Research Article

Strong Reset Fuzzy Automata

N. Mohanarao¹ V. Karthikeyan²

¹Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamilnadu, India. ² Department of Mathematics, Government College of Engineering, Dharmapuri Tamilnadu, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021

Abstract

Strong necks, strong trap, strong trap-reset fuzzy automata and strong mergeable are introduce. We prove that strong neck is non-empty then it is subautomata and prove that if strong neck exists, then it is kernel.

Key words: Fuzzy automata (FA), Strong Reset Fuzzy Automata

AMS Mathematics subject classification: 03D05, 20M35, 18 B20, 68Q45, 68Q70, 94 A45

1 Introduction

Fuzzy sets was introduced by Zadeh in 1965[5] and it is used in many applications. Fuzzy automaton was introduced by Wee [4]. Directable automata are also called reset automata. Reset automata has important applications in computer science. T. Petkovi et.al [3] introduced and studied trap-directable, trapped automata etc. V. Karthikeyan et.al [1] introduced and studied μ -necks of fuzzy automata. In this paper, strong necks, strong trap-reset, strong mergeable of fuzzy automata are introduce and discuss their properties. We prove that strong neck is non-empty then it is subautomata and if strong neck exists in fuzzy automata, then it is kernel. Also we prove the necessary and sufficient condition for strong reset fuzzy automata. **2 Preliminaries**

2.1 Definition [2]

A fuzzy automata is $F = (T, I, \beta)$ where,

T – set of states

I – set of input symbols

 β – fuzzy transition function in $T \times I \times T \rightarrow [0,1]$

2.2 Definition

Let $F = (T, I, \beta)$ be FA and $t_i \in Q$. The FA F_1 is generated by t_i is $\langle t_i \rangle$,

 $\langle t_i \rangle = \{t_s | \beta(t_i, u, t_s) > 0\}$. F_1 is called least subautomata.

2.3 Definition

Let $F = (T, I, \beta)$ be FA and $T_1 \subseteq T, T_1 \neq \emptyset$. Then F_1 generated by T_1 is $\langle T_1 \rangle = \{t_s \mid \beta(t_i, y, t_s) > 0, t_i \in T_1\}$. F_1 is called least subautomata having T_1 .

2.4 Definition

Let $F = (T, I, \beta)$ be FA and $t_i \in T$ is strong neck if $\exists y \in I^*, \forall t_i \in T, \beta^*(t_i, y, t_s) = \eta > 0, \eta = \max$. Weight in $F, \eta \in [0,1]$. Y is called strong reset string of F and F is called strong reset fuzzy automaton. The set of all strong neck is denoted by SN(F). The set of all strong reset strings of F is denoted by SRS(F).

2.5 Definition

Let $F = (T, I, \beta)$ be FA and $t_i \in T$ is called strong trap if $\beta^*(t_i, y, t_i) = \eta > 0$, $\forall y \in I^*$. The set of all strong traps of F is denoted by STR(F). F is strong trapped fuzzy automata, $\exists y \in I^*$ such that $\beta^*(t_i, y, t_j) = \eta$, $t_j \in STR(F)$.

2.6 Definition

Let $F = (T, I, \beta)$ be FA. If F has a one strong neck then F is called a strong trap-reset fuzzy automata.

2.7 Definition

Let $F = (T, I, \beta)$ be FA. Two states $t_a, t_b \in T$ are called strong mergeable if $\exists y \in I^*$ and $t_c \in T$ such that $\beta^*(t_a, y, t_c) = \eta > 0 \Leftrightarrow \beta^*(t_b, y, t_c) = \eta > 0$.

3 Properties of Strong Necks of Reset Fuzzy Automata

Theorem 3.1 Let $F = (T, I, \beta)$ be a FA. If $SN(F) \neq \emptyset$ then SN(F) is subautomata.

Proof.

