of F.md of Y of an R-md.M. Then A is T-ABSO F. second submd. iff the level submd. $A_{u}, A_{u} \neq 0$ is T- ABSO F. second submd.of Y_{u} for all $u \in L$.

Proof: \Rightarrow) Let $a b A_{u} \subseteq B_{u}$ for every $a, b \in R$ and $A_{u} \neq 0$ be submd. of Y_{u}, B_{u} be completely irred. submd. of Y_{u} we have aby $\in B_{u}$ for all $y \in A_{u}$, then $B(a b y) \geq u$.So (aby) ${ }_{u} \subseteq B$, implies that $a_{s} b_{k} y_{1} \subseteq B, \forall y_{1} \in A$ where $u=$ $\min \{\mathrm{s}, \mathrm{k}, \mathrm{l}\}$, hence $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{\mathrm{k}} \mathrm{A} \subseteq \mathrm{B}$.

Since A is T-ABSO F. second submd. then either $a_{s} A \subseteq B$ or $b_{k} A \subseteq B$ or $a_{s} b_{k} \subseteq F-$ ann (A). Hence $a_{s} y_{l} \subseteq B$ or $\mathrm{b}_{\mathrm{k}} \mathrm{y}_{\mathrm{l}} \subseteq \mathrm{B}$ or $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{\mathrm{k}} \subseteq \mathrm{F}-\mathrm{ann}\left(\left(\mathrm{y}_{\mathrm{l}}\right)\right)$ so that (ay) $\mathrm{u}_{\mathrm{u}} \subseteq \mathrm{B}$ or $(\text { by })_{\mathrm{u}} \subseteq \mathrm{B}$ or $(\mathrm{ab})_{\mathrm{u}} \subseteq \mathrm{F}-\operatorname{ann}\left(\mathrm{y}_{\mathrm{l}}\right)$. Thus either ay $\in \mathrm{B}_{\mathrm{u}}$ or by $\in B_{u}$ or $a b \in \operatorname{ann}((y)), \forall y \in A_{u}$ so a $A_{u} \subseteq B_{u}$ or $b A_{u} \subseteq B_{u}$ or $a b \in \operatorname{ann}\left(A_{u}\right)$. Therefore A_{u} is T-ABSO second submd. of Y_{u}.
$\Longleftarrow)$ Let $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{\mathrm{k}} \mathrm{A} \subseteq \mathrm{B}$ for all F.singletons $\mathrm{a}_{\mathrm{s}}, \mathrm{b}_{\mathrm{k}}$ of R and B be completely irred. F. submd. of Y. Subsequently $a_{s} b_{k} y_{1} \subseteq B, \forall y_{1} \in A$,so (aby) ${ }_{u} \subseteq B$ where $u=\min \{s, k, l\}$, hence $B(a b y) \geq u$, then aby $\in B_{u}, \forall y \in A_{u}$ indicates ab $A_{u} \subseteq B_{u}$, but A_{u} is $T-A B S O$ second submd. of Y_{u}, so that either a $A_{u} \subseteq B_{u}$ or $b A_{u} \subseteq B_{u}$ or ab $\in \operatorname{ann}\left(A_{u}\right)$ subsequently ay $\in B_{u}$ or by $\in B_{u}$ or $a b \in \operatorname{ann}((y)), \forall y \in A_{u}$ hence either (ay) \subseteq B or (by) \subseteq b or $(a b)_{u} \subseteq F-$ $\operatorname{ann}\left(\left(y_{1}\right)\right)$ so either $a_{s} A \subseteq B$ or $b_{k} A \subseteq B$ or $a_{s} b_{k} \subseteq F-a n n(A)$. Thus A is T- ABSO F. second submd.of Y.

Remarks and Examples 3.7

1. Every prime F. second submd. is T-ABSO F.second submd.

Proof: Let A be prime F. second submd. of Y F.md of an R-md M, let $a_{s} b_{1} A \subseteq B$ where a_{s}, b_{1} are F.singletons of R, B is completely irred. F.submd. $a_{s}\left(b_{1} A\right) \subseteq B$, but A is prime F.second submd. hence $b_{1} A \subseteq B$ or $a_{s} \subseteq F-$ ann (A), so that A is T-ABSO F. second submd. But, the converse incorrect in general for example:

Let $Y: Z_{6} \rightarrow L$ where $Y(y)=\left\{\begin{array}{c}1 \text { if } y \in Z_{6} \\ 0 \text { o. } w .\end{array}\right.$
It is evident Y F.md. of Z_{6} as Z -md.
Let $A: Z_{6} \rightarrow$ where $A(y)=\left\{\begin{array}{l}u \text { if } y \in Z_{6} \\ 0 \text { o. w. }\end{array}\right.$
It is evident A is F .submd. of Y .
Now, $A_{u}=Z_{6}$ is T-ABSO second submd. of $Y_{u}=Z_{6}$ as Z-md.
Since $2.3 \mathrm{Z}_{6} \subseteq(2) \rightarrow 2 . \mathrm{Z}_{6} \subseteq(2)$ or $2.3 \in$ ann $\left(\mathrm{Z}_{6}\right)=6 \mathrm{Z}$. But $\mathrm{A}_{\mathrm{u}}=\mathrm{Z}_{6}$ is not prim second submd. since 2. $\mathrm{Z}_{6} \subseteq(2)$ but $\mathrm{Z}_{6} \nsubseteq(2)$ and $2 \notin \mathrm{~F}-\operatorname{ann}\left(\mathrm{Z}_{6}\right)=6 \mathrm{Z}$. So that A is T -ABSO F.second submd., but it is not prim F.second submd.
2. It is evident every quasi-prime F.second subm. is T-ABSO F. second submd.
3. Let A, B be two F. submds. non zero F.submds.of F.mds. X and Y resp. of an $R-m d . M$, and $B \subset A$. If A is T-ABSO F.second submd. of Y then it is not necessary that B is T-ABSO F.second submd. for example:

Let $\mathrm{X}: \mathrm{Z}_{10} \rightarrow \mathrm{~L}$ where $\mathrm{X}(\mathrm{y})=\left\{\begin{array}{l}1 \text { if } \mathrm{y} \in \mathrm{Z}_{10} \\ 0 \text { o. } \mathrm{w} .\end{array}\right.$,
$Y: Z_{8} \rightarrow L$ where $Y(y)=\left\{\begin{array}{c}1 \text { if } y \in Z_{8} \\ 0 \text { o.w. }\end{array}\right.$

It is evident X is $\mathrm{F} . \mathrm{md}$. of Z_{10} as Z - md. and Y is F .md. of Z_{8} as Z -md.
Let $A: Z_{10} \rightarrow L$ where $A(y)=\left\{\begin{array}{l}u \text { if } y \in Z_{10}, \forall u \in L \\ 0 \text { o. } w .\end{array}\right.$
$B: Z_{8} \rightarrow L$ where $B(y)=\left\{\begin{array}{l}u \text { if } y \in Z_{8}, \forall u \in L \\ 0 \text { o. } w .\end{array}\right.$
it is evident A is F.submd. of X and B F.submd. of Y.
Now, $A_{u}=Z_{10}$ as Z-md. and $B_{u}=Z_{8}$ as Z-md. where $B_{u} \subseteq A_{u}$ and A_{u} is T-ABSO second submd., but B_{u} is not $\mathrm{T}-\mathrm{ABSO}$ second submd. since $2.2 \mathrm{Z}_{8} \subseteq(\overline{4})$, but $2 \mathrm{Z}_{8} \nsubseteq(\overline{4})$ and $2.2 \notin$ ann $\left(\mathrm{Z}_{8}\right)=8 \mathrm{Z}$.
4. Let A and B be F. submds. of $F . m d$. Y of an $R-m d . ~ M$ and $A \subset B$. If A is $T-A B S O F$. second submd. of Y then A is T-ABSO F. second submd. of B .

