Research Article

Factorial Harmonious Graph of a Group

M. Angeline Ruba¹ Dr. J. Golden Ebenezer Jebamani² Dr. G. S. Grace Prema³

¹Research Scholar, Department of Mathematics, St.John's College, Tirunelveli.

²Assistant professor and Head, Department of Mathematics, Sarah Tucker College, Tirunelveli.

³ Associate Professor and Head, Department of Mathematics, St. John's college, Tirunelveli.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

¹angelineruba93@gmail.com ²goldensambth@gmail.com ³sgrasutha@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021

Abstract

Consider the commutative group G. The Factorial Harmonious graph of G is the undirected graph with vertex set G and two different vertices a and b are adjacent if $\frac{[f(a)+f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\}$ (mod m) in G is isomorphism. The results of a study of the Factorial Harmonious graph and its generalizations on Group are presented in this work. **Key Word:** Commutative group, Factorial Harmonious graph, Complete bipartite graph, Degree divisor.

1. INTRODUCTION

A graph's vertex labeling G is a planning f made up of G's vertices to each edge ab has a label that depends on the vertices a and b and their label f(a) and f(b). Graph labeling methods began with A. Rosa [9] in 1967. The concept of the Harmonious labeling graph was first introduced by R. L. Graham and N. J. A Sloane [5] in 1980 and the concept of Factorial labeling graph were introduced by A. Edward Samuel and S. Kalaivani [4] in 2018.

In section 2, we drive Some Results on Order not Prime in $Fl_H(G)$ and in section 3, we drive Some Results on Degree Divisor $Fl_H(G)$ on Group.

KNOWN RESULT'S AND DEFINITION

Definition 1.1: [3]

Consider the graph G, which has m edges. If $f: V \to \{0, 1, 2, ..., m-1\}$ is injective and the induced function $f^*: E \to \{1, 2, ..., m\}$ is bijective, the function $f^*(e = ab) = (f(a) + f(b))(mod m)$ is called Harmonious labeling of graph G. Harmonious graph is a graph that allows for Harmonious labeling.

Definition 1.2: [4]

A factorial labeling of a connected graph G is a bijection $f: V \to \{0, 1, 2, ..., m\}$ such that the induced function $f^*: E \to \{1, 2, ..., m\}$ defined as $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!}$ then the edges labels are distinct. Any graph which admits a factorial labeling is called a factorial graph.

Definition 1.3: [6]

An Euler tour of a graph G is a tour that passes around each of the graph G's edge exactly once. Definition 1.4: [6]

If a graph G has an Euler tour, it is termed an Euler graph or Eulerian.

Theorem 1.5: [6]

If and only if the degree of each vertex is even, a connected graph is Euler.

Definition 1.6: [6]

If there is a cycle that contains every vertex of G exactly once, the connected graph G is termed Hamiltonian Graph.

Theorem 1.7: [7]

The order of H divides the order of G if G is a finite group and H is a subgroup of G. Definition 1.8 [2]

Research Article

Let G be a graph and v be one of its vertex. The maximum distance between v and any other vertex is the eccentricity of the vertex v.

In other words, $e(v) = \max \{d(v, w): w \text{ in } v(G)\}$

Definition 1.9 [2]

The largest eccentricity among G's vertices equals the diameter of G. As a result, diameter (G) = max { $e(v): v \in G$ }

Definition 1.10 [2]

The length of the shortest cycle in G is the girth of G.

2. Some Results on Order not Prime in $Fl_H(G)$

Definition 2.1

Consider the graph G, which has m edges. If $f: V \to \{0, 1, 2, ..., 2m - 1\}$ is injective and the induced function $f^*: E \to \{0, 1, 2, ..., m\}$ defined as $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\} \pmod{m}$ is isomorphism. A Factorial Harmonious graph is indicated by the symbol $Fl_H(G)$ and it admits Factorial Harmonious labeling.

