Odd And Even Edge Magic Total Labeling Of Union Of Cycles

${ }^{1}$ Dr. Ct. Nagaraj, ${ }^{2}$ M.Ganeshkumar
${ }^{1}$ Department of Mathematics,Sree Sevugan Annamalai College, Devakottai - 630 303, Sivagangai (DT), Tamilnadu, India.
${ }^{2}$ Department of Mathematics,Arignar Anna College (Arts \& Science), Krishnagiri -635 001, Tamilnadu, India.
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021

ABSTRACT

A graph G is said to be edge magic if a $1-1$ onto function $\delta: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots|V(G)|+|E(G)|\}$ exists such that $\delta(x)+\delta(x y)+\delta(y)$ is a constant h for each edge $x y \in E(G)$, where h is defined as the magic constant of δ. If a graph G is said to have even edge magic if $\delta(V(G))=\{2,4,6, \ldots 2|V(G)|\}$. If $\delta(V(G))=\{1,3,5, \ldots, 2|V(G)|-1\}$ therefore a graph G is odd edge magic. In this article, we present odd and even EMTL of $C_{4} \cup C_{4 \theta-3}, \theta>1$.
Keywords: Edge Magic, Labelling, Union of cycles.

1. INTRODUCTION

In this article, we only look at finite, simple, and undirected graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$ respectively, where $|V(G)|=n$ and $|E(G)|=m$. Sedlacek [5] pioneered the magic labeling of graphs in 1968, and since then, they have achieved numerous results in magic labeling, especially edge magic labeling. For new findings in graph labeling, see [1] preliminary results in consecutive EMTL can be found in [6]. C.Y. Ponnappan et. al [4] introduced the concept of odd EMTL and even EMTL. They call an EMTL is odd iff $\delta(V)=\{1,3,5, \ldots 2 n-1\}$. Similarly, the EMTL is called even if $\delta(V)=\{2,4,6, \ldots, 2 n\}$. In [2], CT.Nagaraj, C.Y.Ponnappan and G.Prabakaran prove that the graph $C_{3} \cup C_{4 \theta-2}, \theta>1, C_{3} \cup C_{4 \theta}, \theta>1$ and $C_{4} \cup$ $C_{4 \theta-1}, \theta>1$ are even edge magic graphs. In [3], C.Y.Ponnappan and
CT. Nagaraj, prove that the graph $C_{3} \cup C_{4 \theta-2}, \theta>1, C_{3} \cup C_{4 \theta}, \theta \geq 1$ and $C_{4} \cup C_{4 \theta-1}, \theta>1$ are odd edge magic graphs.

2. EVEN EDGE MAGIC TOTAL LABELING OF $C_{4} \cup C_{4 \theta-3}, \theta>1$

Theorem 2.1

The graph $C_{4} \cup C_{4 \theta-3}$ for $\theta>1$ is an even edge magic graph.
Proof.
We label the vertex and edges of C_{4} consecutively as $[4 \theta+2,3,8 \theta, 7,4 \theta-2,5,8 \theta+2,1]$.
The vertex label of $C_{4 \theta-3}$ is as follows

$$
f\left(v_{r}\right)= \begin{cases}r+3 & \text { if } r=1 \bmod 4 \\ r+4 \theta+4 & \text { if } r=2 \bmod 4 \\ r-1 & \text { if } r=3 \bmod 4 \\ r+4 \theta & \text { if } r=0 \bmod 4\end{cases}
$$

The edges labels of $C_{4 \theta-3}$ is as follows:

$$
f\left(e_{r}\right)= \begin{cases}8 \theta-2 r-3 & \text { if } r=1 \bmod 4, \quad r \neq 4 \theta-3 \\ 8 \theta-2 r+1 & \text { if } r=0,2 \bmod 4 \\ 8 \theta-2 r+5 & \text { if } r=3 \bmod 4 \\ 8 \theta+1 & \text { if } r=4 \theta-3\end{cases}
$$

It is easy to verify that $C_{4} \cup C_{4 \theta-3}, \theta>1$ is an even edge magic graph with magic constant $h=12 \theta+5$.
Example 2.2

$C_{4} \cup C_{5}$, Magic constant $h=29$

Example 2.3

3. ODD EDGE MAGIC TOTAL LABELING OF $C_{4} \cup C_{4 \theta-3}, \boldsymbol{\theta}>1$

Theorem 3.1

The graph $C_{4} \cup C_{4 \theta-3}, \theta>1$ is an odd edge magic graph.
Proof.
We label the vertex and edges of C_{4} consecutively as $[4 \theta+1,4,8 \theta-1,8,4 \theta-3,6,8 \theta+1,2]$.
$C_{4 \theta-3}$ has the following vertex labels:

$$
f\left(v_{r}\right)=\left\{\begin{aligned}
r+2 & \text { if } r=1 \bmod 4 \\
r+4 \theta+3 & \text { if } r=2 \bmod 4 \\
r-2 & \text { if } r=3 \bmod 4 \\
r+4 \theta-1 & \text { if } r=0 \bmod 4
\end{aligned}\right.
$$

The edges labels of $C_{4 \theta-3}$ is as follows:

$$
f\left(e_{r}\right)=\left\{\begin{aligned}
8 \theta-2 r-2 & \text { if } r=1 \bmod 4, r \neq 4 \theta-3 \\
8 \theta-2 r+2 & \text { if } r=0,2 \bmod 4 \\
8 \theta-2 r+6 & \text { if } r=3 \bmod 4 \\
8 \theta+2 & \text { if } r=4 \theta-3
\end{aligned}\right.
$$

It is easy to verify that $C_{4} \cup C_{4 \theta-3}, \theta>1$ is an odd edge magic graph with magic constant $h=12 \theta+4$.

Example 3.2

Example 3.3

[1] J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5 (1998), \#DS6.
[2] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even edge magic total labeling of some 2 -regular graphs, Advances in Mathematics; Scientific Journal 9 (2020), no.3, 1415-1420.
[3] CT.Nagaraj and C.Y.Ponnappan, Odd edge magic total labeling of some graphs, Journal of Indian University volume 14, Issue 4, 2020, 315-318.
[4] C.Y.Ponnappan, CT. Nagaraj and G.Prabakaran, Odd and Even edge magic total labeling, Bulletin of Pure and Applied Sciences Section - E - Mathematics of Statistics, 38E, 48-53 (2019).
[5] Sedlacek. J, Problem 27. Theory of graphs and its applications (Smolenice, 1963), 163-164, (Publ. House Czechoslovak Acad. Sci., Prague, 1964).
[6] Sugeng K.A, and Miller M Properties of edge consecutive magic graphs, in proceedings of the Sixteenth Australian workshop on Combinatorics Algorithms 2005, Ballarat, Australian\} 2005, 311-320.