Proof: If $\mathrm{B}=\mathrm{Y}$ then don't need to proved
Let $a_{s} b_{1} A \subseteq H, a_{s}, b_{1}$ are F.singletons of R, H be a completely irred.F.submd. of B. Since B is F.second submd. of Y then H is F. submd. of Y, H is a completely irred. F. submd. of Y, we have either $a_{s} A \subseteq H$ or $b_{1} A \subseteq H$ or a_{s} $\mathrm{b}_{1} \subseteq \mathrm{~F}$-ann (A). (Since A is T-ABSO F. second submd. of Y) so that A is T-ABSO F. second submd. of B.
5. Every non zero F.submd. of F.md. Y of an R-md M define as follows is T-ABSO F. second submd. for example:

Let $\mathrm{Y}: \mathrm{Z}_{\mathrm{n}} \rightarrow \mathrm{L}$ where $\mathrm{Y}(\mathrm{y})=\left\{\begin{array}{l}1 \text { if } \mathrm{y} \in \mathrm{Z}_{\mathrm{n}}, \mathrm{n}=\mathrm{p} \text { or } \mathrm{n}=\mathrm{pq} \\ 0 \text { o. } \mathrm{w} .\end{array}\right.$
Where p, q are prime integers. It is evident Y is $\mathrm{F} . \mathrm{md}$. of Z_{n} as Z - md.
Let $A: Z_{n} \rightarrow L$ where $A(y)=\left\{\begin{array}{c}u y \in z_{p} \text { or } z_{p q} \\ 0 \text { o. } w .\end{array}\right.$
It is evident A is F .submd. of Y .
Now, $A_{u}=Z_{p}$ or $Z_{p q}$ is T-ABSO second submd. So that A is T-ABSO F. second. submd. by Proposition(3.6)
6. Every non zero F.submd. of F.md. Y of an R-md M define as follows is not T-ABSO F. second submd.of Y:

Let $Y: Z \rightarrow L$ where $Y(y)=\left\{\begin{array}{l}1 \text { if } y \in Z \\ 0 \text { o. } w .\end{array}\right.$
It is evident Y is $\mathrm{F} . \mathrm{md}$. of Z as Z - md.
Let $A: Z \rightarrow L$ where $A(y)=\left\{\begin{array}{c}u \quad y \in 2 Z \\ 0 \text { o. } w .\end{array}\right.$
It is evident A is F .submd. of Y .
Now, $\mathrm{A}_{\mathrm{u}}=2 \mathrm{Z}$ is not T-ABSO second submd.of $Y_{u}=\mathrm{Z}$ as Z-md., since $2.2 .2 \mathrm{Z} \subseteq 8 \mathrm{Z}$ where 8 Z is a completely irred. submd of $Y_{u}=\mathrm{Z}$ as Z -md., but $2.2 \mathrm{Z} \nsubseteq 8 \mathrm{Z}$ and $2.2 \notin \operatorname{ann}(2 \mathrm{Z})=(0)$.

So that A is not T-ABSO F. second submd.
7. The sum of two T-ABSO F. second submds. of Y F. md. of an R-md. M, is T- ABSO F. second submd. of Y.

Proof: Let A,B two T-ABSO F. second submds. Assume that a_{s}, b_{1} are F. singletons of R, H is a completely irred. F.submd. of F.md. Yof an R-md. M, such that $a_{s} b_{l}(A+B) \subseteq H \rightarrow\left(a_{s} b_{1} A+a_{s} b_{1} B\right) \subseteq H$, so that $a_{s} b_{1} A \subseteq$ H and $a_{s} b_{1} B \subseteq H . B u t A$ and B are T-ABSO F.second submds. of Y. Thus either $a_{s} A \subseteq H$ or $b_{1} A \subseteq H$ or $a_{s} b_{1} \subseteq$ F-ann (A) and either $a_{s} B \subseteq H$ or $b_{1} B \subseteq H$ or $a_{s} b_{1} \subseteq F-a n n(B)$, so that either $a_{s}(A+B) \subseteq H$ or $b_{1}(A+B) \subseteq H$ or $a_{s} b_{l} \subseteq F-a n n(A+B)$. thus $A+B$ is $T-A B S O F$. second submd.

Theorem 3.8: Let Y be F.md. of an R-md. M.If either A is F.second submd. of Y or A is a sum of two F.second submd. of Y then A is T-ABSO F.second submd.of Y.

Proof: The first assertion is clear. To see the F.second submd. assertion, let A_{1} and A_{2} be two F.second submds.of F.md. Y, we show that $A_{1}+A_{2}$ is T-ABSO F. second submd. of Y. Assume that F. singletons a_{s}, b_{1} of R, H is a completely irred. F.submd. of Y and $a_{s} b_{1}\left(A_{1}+A_{2}\right) \subseteq H$. Since A_{1} is F. second submd. $a_{s} b_{1} A_{1}=0_{1}$ or A_{1} $\subseteq H$ by theorem (3.2). Similarly $a_{s} b_{1} A_{2}=0_{1}$ or $A_{2} \subseteq H$. If $a_{s} b_{1} A_{1}=0_{1}=a_{s} b_{1} A_{2}$ (resp. $A_{1} \subseteq H$ and $A_{2} \subseteq H$). then we are done. Now let $a_{s} b_{1} A_{1} \subseteq 0_{1}$ and $A_{2} \subseteq H$, then $a_{s} A_{1} \subseteq 0_{1}$ or $b_{1} A_{1} \subseteq 0_{1}$ because $F-a n n\left(A_{1}\right)$ is a prime F.ideal of R. If $a_{s} A_{1} \subseteq 0_{1}$, then $a_{s}\left(A_{1}+A_{2}\right) \subseteq a_{s} A_{1}+A_{2} \subseteq A_{2} \subseteq$ H Similarly if $b_{1} A_{1}=0_{1}$, we get $b_{1}\left(A_{1}+A_{2}\right) \subseteq H$ as desired.

Proposition 3.9: Let K be F.ideal of R and A be T-ABSO F.second submd.of F.md. Y of an R-md. M. If $a_{s} K A \subseteq$ H for a_{s} f.singleton of R and H is a completely irred.F.submd. of Y, then either $a_{s} A \subseteq H$ or $K A \subseteq H$ or $a_{s} K \subseteq F-$ ann(A).

Proof: Let $\mathrm{a}_{\mathrm{s}} \mathrm{A} \nsubseteq \mathrm{H}$ and $\mathrm{a}_{\mathrm{s}} \mathrm{K} \nsubseteq \mathrm{F}-\mathrm{ann}(\mathrm{A})$. Then there exists $\mathrm{b}_{1} \subseteq \mathrm{~K}$, so $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A} \neq 0_{1}$. Now as A is T-ABSO F.second submd. of $Y, b_{1} a_{s} A \subseteq H$ implies that $b_{1} A \subseteq H$.
we show that $K A \subseteq H$, let r_{i} be an arbitrary F.singleton of K. Then $\left(b_{1}+r_{i}\right) a_{s} A \subseteq H$.
Hence either $\left(b_{1}+r_{i}\right) A \subseteq H$ or $\left(b_{1}+r_{i}\right) a_{s} \subseteq F-\operatorname{ann}(A)$. If $\left(b_{1}+r_{i}\right) A \subseteq H$, then since $b_{1} A \subseteq H$ we have $r_{i} A \subseteq$ H. If $\left(b_{1}+r_{i}\right) a_{s} \subseteq F-\operatorname{ann}(A)$ then $r_{i} a_{s} \nsubseteq F-\operatorname{ann}(A)$, but $r_{i} a_{s} A \subseteq H$. Thus $r_{i} A \subseteq H$. Hence we conclude that $K A \subseteq$ H.

Proposition 3.10: Let K and N be two F.ideals of R and A be T-ABSO F.second submd. of F. md. Y of an Rmd . M. If H is a completely irred. F.submd. of Y and $K N A \subseteq H$, then either $K A \subseteq H$ or $N A \subseteq H$ or $K N \subseteq F-a n n(A)$.