Definition 2.2

Consider the commutative group G. The Factorial Harmonious graph has the vertex set G when two different vertices a and b are adjacent in $Fl_H(G)$ such that $f: V \to \{0, 1, 2, ..., 2m - 1\}$ is injective with order either prime or not prime and $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\} \pmod{m}$ is isomorphism.

Theorem 2.3

The Factorial Harmonious graph is a commutative group then whose order is not prime.

Proof:

Suppose $Fl_H(G)$ is a complete bipartite graph. So, every pair of vertices are adjacent. Therefore $o(x) = o(x^i)$ for some $i \in \{1, 2, ..., n - 1\}$.

Then $o(x) \mid o(x^i)$ or $o(x^i) \mid o(x)$

This implies gcd (i, n) $\neq 1$ for some $i \in \{1, 2, ..., n - 1\}$ and also order of a group element is not prime. Hence n is not prime.

Remark 2.4

A Factorial Harmonious graph is a group whose order is not a prime number p then G is not a cyclic group.

Theorem 2.5

If G is a commutative group then every connected Factorial Harmonious graph is an Euler cycle. Proof:

Given G is a commutative group.

If we take $K_{2,n}$ graph that admits Factorial harmonious graph and satisfy commutative group. By Theorem 1.5, If and only if the degree of each vertex is even, a connected graph is Euler. Our graph has even degree for every vertex; Hence G is an Euler cycle.

Corollary 2.6

Suppose that G is commutative group and Factorial Harmonious graph is complete bipartite graph then G is Hamiltonian cycle when n = 2, 3.

Theorem 2.7

The order of x divides the order of G if G is a Factorial Harmonious graph with finite group and x is an element of G

Proof:

Assume G is a $K_{2,n}$ graph.

Research Article

As a result, G accepts both the Factorial harmonious labeling graph and the group. Assume *x* is an element of G. By definition, the order of *x* is the order of the subgroup created by *x*. As a result of Theorem 1.7, the order of G is divisible by the order of x. Hence proved. Theorem 2.8 A graph $Fl_H(G)$ has a commutative group if and only if $Fl_H(G)$ is a group. Proof: Assume $G = Fl_H(G)$ is a $K_{2,n}$ graph with an order of 6. To put it another way, $G = \{0, 1, 2, 3, 4, 5\}$ is an element of the $K_{2,3}$ graph. Let's pretend that G is a commutative group. To prove: G is a group By default, G is a group. Conversely, Assume that G is a group To prove: G is a commutative group That is to prove: a + b = b + a where $a, b \in G$ Let a = 2 and b = 3 then $2 + 3 = 4 \in G$,

Also, $3 + 2 = 4 \in G$

Therefore G is a commutative group.

In general, G is also commutative group.

Hence, A graph $Fl_H(G)$ has a commutative group if and only if $Fl_H(G)$ is a group.

3. Degree Divisor $Fl_H(G)$ on Group Definition: 3.1

Let G be a finite group. Then $Fl_{H_{DD}}(G)$ denotes the degree divisor Factorial harmonious graph whose vertex set is G such that two distinct vertices a and b having same degree are adjacent provided that $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\} \pmod{m}$ is isomorphism then $d(a) \mid d(b)$ or $d(b) \mid d(a)$.

Theorem: 3.2

The degree divisor graph $Fl_{H_{DD}}(G)$ is a $K_{2,n}$ graph if and only if every element of the group G has prime degree.

Proof:

Assumed, if every element of G has prime degree, then $Fl_{H_{DD}}(G)$ is a $K_{2,n}$ graph.

Conversely,

Assume $Fl_{HDD}(G)$ is a $K_{2,n}$ graph.

Obviously, graph structure shows each vertex has 2 degree.

Hence each n is prime degree.

Theorem 3.3

If $Fl_{H_{DD}}(G)$ is a finite group whose non-identity vertex degree is a prime number p,then G is a cyclic group. Further $Fl_{H_{DD}}(G)$ is a sequential join $(G_1 \diamond G_2 \diamond G_3) \diamond k_2$. i.e., Degree sequence of $Fl_{H_{DD}}(G) = (G_1 + G_2 + G_3) + K_1 + K_2$ always even. Proof:

Let p be a prime and G be a group, such that deg(G) = p be the result. Then G is made up of many elements.

