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Abstract 

Strong necks, strong trap, strong trap-reset fuzzy automata and strong mergeable are introduce. We prove that strong neck is 

non-empty then it is subautomata and prove that if strong neck exists, then it is kernel. 
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1 Introduction 

Fuzzy sets was introduced by Zadeh in 1965[5] and it is used in many applications. Fuzzy automaton 

was introduced by Wee [4]. Directable automata are also called reset automata. Reset automata has important 

applications in computer science. T. Petkovi et.al [3] introduced and studied trap-directable, trapped automata 

etc. V. Karthikeyan et.al [1] introduced and studied μ-necks of fuzzy automata. In this paper, strong necks, 

strong trap, strong trap-reset, strong mergeable of fuzzy automata are introduce and discuss their properties. We 

prove that strong neck is non-empty then it is subautomata and if strong neck exists in fuzzy automata, then it is 

kernel. Also we prove the necessary and sufficient condition for strong reset fuzzy automata. 

2 Preliminaries 

2.1 Definition [2] 

A fuzzy automata is 𝐹 = (𝑇, 𝐼, 𝛽) where, 

 𝑇 − set of states 

𝐼 − set of input symbols 

𝛽 − fuzzy transition function in 𝑇 × 𝐼 × 𝑇 → [0,1] 

𝟐. 𝟐  Definition  

Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA and 𝑡𝑖 ∈ 𝑄.  The FA 𝐹1 is generated by  𝑡𝑖 is < 𝑡𝑖 >, 

 < 𝑡𝑖 > = {𝑡𝑠| 𝛽(𝑡𝑖 , 𝑢, 𝑡𝑠) > 0}.  𝐹1 is called least subautomata. 

𝟐. 𝟑  Definition  

Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA and  𝑇1  ⊆ 𝑇, 𝑇1  ≠  ∅. Then 𝐹1 generated by 𝑇1 is < 𝑇1 > =  {𝑡𝑠 | 𝛽(𝑡𝑖, 𝑦, 𝑡𝑠) > 0, 𝑡𝑖  ∈
 𝑇1}.   𝐹1 is called least subautomata having𝑇1. 

2.4 Definition  

Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA and 𝑡𝑖 ∈ T is strong neck if ∃𝑦 ∈ 𝐼∗, ∀ 𝑡𝑖 ∈ 𝑇,  𝛽∗(𝑡𝑖 , 𝑦, 𝑡𝑠) = η >0, η = max. Weight in 

𝐹, 𝜂 ∈ [0,1]. Y is called strong reset string of F and F is called strong reset fuzzy automaton. The set of all strong 

neck is denoted by 𝑆𝑁(𝐹). The set of all strong reset strings of F is denoted by 𝑆𝑅𝑆(𝐹). 

 

𝟐. 𝟓  Definition  

Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA and 𝑡𝑖 ∈ T is called strong trap if 𝛽∗(𝑡𝑖, 𝑦, 𝑡𝑖) = η > 0, ∀𝑦 ∈ 𝐼∗.  The set of all strong 

traps of F is denoted by 𝑆𝑇𝑅(𝐹). F is strong trapped fuzzy automata, ∃ 𝑦 ∈ 𝐼∗ such that 𝛽∗(𝑡𝑖, 𝑦, 𝑡𝑗) = η, 𝑡𝑗  ∈

𝑆𝑇𝑅(𝐹). 

 

𝟐. 𝟔  Definition  
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Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA. If F has a one strong neck then F is called a strong trap-reset fuzzy automata. 

 

𝟐. 𝟕  Definition  

Let 𝐹 = (𝑇, 𝐼, 𝛽) be FA. Two states 𝑡𝑎, 𝑡𝑏 ∈ 𝑇 are called strong mergeable if ∃𝑦 ∈ 𝐼∗ and 𝑡𝑐 ∈ 𝑇 such that 

𝛽∗(𝑡𝑎, 𝑦, 𝑡𝑐) = η > 0 ⇔  𝛽∗(𝑡𝑏 , 𝑦, 𝑡𝑐) = η > 0.  

3 Properties of Strong Necks of Reset Fuzzy Automata 

Theorem 3.1 Let 𝐹 = (𝑇, 𝐼, 𝛽) be a FA. If 𝑆𝑁(𝐹)  ≠  ∅ then  𝑆𝑁(𝐹) is subautomata. 

Proof. 