Proof: Let $\mathrm{KA} \nsubseteq \mathrm{H}$ and $\mathrm{NA} \nsubseteq \mathrm{H}$. We show that $\mathrm{KN} \subseteq \mathrm{F}-\mathrm{ann}(\mathrm{A})$. Assume that $\mathrm{C}_{\mathrm{i}} \subseteq \mathrm{K}$ and $\mathrm{d}_{\mathrm{r}} \subseteq \mathrm{N}$. By assumption there exists $\mathrm{a}_{\mathrm{s}} \subseteq \mathrm{K}$ such that $\mathrm{a}_{\mathrm{s}} \mathrm{A} \nsubseteq \mathrm{H}$, but $\mathrm{a}_{\mathrm{s}} \mathrm{NA} \subseteq \mathrm{H}$.

Now Proposition (3.9) shows that $\mathrm{a}_{\mathrm{s}} \mathrm{N} \subseteq \mathrm{F}-\operatorname{ann}(\mathrm{A})$ and $\operatorname{so}\left(\mathrm{K} \backslash\left(H:_{R} A\right)\right) \mathrm{N} \subseteq \mathrm{F}-\mathrm{ann}(A)$. Similarly there exists $\mathrm{b}_{1} \subseteq\left(\mathrm{~N} \backslash\left(\mathrm{H}:_{\mathrm{R}} \mathrm{A}\right)\right)$ such that $K \mathrm{~b}_{1} \subseteq \mathrm{~F}-\mathrm{ann}(\mathrm{A})$ and also $\mathrm{K}\left(\mathrm{N} \backslash\left(H:_{R} A\right)\right) \subseteq \mathrm{F}-\mathrm{ann}(\mathrm{A})$. Thus we have $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \subseteq \mathrm{~F}-$ ann (A), $a_{s} d_{r} \subseteq F-\operatorname{ann}(A)$ and $c_{i} b_{1} \subseteq F-a n n(A)$. As $\left(a_{s}+c_{i}\right) \subseteq K$ and $\left(b_{1}+d_{r}\right) \subseteq N$, we have $\left(a_{s}+c_{i}\right)\left(b_{1}+\right.$ $\left.d_{r}\right) A \subseteq H$. Since A is T-ABSO F.second submd. Therefore $\left(a_{s}+c_{i}\right) A \subseteq H$ or $\left(b_{1}+d_{r}\right) A \subseteq H$ or $\left(a_{s}+c_{i}\right)\left(b_{1}+\right.$ $\left.d_{r}\right) \subseteq F$-ann (A). If $\left(a_{s}+c_{i}\right) A \subseteq H$ then $c_{i} A \nsubseteq H$.Hence $c_{i} \subseteq K \backslash\left(H:_{R} A\right)$, which implies that $c_{i} d_{r} \subseteq F$-ann (A). Similarly if $\left(b_{1}+d_{r}\right) A \subseteq H$,we can deduce that $c_{i} d_{r} \subseteq F-a n n(A)$. At last if $\left(a_{s}+c_{i}\right)\left(b_{1}+d_{r}\right) \subseteq F$-ann (A). Then $\left(a_{s} b_{l}+a_{s} d_{r}+c_{i} b_{l}+c_{i} d_{r}\right) \subseteq F-a n n(A)$, so that $c_{i} d_{r} \subseteq F-a n n(A)$ therefore $K N \subseteq F-\operatorname{ann}(A)$.

Corollary 3.11: Let Y be F.md. of an R-md. M, and A be T-ABSO F.second submd. of Y. Then KA is TABSO F. second submd. of Y,for all F.ideals K of R with $K \nsubseteq F-a n n(A)$.

Proof: Let K be F.ideal of R with $\mathrm{K} \nsubseteq \mathrm{F}$ - $\mathrm{ann}(\mathrm{A}), \mathrm{a}_{\mathrm{s}}$, b_{1} be F.singletons of R, H be a completely irred. F.submd. of Y and $a_{s} b_{1} K A \subseteq H$, then $a_{s} A \subseteq H$ or $b_{1} K A \subseteq H$ or $a_{s} b_{1} \subseteq F-\operatorname{ann}(K A)=\left(0_{1}: K A\right)$ (i.e. $a_{s} b_{1} K A \subseteq 0_{1}$ by Proposition (3.9)

If $a_{s} b_{1} K A \subseteq H$ or. $a_{s} b_{1} K A \subseteq 0_{1}$, then we are done.
If $a_{s} A \subseteq H$, then $a_{s} K A \subseteq a_{s} A$ implies that $a_{s} K A \subseteq H$ it is required.
Corollary 3.12: Let Y be a multiplication F.md.of an R-md. M , then every F.submd. $\mathrm{A} \neq 0_{1}$ of Y is $\mathrm{T}-\mathrm{ABSO}$ F.second submd.

Proof: This follows from Corollary (3.11)

The following example shows that the condition Y is a mulutiplication F . md. cannot delete.
Example 3.13: Let $Y: Z_{p^{\infty}} \rightarrow L$ where $Y(y)=\left\{\begin{array}{l}1 \mathrm{y} \in \mathrm{Z}_{\mathrm{p}}{ }^{\infty} \\ 0 \text { o. } \mathrm{w} .\end{array}\right.$
where p is any prime integer. It is evident Y F.md. of $\mathrm{Z}-\mathrm{md}$. $\mathrm{Z}_{\mathrm{p}}{ }^{\infty}$
Let $A: Z_{p^{\infty}} \rightarrow L$ where $A(y)=\left\{\begin{array}{l}u y \in\left(\frac{1}{p^{3}}+Z\right) \\ 0 \text { o. } w .\end{array}\right.$
it is evident A F.submd. of Y.
Now, $A_{u}=\left\langle\frac{1}{p^{3}}+Z\right\rangle$ is submd. of $Y_{u}=Z_{p} \infty$ as Z-md., A_{u} is not T-ABSO second submd. since $P^{2}\left\langle\frac{1}{p^{3}}+Z\right\rangle \subseteq$ $\left\langle\frac{1}{\mathrm{p}}+\mathrm{Z}\right\rangle$ but $\mathrm{p}\left\langle\frac{1}{\mathrm{p}^{3}}+\mathrm{Z}\right\rangle \nsubseteq\left\langle\frac{1}{\mathrm{p}}+\mathrm{Z}\right\rangle$ and $\mathrm{P}^{2} \nsubseteq \operatorname{ann}\left(\left\langle\frac{1}{\mathrm{p}^{3}}+\mathrm{Z}\right\rangle\right)=(0)$
so that A is not T-ABSO F.second submd. of Y by Proposition (3.6)
Definition 3.14: A F.md.Y of an R-md. M is said to be a cocyclic F.md. if F -soc(Y) is large and simple F.submd. of Y.[Here F-soc(Y) denotes the sum of all minimal F. submds.of Y]

Note that: H is a completely irred. F.submd. of Y iff Y/H is a cocyclic F.md.
Lemma 3.15: Let H be a completely irred. F.submd. of Y F.md. of an R-md. M and a_{s} be F.singleton of R then $\left(H:{ }_{\mathrm{Y}} \mathrm{a}_{\mathrm{s}}\right)$ is a completely irred. F.submd. of Y.

Proof: This follows from the fact that F.submd. H of Y is a completely irred. F.submd. of Y iff Y / H is a cocyclic F.md.and that $\mathrm{Y} /\left(\mathrm{H}: \mathrm{Y}_{\mathrm{Y}} \mathrm{a}_{\mathrm{s}}\right) \cong\left(\mathrm{a}_{\mathrm{s}} \mathrm{Y}+\mathrm{H}\right) / \mathrm{H}$, we use the following basic fact without comment.

Proposition 3.16: Let A be T-ABSO F. second submd.of F.md. Y of an R-md. M. Then we have the following:
a. If H is a completely irred. F.submd. of Y such that $A \nsubseteq H$, then $\left(H:_{R} A\right)$ is T-ABSO F.ideal of R.
b. If Y is a cocyclic F.md.,then $F-\operatorname{ann}(A)$ is T-ABSO F.ideal of R.
c. If F. singleton a_{s} of R, then $a_{s}^{n} A=a_{s}^{n+1} A, \forall n \geq 2$.
d. If $F-\operatorname{ann}(A)$ is a prime F.ideal of R then $\left(H:_{R} A\right)$ is a prime F.ideal of R for all completely irred. F.submd H of Y such that $\mathrm{A} \nsubseteq \mathrm{H}$.