Let $F = (T, I, \beta)$ be a FA. Let $t_j \in SN(F), y \in I^*$ and t_j is strong neck. Then $\forall t_i \in T$ we have $\beta^*(t_i, xy, t_l) = \Lambda_{t_i \in T} \{\beta^*(t_i, x, t_j), \beta^*(t_j, y, t_l)\} = \eta > 0$. Hence $t_l \in SN(F)$. Therefore, SN(F) is a subautomaton of F.

Theorem 3.2 Let $F = (T, I, \beta)$ be strong reset fuzzy automata. Then SN(F) is kernel of F.

Proof.

Let $F = (T, I, \beta)$ be strong reset fuzzy automata. Let $t_l \in SN(F)$ and $t_k \in T$. Then $\beta^*(t_k, y, t_l) = \eta, \forall y \in RS(F)$. Hence $t_l \in \langle t_k \rangle$. So, $SN(F) \subseteq \langle t_k \rangle, \forall t_k \in T$. Therefore, SN(F) is kernel of F.

Theorem 3.3 Let $F = (T, I, \beta)$ be strong reset fuzzy automata. If F' is subautomata of F then F' is strong reset fuzzy automata and SN(F') = SN(F).

Proof.

Let $F = (T, I, \beta)$ be a FA and $SN(F) \subseteq F'$. Hence F' is strong reset fuzzy automata. SN(F) is kernel of F and $SN(F) \subseteq SN(F')$. Also SN(F') is kernel then $SN(F') \subseteq SN(F)$. Hence SN(F') = SN(F).

Theorem 3.4 Let $F = (T, I, \beta)$ is strong reset fuzzy automata iff all pairs are strong mergeable.

Proof.

Let F is strong reset fuzzy automata. Then $\forall t_l \in T$ we have $\beta^*(t_l, y, t_k) = \eta > 0$.

Let $t_a, t_b \in T$. By strong mergeable, $\beta^*(t_a, y, t_k) = \eta \Leftrightarrow \beta^*(t_b, y, t_k) = \eta$. Hence t_a, t_b are strong mergeable.

Conversely, suppose F is not a strong reset fuzzy automaton. Then assume all states are strong mergeable in two states t_c and t_d in T. Then $\exists y_1 \in I^*$ such that $\beta^*(t_i, y_1, t_c) = \eta >0$ and $\beta^*(t_j, y_1, t_d) = \eta >0$, for t_i 's, $t'_j s \in T$.

Now, consider t_c and t_d . Then by hypothesis, t_c and t_d are strong mergeable. Then \exists a string $y_2 \in I^*$ and $t_f \in T$ such that $\beta^*(t_c, y_2, t_f) = \eta > 0 \Leftrightarrow \beta^*(t_d, y_2, t_f) > 0$. Now, $\beta^*(t_i, y_1y_2, t_f) = \eta > 0$, $\forall t_i \in T$, which is a contradiction to our assumption. Hence, F is a strong reset fuzzy automaton.

4 Conclusion

Strong necks, strong trap, strong trap-reset fuzzy automata and strong mergeable are introduce and discuss their properties. We prove that strong neck is non-empty then it is subautomata, if strong neck exists then it is kernel. Finally prove that necessary and sufficient condition for strong reset fuzzy automata.

References

- 1. V. Karthikeyan, M. Rajasekar, µ- Necks of Fuzzy Automata, J. Math.
- 2. Comput. SCi. 2 (3) (2012), 462-472.
- 3. J. N. Mordeson, D. S. Malik, Fuzzy automata and Languages, CRC Press,
- 4. Chapman & Hall, (2002).
- 5. T. Petkovic, M. Ciric, and S. Bogdanovic, Decompositions of Automata and

Research Article

Research Article

- 6. Transition Semigroups, Acta Cybernetica(Szeged), 13 (1998), 385-403.
- 7. W. G.Wee, On generalizations of adaptive algoriths and application of the fuzzy
- 8. sets concepts to pattern classi_cation Ph.D. Thesis, Purdue University, 1967.
- 9. L. A. Zadeh, Fuzzy sets, Information and Control, 8(3), 1965,338-353.