Let $a \in G$ such that $a \neq e$.

Then < a > contains more than one element.

Since, $< a > \le G$

deg(< a >) divides p.

Since deg(< a >) >1 and deg(< a >) divides a prime, deg(< a >)= p = G. Hence < g > = G Hence G is cyclic group. Also note that all vertices in G are independent. Hence deg(G) = $(G_1 + G_2 + G_3) + K_1 + K_2$ and add all prime degree must be even. Therefore, Degree sequence of $P_{H_{DD}}(G) = (G_1 + G_2 + G_3) + K_1 + K_2$ always even.

Theorem 3.4

If $Fl_{H_{DD}}(G)$ is connected for abelian group G then diam $(Fl_{H_{DD}}(G)) = 2$.

Proof:

Let a and b be two distinct vertices of $Fl_{H_{DD}}(G)$. If (|a|, |b|) = 1, then a is adjacent to b and hence d (a, b) = 1.

In this manner, we may expect that a and b are non-identity elements of G $(|a|, |b|) \neq 1$.

Note that (|a|, |e|) = 1 and (|b|, |e|) = 1, then the vertex *e* is neighboring both *a* and *b* and we get d(a, b) = 2.

This implies that $Fl_H(G)$ is connected and diam $(Fl_{H_{DD}}(G)) = 2$.

Theorem 3.5

Let G be a group. If $Fl_{HDD}(G)$ contains a cycle, then $g(Fl_{HDD}(G)) = 4$.

Proof:

Permit us to accept $Fl_{H_{DD}}(G)$ contains a cycle. We ensure that the length of most short cycle present in $Fl_{H_{DD}}(G)$ is 4. In this view, if there is an example of length 4, by then outcome follows itself.

In this case, it contains a cycle $a_1 - e - a_2 - \dots - a_n - a_1$ for $n \ge 2$. Now, for all *i*, a_i should be same degree. Subsequently, $a_1 - e - a_2 - e - a_3 - e - a_4 - e - a_1$ is a cycle of length 4 in $Fl_{H_{DD}}(G)$

Subsequently, $u_1 = e - u_2 - e - u_3 - e - u_4 - e - u_1$ is a cycle of length 4 in $Pt_{H_{DD}}(G)$ Hence $g(Fl_{H_{DD}}(G)) = 4$.

Conclusion:

We may deduce that if a Factorial Harmonious Graph is a commutative group with an order that is not prime, it is not a cyclic group, but an Eulerian graph. A Group's order is divided by the order of its elements.

Degree Divisor Factorial Harmonious graph is a commutative group with degree prime, it is also a cyclic group with a diameter of two and a girth of four.

References:

- [1] A. Anitha, Some Graph Structures Through Integers.
- [2] M. Angeline Ruba, J. Golden Ebenezer Jebamani and G. S. Grace Prema "Degree Divisor Harmonious Graph on Groups", Malaya Journal of Matematik, Vol, S, No. 1, 288-289, 2021.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory, in:GTM. Vol.244. Springer.2008.
- [4] Dushyant Tanna, Harmonious Labeling of Certain Graphs, University of Newcastle, July 2013.
- [5] A. Edward Samuel and S. Kalaivani "Factorial Labeling For Some Classes of Graphs" AIJRSTEM, 23(1), June-August, 2018, pp.09-17.
- [6] R. L. Graham, N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM, J. Alg. Dis. Meth. 1 (1980) 382-404.
- [7] Herbert Fleischner, Eulerian Graphs and Related Topics Part 1.
- [8] I. N. Herstein, Topics in algebra, 2nd edition.
- [9] R. C. Read, Euler graphs on labeled nodes, Canad. J. Math., 14(1962), 482-486.
- [10] A. Rosa, On certain valuations of the vertices of a graph, Internet Symposium, Rome, July 1966, 349-355.

Research Article