Proof: a) Since $A \nsubseteq H$, we have $\left(H:_{R} A\right)$ is proper F.ideal of R, let F.singletons a_{s}, b_{1}, c_{i} of R and $a_{s} b_{1} c_{i} \subseteq$ $\left(H:_{R} A\right)$. Then $a_{s} b_{1} A \subseteq\left(H:_{Y} c_{i}\right)$ thus $a_{s} A \subseteq\left(H:_{Y} c_{i}\right)$ or $b_{1} A \subseteq\left(H:_{Y} c_{i}\right)$ or $a_{s} b_{1} A \subseteq 0_{1}$ Since A is T-ABSO f.submd. ($H:_{Y}\left(c_{i}\right)$) is completely irred.F.submd. of Y by Lemma (3.15).Therefore $a_{s} c_{i} \subseteq\left(H:{ }_{R} A\right)$ or $b_{1} c_{i} \subseteq$ $\left(H:_{R} A\right)$ or $a_{s} b_{1} \subseteq\left(H:_{R} A\right)$.
b) Since Y is a cocyclic F.md.the zero F.submd. 0_{1} of Y is completely irred.F.submd. of Y. Thus F-ann(A) is T-ABSO F.ideal of R by part (a).
c) It is enough to show that $a_{s}^{2} A=a_{s}^{3} A$. It is clear that $a_{s}^{3} A \subseteq a_{s}^{2} A$. Let H be completely irred.F.submd. of Y such that $a_{s}^{3} A \subseteq H$ then $a_{s}^{2} A \subseteq\left(H:_{R} a_{s}\right)$. Since A is $T-A B S O$ F.second submd. and $\left(H:_{R} a_{s}\right)$ is a completely irred.F.submd.of Y by Lemma (3.15) $a_{s} A \subseteq\left(H:_{R} a_{S}\right)$ or $a_{s}^{2} A \subseteq 0_{1}$. Therefore $a_{s}^{2} A \subseteq H$ this implies that $a_{s}^{2} A \subseteq$ $\mathrm{a}_{\mathrm{s}}^{3} \mathrm{~A}$.
d) Let F.singletons a_{s}, b_{1} of R, H be a completely irred.F.submd. of Y such that $A \nsubseteq H$ and $a_{s} b_{1} \subseteq\left(H:_{R} A\right)$ then $a_{s} A \subseteq H$ or $b_{1} A \subseteq H$ or $a_{s} b_{1} A \subseteq 0_{1}$. Since A is $T-A B S O$
F.second submd. If $\mathrm{a}_{s} \mathrm{~b}_{1} \mathrm{~A} \subseteq 0_{1}$, then by assumption $\mathrm{a}_{5} \mathrm{~A} \subseteq 0_{1}$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq 0_{1}$. Thus is any case we get that $\mathrm{a}_{\mathrm{s}} \mathrm{A} \subseteq \mathrm{H}$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{H}$.

Theorem 3.17: Let A be T-ABSO F.second submd. of Y F.md. of an R-md. M.Then we have the following:
a. If $\sqrt{F-\operatorname{ann}(A)}=P$ for some prime F.ideal P of R and H is a completely irred. F.submd. of Y such that $\mathrm{A} \nsubseteq \mathrm{H}$, then $\sqrt{\left(\mathrm{H}:{ }_{\mathrm{R}} \mathrm{A}\right)}$ is a prime F.ideal of R containing P .
b. If $\sqrt{F-\operatorname{ann}(A)}=P \cap Q$ for some prime F.ideals P and Q of R, H is a completely irred.F.submd. of Y such that $\mathrm{A} \nsubseteq \mathrm{H}$ and $\mathrm{P} \subseteq \sqrt{\left(\mathrm{H}:_{\mathrm{R}} \mathrm{A}\right)}$ then $\sqrt{\left(\mathrm{H}_{\mathrm{R}_{\mathrm{R}}} \mathrm{A}\right)}$ is a prime F . ideal of R .

Proof: a) Assume that F.singletons a_{s}, b_{1} of R and $a_{s} b_{1} \subseteq \sqrt{\left(H:_{R} A\right)}$. Then there is a positive integer t such that $a_{s}^{t} b_{1}^{t} A \subseteq H$. By hypotheses, A is $T-A B S O$ F.second submd. of Y, thus $a_{s}^{t} A \subseteq H$ or $b_{1}^{t} A \subseteq H$ or $a_{s}^{t} b_{1}^{t} \subseteq F-$ $\operatorname{ann}(A)$. If either $a_{s}^{t} A \subseteq H$ or $b_{1}^{t} A \subseteq H$ we are done. So assume that $a_{s}^{t} b_{1}^{t} \subseteq F-a n n(A)$. Then $a_{s} b_{1} \subseteq$ $\sqrt{F-\operatorname{ann}(A)}=P$ and so $a_{s} \subseteq P$ or $b_{1} \subseteq P$ since P is prime F.ideal of R. It is clear that $P=\sqrt{F-\operatorname{ann}(A)} \subseteq$ $\sqrt{\left(\mathrm{H}:_{\mathrm{R}} \mathrm{A}\right)}$. Therefore $\mathrm{a}_{\mathrm{s}} \subseteq \sqrt{\left(\mathrm{H}:_{\mathrm{R}} \mathrm{A}\right)}$ or $\mathrm{b}_{1} \subseteq \sqrt{\left(\mathrm{H}:_{\mathrm{R}} \mathrm{A}\right)}$
b) The proof is similar to that of part (a).

Proposition 3.18: Let Y be F.md. of an R-md. M and let $\left\{K_{i}\right\}_{i \in I}$ be a chain of T-ABSO F.second submd. of Y. Then $U_{i \in I} K_{i}$ is T-ABSO F.second submd. of Y.

Proof: Let a_{s}, b_{1} be F.singletons of R and H be acompletely irred.F.submd.of Yand $a_{s} b_{1}\left(U_{i \in I} K_{i}\right) \subseteq H$. Assum that $\mathrm{a}_{\mathrm{s}}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{K}_{\mathrm{i}}\right) \nsubseteq \mathrm{H}$ and $\mathrm{b}_{1}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{K}_{\mathrm{i}}\right) \nsubseteq \mathrm{H}$. Then there are $\mathrm{m}, \mathrm{n} \in \mathrm{I}$, where $\mathrm{a}_{\mathrm{s}} \mathrm{k}_{\mathrm{n}} \nsubseteq \mathrm{H}$ and $\mathrm{b}_{1} \mathrm{k}_{\mathrm{m}} \nsubseteq \mathrm{H}$. Hence for every $\mathrm{k}_{\mathrm{n}} \subseteq \mathrm{k}_{\mathrm{c}}$ and $\mathrm{k}_{\mathrm{m}} \subseteq \mathrm{k}_{\mathrm{d}}, \mathrm{c}, \mathrm{d} \in \mathrm{I}$, we have $\mathrm{a}_{\mathrm{s}} \mathrm{k}_{\mathrm{c}} \nsubseteq \mathrm{H}$ and $\mathrm{b}_{\mathrm{l}} \mathrm{k}_{\mathrm{d}} \nsubseteq \mathrm{H}$. Therefore for each F.submd. k_{h} such that $\mathrm{k}_{\mathrm{n}} \subseteq \mathrm{k}_{\mathrm{h}}$ and $\mathrm{k}_{\mathrm{m}} \subseteq \mathrm{k}_{\mathrm{h}}$ we have $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{\mathrm{l}} \mathrm{k}_{\mathrm{h}} \subseteq 0_{1}$. Hence $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{\mathrm{l}}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{K}_{\mathrm{i}}\right) \subseteq 0_{1}$, so thata $\mathrm{b}_{1} \subseteq \mathrm{~F}-\operatorname{ann}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{K}_{\mathrm{i}}\right)$.