Let 𝐹 = (𝑇, 𝐼, 𝛽) be a FA. Let 𝑡𝑗  ∈ 𝑆𝑁(𝐹), 𝑦 ∈  𝐼∗ and 𝑡𝑗 is strong neck. Then ∀ 𝑡𝑖 ∈ 𝑇 we have 𝛽∗(𝑡𝑖 , x𝑦, 𝑡𝑙) =

 ⋀𝑡𝑗 ∈ 𝑇
{𝛽∗(𝑡𝑖 , x, 𝑡𝑗), 𝛽∗(𝑡𝑗, 𝑦, 𝑡𝑙)} =  𝜂 > 0. Hence 𝑡𝑙  ∈  𝑆𝑁(𝐹). Therefore, 𝑆𝑁(𝐹) is a subautomaton of  𝐹. 

Theorem 3.2 Let 𝐹 = (𝑇, 𝐼, 𝛽) be strong reset fuzzy automata. Then 𝑆𝑁(𝐹) is kernel of 𝐹. 

Proof. 

Let 𝐹 = (𝑇, 𝐼, 𝛽) be strong reset fuzzy automata. Let 𝑡𝑙 ∈ 𝑆𝑁 (𝐹) and 𝑡𝑘  ∈ 𝑇. Then 𝛽∗(𝑡𝑘 , 𝑦, 𝑡𝑙) =  𝜂, ∀ 𝑦 ∈
RS(F).  Hence 𝑡𝑙  ∈ < 𝑡𝑘 >. So, 𝑆𝑁(𝐹) ⊆ < 𝑡𝑘 >, ∀ 𝑡𝑘  ∈ 𝑇. Therefore, 𝑆𝑁(𝐹) is kernel of 𝐹. 

Theorem 3.3 Let 𝐹 = (𝑇, 𝐼, 𝛽) be strong reset fuzzy automata. If 𝐹′ is subautomata of 𝐹  then 𝐹′ is strong reset 

fuzzy automata and 𝑆𝑁 (𝐹′) = 𝑆𝑁(𝐹). 

Proof. 

Let 𝐹 = (𝑇, 𝐼, 𝛽) be a FA and 𝑆𝑁(𝐹)  ⊆  𝐹′.  Hence 𝐹′ is strong reset fuzzy automata. 𝑆𝑁(𝐹) is kernel of 𝐹 and 

𝑆𝑁(𝐹) ⊆  𝑆𝑁 (𝐹′). Also 𝑆𝑁 (𝐹′) is kernel then 𝑆𝑁 (𝐹′)   ⊆   𝑆𝑁(𝐹).  Hence 𝑆𝑁 (𝐹′) =  𝑆𝑁(𝐹). 

Theorem 3.4 Let 𝐹 = (𝑇, 𝐼, 𝛽) is strong reset fuzzy automata iff all pairs are strong mergeable. 

Proof. 

Let F is strong reset fuzzy automata. Then ∀ 𝑡𝑙  ∈ T we have 𝛽∗(𝑡𝑙 , 𝑦, 𝑡𝑘) =  𝜂 > 0. 
Let 𝑡𝑎, 𝑡𝑏 ∈ 𝑇.  By strong mergeable, 𝛽∗(𝑡𝑎 , 𝑦, 𝑡𝑘) =  𝜂 ⇔  𝛽∗(𝑡𝑏 , 𝑦, 𝑡𝑘) =  𝜂. Hence 𝑡𝑎 , 𝑡𝑏 are strong 

mergeable. 

Conversely, suppose F is not a strong reset fuzzy automaton. Then assume all states are strong mergeable in two 

states 𝑡𝑐  and 𝑡𝑑  in T. Then  ∃ 𝑦1  ∈  𝐼∗ such that  𝛽∗(𝑡𝑖 , 𝑦1, 𝑡𝑐) =  𝜂  >0 and 𝛽∗(𝑡𝑗 , 𝑦1, 𝑡𝑑) =  𝜂 >0, for  𝑡𝑖 's, 𝑡𝑗
′𝑠 

∈ 𝑇. 
Now, consider 𝑡𝑐 and 𝑡𝑑. Then by hypothesis, 𝑡𝑐 and 𝑡𝑑 are strong mergeable. Then ∃ a string 𝑦2  ∈  𝐼∗ and 𝑡𝑓 ∈ 

T such that 𝛽∗(𝑡𝑐 , 𝑦2, 𝑡𝑓) =  𝜂 >0 ⇔ 𝛽∗(𝑡𝑑 , 𝑦2, 𝑡𝑓) >0. Now, 𝛽∗(𝑡𝑖 , 𝑦1𝑦2, 𝑡𝑓) =  𝜂 >0, ∀ 𝑡𝑖 ∈ T, which is a 

contradiction to our assumption. Hence, F is a strong reset fuzzy automaton. 

 

4 Conclusion 

Strong necks, strong trap, strong trap-reset fuzzy automata and strong mergeable are introduce and discuss their 

properties. We prove that strong neck is non-empty then it is subautomata, if strong neck exists then it is kernel. 

Finally prove that necessary and sufficient condition for strong reset fuzzy automata.  
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