Definition 3.19: We say that T-ABSO F.second submd.A of F.md. Y of an R-md. M. is a maximal T-ABSO F.second submd.A of submd. K of Y, if $A \subseteq K$ and there does not exist T-ABSO F.second submd. H of Y such that $A \subset H \subset K$.

Lemma 3.20: (Fuzzy Zorn's lemma) let X be F.ordered set with F.order R. If everyF.chain in X has an upper bound, then X has a maximal element, [14].

Proposition 3.21: Let Y be F.md. of an R-md. M. Then every T-ABSO F.second submd. of Y is contained in a maximal T-ABSO F.second submd. of Y.

Proof: This proved easily by using F. Zorn's lemma and proposition (3.18).

4. Strongly T-ABSO F. Second Submds.

In this section, we will define a strongly T-ABSO F.second submd., and discuss its relationship to T-ABSO F.second submd., and a quasi T-ABSO F.second submd.

Definition 4.1: Let $A \neq 0_{1}$ be F.submd. of F.md. Y of an R-md. M. We say that A is a strongly T-ABSO F.second submd. of Y if whenever F.singletons a_{s}, b_{1} of R, and H_{1}, H_{2} are completely irred.F.submd. of Y and $a_{s} b_{1} A \subseteq H_{1} \cap H_{2}$, then $a_{s} A \subseteq H_{1} \cap H_{2}$ or $b_{1} A \subseteq H_{1} \cap H_{2}$ or $a_{s} b_{1} \subseteq F-\operatorname{ann}(A)$.

Remark 4.2: A is T-ABSO F.second submd. of F.md. Y of an R-md. M iff A is strongly T-ABSO F.second submd. of Y.

Proof: $\Rightarrow)$ Let a_{s}, b_{1} are F.singletons of R and H is completely irred.F.submd. of Y such that $a_{s} b_{1} A \subseteq H \cap H$, then $a_{s} A \subseteq H \cap H$ or $b_{1} A \subseteq H \cap H$ or $a_{s} b_{1} \subseteq F-\operatorname{ann}(A)$ Then A is strongly T-ABSO F.second submd. of Y.
$\Longleftarrow)$ This is clear.
Theorem 4.3: Let A be F.submd.of Y F.md.of an R-md.M.The following statements are equivalent:
a. A is a strongly T-ABSO F.second submd. of Y F.md. of an R-md. M.
b. If $A \neq 0_{1}$, $\mathrm{KNA} \subseteq \mathrm{C}$ for some F.ideals K, N of R and F .submd. C of Y , Then $\mathrm{KA} \subseteq \mathrm{C}$ or $\mathrm{NA} \subseteq \mathrm{C}$ or $\mathrm{KN} \subseteq$ $\mathrm{F}-\mathrm{ann}(\mathrm{A})$.
c. $A \neq 0_{1}$ and for each F.singletons a_{s}, b_{1} of R we have $a_{s} b_{1} A=a_{s} A$ or $a_{s} b_{1} A=b_{1} A$ or $a_{s} b_{1}=0_{1}$

Proof: (a) \rightarrow (b) Assume that KNA \subseteq H for some F.ideals K,N of R, H F.submd.of Yand $\mathrm{KN} \nsubseteq \mathrm{F}-\mathrm{ann}(\mathrm{A})$. They by

Proposition (3.10) for all completely irred. F.submd. H of Y with $\mathrm{C} \subseteq H$ either $K A \subseteq H$ or $N A \subseteq H$. If $K A \subseteq H$ (resp. $\mathrm{NA} \subseteq \mathrm{H}$) for all completely irred.F.submds. H of Y with $\mathrm{C} \subseteq \mathrm{H}$, we are done

Now suppose that H_{1} and H_{2} are two completely irred.F.submds. of Y with $C \subseteq H_{1}, C \subseteq H_{2}, K A \nsubseteq H_{1}$ and $N A \nsubseteq$ H_{2}. Then $K A \subseteq H_{2}$ and $N A \subseteq H_{1}$. Since $K N A \subseteq H_{1} \cap H_{2}$,

We have either $K A \subseteq H_{1} \cap H_{2}$ or $N A \subseteq H_{1} \cap H_{2}$. As $K A \subseteq H_{1} \cap H_{2}$, we have $K A \subseteq H_{1}$ which is a contradiction. Similariy from $N A \subseteq H_{1} \cap H_{2}$ we get a contradiction.
(b) \rightarrow (a) this is clear.
(a) \rightarrow (c) By Part (a), $A \neq o_{1}$, leta ${ }_{s}, b_{1}$ be F.singletons of R, then $a_{s} b_{1} A \subseteq a_{s} b_{1} A$ indicates that $a_{s} A \subseteq a_{s} b_{1} A$ or $b_{1} A \subseteq a_{s} b_{1} A$ or $a_{s} b_{1} A=o_{1}$. Thus $a_{s} b_{1} A=a_{s} A$
or $a_{s} b_{1} A=b_{1} A$ or $a_{s} b_{1} A=o_{1}$
(c) \rightarrow (a) This is clear.

Proposition 4.4: Let A be a strongly T-ABSO F.second submd. of Y F.md. of an R-md. M. Then we Have the following:
a. $\mathrm{F}-\mathrm{ann}(\mathrm{A})$ is T-ABSO F.ideal of R
b. If C is F.submd. of Y F.md. of R-md. M, that $A \nsubseteq C$ then $\left(C:_{R} A\right)$ is T-ABSO F.ideal of R
c. If T is F.ideal of R, then $T^{n} A=T^{n+1} A, \forall n \geq 2$.
d. If $\left(H_{1} \cap H_{2}:_{R} A\right)$ is a prime F.ideal of R for all completely irred. F.submd. H_{1} and H_{2} of Y, such that $A \neq$ $H_{1} \cap H_{2}$ then $F-\operatorname{ann}(A)$ is a prime F.ideal of R.

Proof: a) Let a_{s}, b_{1}, c_{i} be F.singletons of R and $a_{s} b_{1} c_{i} \subseteq F-a n n(A)$. Then $a_{s} b_{1} A \subseteq a_{s} b_{1} A$ implies that $a_{s} A \subseteq$ $a_{s} b_{1} A$ or $b_{1} A \subseteq a_{s} b_{1} A$ or $a_{s} b_{1} A=0_{1}$ by Theorem (4.3) $a_{s} b_{1} A=0_{1}$ then we finished.If $a_{s} A \subseteq a_{s} b_{1} A$, then $c_{i} a_{s} A \subseteq$ $c_{i} a_{s} b_{1} A=0_{1}$. In other
case we do the same.
b) Let Let a_{s}, b_{1}, c_{i} be F.singletons of R and $a_{s} b_{1} c_{i} \subseteq\left(C:_{R} A\right)$. Then $a_{s} c_{i} A \subseteq C$ or $b_{1} c_{i} A \subseteq C$ or $a_{s} b_{1} c_{i} A=0_{1}$. If $\mathrm{a}_{\mathrm{s}} \mathrm{c}_{\mathrm{i}} \mathrm{A} \subseteq \mathrm{C}$ or $\mathrm{b}_{1} \mathrm{c}_{\mathrm{i}} \mathrm{A} \subseteq \mathrm{C}$, then we are done.

If $a_{s} b_{1} c_{i} A=0_{1}$, then the result follows from part (a).
c) It is enough to show that $T^{2} A=T^{3} A$. It is clear that $T^{3} A \subseteq T^{2} A$. Since A is strongly T-ABSO F.second submd. $T^{3} A \subseteq T^{3} A$ implies that $T^{2} A \subseteq T^{3} A$ or $T A \subseteq T^{3} A$ or $T^{3} A=0_{1}$ by theorem (4.3). If $T^{2} A \subseteq T^{3} A$ or $T A \subseteq$ $\mathrm{T}^{3} \mathrm{~A}$ then we are done.

If $\mathrm{T}^{3} \mathrm{~A}=0_{1}$, then the result follows from part (a).
d)Suppose that a_{s}, b_{1} be F.singletons of R and $a_{s} b_{1} A=0_{1}$. Assume contrary that $a_{s} A \neq 0_{1}$ and $b_{1} A \neq 0_{1}$. Then there exist completely irred.F. submds. H_{1} and H_{2} of Y,
such that $\mathrm{a}_{\mathrm{s}} \mathrm{A} \nsubseteq \mathrm{H}_{1}$, and $\mathrm{b}_{1} \mathrm{~A} \nsubseteq \mathrm{H}_{2}$. Now since $\left(\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)_{\mathrm{R}} \mathrm{A}\right)$ is a prime F.ideal of R
$0_{1}=a_{s} b_{1} A \subseteq H_{1} \cap H_{2}$ implies that $a_{s} A \subseteq H_{1} \cap H_{2}$ or $b_{1} A \subseteq H_{1} \cap H_{2}$.
In any cases we have a contradiction.
Proposition 4.5: If T is T-ABSO F.ideal of R then on of the following statements must hold:
a. $\quad \sqrt{\mathrm{T}}=\mathrm{P}$ is a prime F .ideal of R such that $\mathrm{P}^{2} \subseteq \mathrm{~T}$.
b. $\sqrt{\mathrm{T}}=\mathrm{P} \cap \mathrm{Q}, \mathrm{PQ} \subseteq \mathrm{T}$ and $\sqrt{\mathrm{T}^{2}} \subseteq \mathrm{~T}$, where P and Q are the only distinct prime F.ideals of R that are minimal over T.[6]

Theorem 4.6: If A is a strongly T-ABSO F.second submd. of F.md. Y of an R-md. M, and A $\nsubseteq N$,then either $\left(N:_{R} A\right)$ is a prime F.ideal of R or there exists an element a_{s} F.singleton of R such that $\left(N:_{R} a_{s} A\right)$ is a prime F.ideal of R.

Proof: By Proposition(4.4) and Proposition (4.5) we have one of the following two case.
a. Let $\sqrt{F-\operatorname{ann}(A)}=P$, where P is a Prime F. ideal of R, we show that $\left(N:_{R} A\right)$ is a prime F.ideal of R when $P \subseteq\left(N:_{R} A\right)$. Assume that a_{s}, b_{1} be F.singletons of R and $a_{s} b_{1} \in\left(N:_{R} A\right)$. Hence $a_{s} A \subseteq N$ or $b_{1} A \subseteq N$ or $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \subseteq \mathrm{~F}-\mathrm{ann}(\mathrm{A})$.
b. If either $a_{s} A \subseteq N$ or $b_{1} A \subseteq N$, we are done. Now assume that $a_{s}, b_{1} \subseteq F-a n n(A)$. Then $a_{s} b_{1} \subseteq P$ and so a_{s} $\subseteq P$ or $\mathrm{b}_{1} \subseteq \mathrm{P}$. Thus $\mathrm{a}_{\mathrm{s}} \subseteq\left(\mathrm{N}:_{R} A\right)$ or $\mathrm{b}_{1} \subseteq\left(N:_{R} A\right)$ and the assertion follows. If $\nsubseteq\left(N:_{R} A\right)$. Then there exists $\mathrm{a}_{\mathrm{s}} \subseteq \mathrm{P}$ such that $\mathrm{a}_{\mathrm{s}} \mathrm{A} \nsubseteq \mathrm{N}$ By Proposition (4.5), $\mathrm{P}^{2} \subseteq \mathrm{~F}-\operatorname{ann}(\mathrm{A}) \subseteq\left(\mathrm{N}::_{R} \mathrm{~A}\right)$, thus $\mathrm{P} \subseteq\left(\mathrm{N}_{\mathrm{R}_{R}} \mathrm{a}_{\mathrm{s}} \mathrm{A}\right)$. Now a similar argument shows that $\left(N:_{R} a_{S} A\right)$ is a prime F.ideal of R.
c. Let $\sqrt{F-\operatorname{ann}(A)}=P \cap Q$, where P and Q are distinct prime F.ideals of R. If $P \subseteq\left(N:_{R} A\right)$ then the result follows by a similar proof to that of part (a). Assume that $P \nsubseteq\left(N:_{R} A\right)$ then there exist $a_{s} \subseteq P$ such that $\mathrm{a}_{\mathrm{S}} \mathrm{A} \nsubseteq \mathrm{N}$. By Proposition (4.5) we have $\mathrm{PQ} \subseteq \mathrm{F}-\mathrm{ann}(\mathrm{A}) \subseteq\left(N:_{R} A\right)$ thus $\mathrm{Q} \subseteq\left(N:_{R} \mathrm{a}_{\mathrm{S}} \mathrm{A}\right)$ and the result follws by a similar proof to that of part (a).

Theorem 4.7: Let A be F.submd. of F.md. Y of a comultiplication R-md. M. Then we have the following:
a. If F-ann(A) is T-ABSO F.ideal of R,then A is a strongly T-ABSO F.second submd. of Y. In particular, A is T-ABSO F.second submd. of Y.
b. If Y is a cocyclic F. md. and A is T-ABSO F.second submd. of Y,then A is a strongly T-ABSO F.second submd. of Y.

Proof:

a) let a_{s}, b_{1} be F.singletons of R, K be F.submd.of Yand $a_{s} b_{1} A \subseteq K$.Then we have $F-a n n(K) a_{s} b_{1} A=0_{1}$
so by assumption, $F-\operatorname{ann}(K) a_{s} A=0_{1}$ or $F-\operatorname{ann}(K) b_{1} A=0_{1}$ or $a_{s} b_{1} A=0_{1}$. If $a_{s} b_{1} A=0_{1}$, we are done.If F $\operatorname{ann}(K) a_{s} A=0_{1}$ or $F-\operatorname{ann}(K) b_{1} A=0_{1}$, then $F-\operatorname{ann}(K) \subseteq F-\operatorname{ann}\left(a_{s} A\right)$ or $F-\operatorname{ann}(K) \subseteq F-\operatorname{ann}\left(b_{1} A\right)$.

Hence $a_{s} A \subseteq K$ or $b_{1} A \subseteq K$ since M is a comultiplication $R-m d$.
b) By proposition(2.17), F-ann(A) is T-ABSO F.ideal of R. Thus the result follows from part (a).

Lemma 4.8: Let X, Y be F.mds. of M, M an R-mds. resp. and let $F: X \rightarrow Y$ be a F-monomorphism of R-mds. If H is a completely irred. F.submd. of $F(X)$ then $F^{-1}(H)$ is a completely irred.F.submd. X.

Proof: This is strighat forward.
Lemma 4.9: Let $F: X \rightarrow Y$ be F-monomorphism of R-md. If H is a completely irred. F.submd. of X F.md. of an R-md. M,then $F(H)$ is a completely irred.F.submd.of $F(X)$.

Proof: Let $\left\{A_{1}^{\prime}\right\}_{i \in I}$ be a family of f.submds. of $F(Y)$ such that $F(H)=\bigcap_{i \in I} A_{1}$.
Then $H=F^{-1} F(H)=F^{-1}\left(\bigcap_{i \in I} A_{1}\right)=\bigcap_{i \in I} F^{-1}\left(\hat{A}_{1}\right)$. This denotes that there exists $i \in I$ such that $H=F^{-1}\left(A_{1}\right)$ since H is a completely irred. f.submd. Y. Therefore,
$\mathrm{F}(\mathrm{H})=\mathrm{FF}^{-1}\left(\mathrm{~A}_{1}\right)=\mathrm{F}(\mathrm{X}) \cap \mathrm{A}_{1}=\mathrm{A}_{1}$ as needed .
Theorem 4.10: Let $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ be F-monomorphism of R-md. Then we have the following:
a. If A is a strongly T-ABSO F.second submd. of F.md. X, then F(A) is T-ABSO F.second submd. of Y.
b. If A is T- ABSO F.second submd. of X, then $F(A)$ is T- ABSO F.second submd. of $F(X)$.
c. If $A ́$ is a strongly $T-A B S O$ F.second submd. of Y and $A \subseteq F(X)$, then $F^{-1}(A ́)$ is T-ABSO F.second submd. of X.
d. If Á is T- ABSO F.second submd. of $\mathrm{F}(\mathrm{X})$, then $\mathrm{F}^{-1}(\mathrm{~A})$ is T-ABSO F.second submd. of X .

Proof: a) Since $A \neq 0_{1}$ and F is $F-m o n o m o r p h i s m, ~ w e ~ h a v e ~ F(A) \neq 0_{1}$. Let $a_{s}, b_{l} F$. singltons of R, H́ be a combletely irred. F. submd. of Y and $a_{s} b_{1} F(A) \subseteq H$, then $a_{s} b_{1} A \subseteq F^{-1}(H)$. As A is strongly T-ABSO F.second submd. $\mathrm{a}_{\mathrm{s}} \mathrm{A} \subseteq \mathrm{F}^{-1}(\hat{H})$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{~F}^{-1}(\hat{H})$ or $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A}=0_{1}$. Therefore $\mathrm{a}_{\mathrm{s}} \mathrm{F}(\mathrm{A}) \subseteq \mathrm{F}\left(\mathrm{F}^{-1}(\hat{H})\right)=\mathrm{F}(\mathrm{X}) \cap \hat{H} \subseteq \hat{H}, \mathrm{~b}_{1} \mathrm{~F}(\mathrm{~A}) \subseteq$ $F\left(F^{-1}(H)\right)=F(X) \cap H ́ G H$ or $a_{s} b_{1} A=0_{1}$, as needed.
c) If $\mathrm{F}^{-1}(\hat{A})=0_{1}$, then $\mathrm{F}(\mathrm{X}) \cap \mathrm{A}^{\prime}=\mathrm{F}\left(\mathrm{F}^{-1}(\hat{A})\right)=\mathrm{F}\left(0_{1}\right)=0_{1}$. Thus $\mathrm{A}^{\prime}=0_{1}$, is a contradiction. Therefore $\mathrm{F}^{-1}(\mathrm{~A})$ $\neq 0_{1}$. Now let a_{s}, b_{1} F.singltons of R, H be a combletely irred. F. submd. of X and $a_{s} b_{1} F^{-1}(A ́) \subseteq H$ then $a_{s} b_{1} A=$ $a_{s} b_{1}(F(X) \cap A ́)=a_{s} b_{1} F^{-1}(A ́) \subseteq F(H)$. As Á is strongly T-ABSO F.second submd. $a_{s} A \subseteq F(H)$ or $b_{1} A \subseteq F(H)$ or $\mathrm{a}_{s} \mathrm{~b}_{1} A ́=0_{1}$. Hence $\mathrm{a}_{s} \mathrm{~F}^{-1}(\hat{A}) \subseteq \mathrm{F}^{-1} \mathrm{~F}(\mathrm{H})=\mathrm{H}$ or $\mathrm{b}_{1} \mathrm{~F}^{-1}(\hat{A}) \subseteq \mathrm{F}^{-1} \mathrm{~F}(\mathrm{H})=\mathrm{H}$ or $\mathrm{a}_{s} \mathrm{~b}_{1} \mathrm{~F}^{-1}(\hat{A})=0_{1}$, as required.
d) By using lemma (4.8), this is similar to the part (c).

Corollary 4.11: Let Y F.md. of an R-md. M and $A \subseteq K$ be two F.submds. of Y. Then we have the following:
a. If A is a strongly T- ABSO F.second submd. of K then A is T- ABSO F.second submd. of Y.
b. If A is a strongly T-ABSO F.second submd. of Y,then A is T-ABSO F.second submd.of K.

Proof: This follows from Theorem (4.10) by using the natural F-monomorphism $\mathrm{K} \rightarrow \mathrm{Y}$.
Theorem 4.12: Let A be F.submd. of Y F.md. of an R-md. M. Then the following statements are equivalent:
a. A is a strongly quasi-prime F. second submd. of Y
b. F-ann of any nonzero homomorphic image of A is Prime F.ideal.
c. $A \neq 0_{1}$ and $a_{s} b_{1} A \subseteq H$, where a_{s}, b_{1} F.singltons of R and H is a finite intersection of completely irred.F. submds.of Y, implies either $a_{s} A \subseteq H$ or $b_{1} A \subseteq H$.
d. $A \neq 0_{1}$ and for each a_{s}, b_{1} F.singltons of R either $a_{s} b_{1} A=b_{1} A$ or $a_{s} b_{1} A=a_{s} A$.
e. F-ann (A) is a prime F.ideal of R and the set $\left\{\left(K:_{R} A\right)\right.$: K is a proper completely irred. F.submd. of Y with $A \nsubseteq K\}$ is a chain of Prime F.ideals of R.

Proof: $(\mathrm{a}) \rightarrow(\mathrm{b})$ and $(\mathrm{a}) \rightarrow(\mathrm{c})$ there are clear.
(c) \rightarrow (a) Assume that $a_{s} b_{1} A \subseteq Q$, where a_{s}, b_{l} F.singltons of R and Q is submd. of Y, but $a_{s} A \nsubseteq Q$
and $b_{1} A \nsubseteq Q$. There exists a collection $\left\{K_{i}\right\}_{i \in I}$ of completely irred.F. submds. of Y such that $Q=\bigcap_{i \in I} K_{i}$
Therefore $\mathrm{a}_{\mathrm{s}} \mathrm{A} \nsubseteq \mathrm{K}_{\mathrm{i}}$ and $\mathrm{b}_{1} \mathrm{~A} \nsubseteq \mathrm{~K}_{\mathrm{j}}$ for some $\mathrm{I}, \mathrm{j} \in \mathrm{I}$. But by assumption, $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{Q} \subseteq \mathrm{K}_{\mathrm{i}} \cap \mathrm{K}_{\mathrm{j}}$ implies either $\mathrm{a}_{\mathrm{s}} \mathrm{A} \subseteq \mathrm{K}_{\mathrm{i}} \cap \mathrm{K}_{\mathrm{j}}$ or $\mathrm{b}_{\mathrm{l}} \mathrm{A} \subseteq \mathrm{K}_{\mathrm{i}} \cap \mathrm{K}_{\mathrm{j}}$. Thus in any case, we have a contradiction.
(a) \rightarrow (d) Let A be a strongly quasi-prime F .second submd. of Y and $\mathrm{a}_{\mathrm{s}}, \mathrm{b}_{1}$ F.singltons of R.Then $\mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A}$ implies that $\mathrm{a}_{\mathrm{s}} \mathrm{A} \subseteq \mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A}$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{a}_{\mathrm{s}} \mathrm{b}_{1} \mathrm{~A}$ as needed.
(d) \rightarrow (a) Suppose that A has the stated property and $a_{s} b_{1} A \subseteq Q$, where $a_{s}, b_{1} F$. singltons of R and Q is F. submd. of Y. Then either $a_{s} A=a_{s} b_{1} A \subseteq Q$ or $b_{1} A=a_{s} b_{1} A \subseteq Q$.
(a) \rightarrow (e) By part (b), for each proper completely irred. submd. K of Y with $A \nsubseteq K$, we have $\left(K:_{R} A\right)$ is a prime f.ideal of R. Let K_{1} and K_{2} be two proper completely irred. F. submds. of Y such that $\left(K_{1}:{ }_{R} A\right) \nsubseteq\left(K_{2}:{ }_{R} A\right)$ and $\left(K_{2}:_{R} A\right) \nsubseteq\left(K_{1}:_{R} A\right)$. Then there exist a_{s}, b_{1} f.singltons of R such that $a_{s} A \subseteq K_{1}, a_{s} A \nsubseteq K_{2}, b_{1} A \subseteq K_{2}$, and $b_{1} A \nsubseteq$ K_{1}. Hence $a_{s} b_{1} A \subseteq K_{1} \cap K_{2}$. Since A is strongly quasi-prime F.second submd., this implies that either $a_{s} A \subseteq K_{2}$ or $\mathrm{b}_{1} \mathrm{~A} \subseteq \mathrm{~K}_{1}$. In any case we have a contradiction.
(e) \rightarrow (a) Let $a_{s}, b_{1} F$. singltons of R, Q be F.submd. of Y with $a_{s} b_{1} A \subseteq Q, a_{s} A \nsubseteq Q$ and $b_{1} A \nsubseteq Q$. Then there exist completely irred. F. submds. K_{1} and K_{2} of Y such that $Q \subseteq K_{1}, a_{s} A \nsubseteq K_{1}, Q \subseteq K_{2}$ and $b_{1} A \subseteq K_{2}$. By assumption, we may assume that $\left(K_{1}:_{R} A\right) \subseteq\left(K_{2}:_{R} A\right)$ but $a_{s} b_{1} A \subseteq Q \subseteq K_{1}$ and $\left(K_{1}:_{R} A\right)$ is a prime F.ideal of R by assumption. Hence either $\mathrm{a}_{\mathrm{s}} \subseteq\left(\mathrm{K}_{1}:_{R} A\right)$ or $\mathrm{b}_{1} \subseteq\left(\mathrm{~K}_{1}:_{R} A\right) \subseteq\left(\mathrm{K}_{2}:_{R} A\right)$ in any case we have a contradiction, and the proof is completed.

Remark 4.13: Every strongly quasi prime F.second subm. of Y F.md. of an R-md. M is strongly T-ABSO F.second submd. but the converse is not true in general, for example:

Let $\mathrm{y}: \mathrm{Z}_{\mathrm{p}} \infty \oplus \mathrm{Z}_{\mathrm{q}} \infty \rightarrow \mathrm{L}$ where $\mathrm{Y}(\mathrm{y})=\left\{\begin{array}{l}1 \text { if } \mathrm{y} \in \mathrm{Z}_{\mathrm{p}} \infty \oplus \mathrm{Z}_{\mathrm{q}^{\infty}} \\ 0 \text { o. } \mathrm{w} .\end{array}\right.$
It is evident Y is F.md. of $\mathrm{Z}_{\mathrm{p}} \infty \oplus \mathrm{Z}_{\mathrm{q}}{ }^{\infty}$ as Z -md.
Let $A: Z_{p} \infty \oplus Z_{q^{\infty}} \rightarrow L$ where $A(y)=\left\{\begin{array}{l}u \text { if } y \in\left\langle\frac{1}{\mathrm{p}}+\mathrm{Z}\right\rangle \oplus\left\langle\frac{1}{\mathrm{q}}+\mathrm{Z}\right\rangle \\ 0 \text { o. } \mathrm{w} .\end{array}\right.$
Where p, q are prime. It is evident A is F.submd. of Y .
Now, $A_{u}=\left\langle\frac{1}{p}+Z\right\rangle \oplus\left\langle\frac{1}{q}+Z\right\rangle$ is strongly T-ABSO second submd. of $Y_{u}=Z_{p} \infty \oplus Z_{q} \infty$ as Z-md. since $p q A_{u}=$ $0_{Y_{u}}$ and $p q \in \operatorname{ann}\left(A_{u}\right)$, but A_{u} is not strongly quasi prime second submd. since $p A_{u}=0 \oplus Z_{q} \infty \neq 0_{Y_{u}}$ and $q A_{u}=$ $\mathrm{Z}_{\mathrm{p}} \infty \oplus 0 \neq 0_{\mathrm{Y}_{\mathrm{u}}}$. Thus A strongly T-ABSO F. second submd., but it is not strongly quasi prime F . second submd.

Proposition 4.14: Let A be a non zero F. submd. of Y F.md. of an R-md. M. Then A is a strongly quasi-prime F. second submd.of Y iff A is a strongly T-ABSO F.second submd.of Y and F-ann(A) is a prime F.ideal of R.

Proof: Distinctly if A is a strongly quasi-prime F.second submd. of Y, then A is a strongly T- ABSO F.second submd. of Y and by Theorem(4.12), $F-\operatorname{ann}(A)$ is a prime F.ideal of R. For the convers, let $a_{s} b_{1} A \subseteq H$ for some a_{s}, b_{1} F.singltons of R and F. submd. K of Y such that neither $a_{s} A \subseteq H$ nor $b_{1} A \subseteq H$. Then $a_{s} b_{1} \subseteq F-a n n(A)$ and so either $\mathrm{a}_{\mathrm{s}} \subseteq \mathrm{F}-\mathrm{ann}(\mathrm{A})$ or $\mathrm{b}_{1} \subseteq \mathrm{~F}-\mathrm{ann}(\mathrm{A})$. This contradiction shows that A is strongly quasi-prime F .second submd.

Definintion 4.15: A non-zero F.submd. A of F. md. Y of an R-md. M is called a quasi T-ABSO F. second submd. if $\mathrm{F}-\mathrm{ann}(\mathrm{A})$ is $\mathrm{T}-\mathrm{ABSO} \mathrm{F}$. ideal of R .

Example 4.16: Every strongly T-ABSO F..second submd. is a quasi T-ABSO F.second submd., but the converse is not true in general, See Remarks and Example (3.7) part (6),
where A is a quasi T-ABSO F.second submd. since F-ann(A)is T-ABSO F. ideal, but it's not T-ABSO F. second submd., then it's not strongly T-ABSO F..second submd.by Remark(4.2).

Proposition 4.17: Let Y be comultiplication F.md. of an R-md. M.Then F.submd. A of Y is strongly T-ABSO F.second submd. of Y iff it is a quasi T-ABSO F. second submd. of Y.

Proof: This follows from Proposition (4.4) and Theorem(4.7).

References

1. Zadeh L.A., Fuzzy sets, information and control, 8, 1965, 338-353.
2. Rosen feld, Fuzzy groups, J.Math.Anal.Appl.,35, 1971, 512-517.
3. Deniz S.; Gürsel Y.; Serkan O.; Bayram A. E.; Bijan D. On 2-Absorbing Primary Fuzzy Ideals of Commutative Rings, Hindawi, Mathematical Problems in Engineering. 2017. 2017, 1-7.
4. Rabi H.J. Prime Fuzzy Submodules and Prime Fuzzy Modules. M.Sc.Thesis, University of Baghdad. 2001.
5. Hatam Y.K. Fuzzy quasi-prime modules and Fuzzy quasi-prime submodules, M.sc. Thesis, university of Baghdad, 2001.
6. Wafaa H. Hanoon, T-ABSO Fuzzy Submodules and T-ABSO Fuzzy Modules and Their Generalizations, Ph.D. Dissertation University of Baghdad, 2019.
7. H. Ansari Toroghy and F. Mahboobi Abkenar, The dual notion of fuzzy prime submodules, Journal of Mathematical Extension. 13(2), 2019, 17-30.
8. Liu, W. J., Fuzzy Invariant Subgroups and Fuzzy Ideals, Fuzzy Sets and Systems, 8, 1982, 133-139.
9. Mohammed M.R. AL-Shamiri, On Fuzzy Semiprime Submodules", International Journal of Innovation and Applied Studies, 13(4), 2015, 929-934.
10. Zahedi, M.M, On L-Fuzzy Residual Quotiet Modules and P-Primary Submodules, Fuzzy Sets and Systems, 51, 1992, 333-344.
11. Mashinchi, M. and Zahedi, M. M., On L-Fuzzy Primary Submodules, Fuzzy Sets Systems, 49, 1992, 231236.
12. Mukherjee, T.K., Sen, M.K. and Roy, D., On Fuzzy Submodules and Their Radicals, J. Fuzzy Math., 4, 1996, 549-558.
13. Mukhrjee, T. K., Prime Fuzzy Ideals in Rings, Fuzzy Sets and Systems, 32, 1989, 337-341.
14. Ismat Beg, On Fuzzy Zorn's lemma, Fuzzy Sets and Systems, 101, 1999, 181-183.
