Factorial Harmonious Graph of a Group

M. Angeline Ruba ${ }^{1}$ Dr. J. Golden Ebenezer Jebamani ${ }^{2}$ Dr. G. S. Grace Prema ${ }^{3}$

${ }^{1}$ Research Scholar, Department of Mathematics, St.John's College, Tirunelveli.
${ }^{2}$ Assistant professor and Head, Department of Mathematics, Sarah Tucker College, Tirunelveli.
${ }^{3}$ Associate Professor and Head, Department of Mathematics, St. John's college, Tirunelveli. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
${ }^{1}$ angelineruba93@ gmail.com ${ }^{2}$ goldensambth@gmail.com ${ }^{3}$ sgrasutha@gmail.com
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021

Abstract

Consider the commutative group G. The Factorial Harmonious graph of G is the undirected graph with vertex set G and two different vertices a and b are adjacent if $\frac{[f(a)+f(b)]!}{[f(a)]![f(b)]!}+\{f(a)+f(b)\} \quad(\bmod \mathrm{m})$ in G is isomorphism. The results of a study of the Factorial Harmonious graph and its generalizations on Group are presented in this work.
Key Word: Commutative group, Factorial Harmonious graph, Complete bipartite graph, Degree divisor.

1. INTRODUCTION

A graph's vertex labeling G is a planning f made up of G's vertices to each edge ab has a label that depends on the vertices a and b and their label $f(\mathrm{a})$ and $f(\mathrm{~b})$. Graph labeling methods began with A . Rosa [9] in 1967. The concept of the Harmonious labeling graph was first introduced by R. L. Graham and N. J. A Sloane [5] in 1980 and the concept of Factorial labeling graph were introduced by A. Edward Samuel and S. Kalaivani [4] in 2018.

In section 2, we drive Some Results on Order not Prime in $F l_{H}(G)$ and in section 3, we drive Some Results on Degree Divisor $F l_{H}(G)$ on Group.

KNOWN RESULT'S AND DEFINITION

Definition 1.1: [3]
Consider the graph G, which has m edges. If $f: V \rightarrow\{0,1,2, \ldots, m-1\}$ is injective and the induced function $f^{*}: E \rightarrow\{1,2, \ldots, m\}$ is bijective, the function $f^{*}(e=a b)=(f(a)+f(b))(\bmod m)$ is called Harmonious labeling of graph G. Harmonious graph is a graph that allows for Harmonious labeling.
Definition 1.2: [4]
A factorial labeling of a connected graph G is a bijection $f: V \rightarrow\{0,1,2, \ldots, m\}$ such that the induced function $f^{*}: E \rightarrow\{1,2, \ldots, m\}$ defined as $f^{*}(e=a b)=\frac{[f(a)+f(b)]!}{[f(a)]![f(b)]!}$ then the edges labels are distinct. Any graph which admits a factorial labeling is called a factorial graph.
Definition 1.3: [6]
An Euler tour of a graph G is a tour that passes around each of the graph G's edge exactly once.
Definition 1.4: [6]
If a graph G has an Euler tour, it is termed an Euler graph or Eulerian.
Theorem 1.5: [6]
If and only if the degree of each vertex is even, a connected graph is Euler.
Definition 1.6: [6]
If there is a cycle that contains every vertex of G exactly once, the connected graph G is termed Hamiltonian Graph.

Theorem 1.7: [7]
The order of H divides the order of G if G is a finite group and H is a subgroup of G .
Definition 1.8 [2]

Let G be a graph and v be one of its vertex. The maximum distance between v and any other vertex is the eccentricity of the vertex v.

In other words, $\mathrm{e}(v)=\max \{\mathrm{d}(v, \mathrm{w})$: w in $v(\mathrm{G})\}$
Definition 1.9 [2]
The largest eccentricity among G's vertices equals the diameter of G. As a result, diameter $(\mathrm{G})=$ $\max \{\mathrm{e}(v): v \in \mathrm{G}\}$
Definition 1.10 [2]
The length of the shortest cycle in G is the girth of G .

2. Some Results on Order not Prime in $\boldsymbol{F l}_{\boldsymbol{H}}(\boldsymbol{G})$ Definition 2.1

Consider the graph G, which has m edges. If $f: V \rightarrow\{0,1,2, \ldots, 2 m-1\}$ is injective and the induced function $f^{*}: E \rightarrow\{0,1,2, \ldots, m\}$ defined as $f^{*}(e=a b)=\frac{[f(a)+f(b)]!}{[f(a)]![f(b)]!}+\{f(a)+f(b)\}(\bmod m)$ is isomorphism. A Factorial Harmonious graph is indicated by the symbol $F l_{H}(G)$ and it admits Factorial Harmonious labeling.

Definition 2.2

Consider the commutative group G. The Factorial Harmonious graph has the vertex set G when two different vertices a and b are adjacent in $F l_{H}(G)$ such that $f: V \rightarrow\{0,1,2, \ldots, 2 m-1\}$ is injective with order either prime or not prime and $f^{*}(e=a b)=\frac{[f(a)+f(b)]!}{[f(a)!![f(b)]!}+\{f(a)+f(b)\}(\bmod \mathrm{m})$ is isomorphism.

Theorem 2.3

The Factorial Harmonious graph is a commutative group then whose order is not prime.
Proof:
Suppose $F l_{H}(G)$ is a complete bipartite graph. So, every pair of vertices are adjacent.
Therefore $o(x)=o\left(x^{i}\right)$ for some $i \in\{1,2, \ldots, n-1\}$.
Then $o(x) \mid o\left(x^{i}\right)$ or $o\left(x^{i}\right) \mid o(x)$
This implies $\operatorname{gcd}(\mathrm{i}, \mathrm{n}) \neq 1$ for some $i \in\{1,2, \ldots, n-1\}$ and also order of a group element is not prime.
Hence n is not prime.

Remark 2.4

A Factorial Harmonious graph is a group whose order is not a prime number p then G is not a cyclic group.

Theorem 2.5

If G is a commutative group then every connected Factorial Harmonious graph is an Euler cycle.
Proof:
Given G is a commutative group.
If we take $K_{2, n}$ graph that admits Factorial harmonious graph and satisfy commutative group. By Theorem 1.5, If and only if the degree of each vertex is even, a connected graph is Euler. Our graph has even degree for every vertex; Hence G is an Euler cycle.

Corollary 2.6

Suppose that G is commutative group and Factorial Harmonious graph is complete bipartite graph then G is Hamiltonian cycle when $\mathrm{n}=2,3$.

Theorem 2.7

The order of x divides the order of G if G is a Factorial Harmonious graph with finite group and x is an element of G
Proof:
Assume G is a $K_{2, n}$ graph.

As a result, G accepts both the Factorial harmonious labeling graph and the group.
Assume x is an element of G .
By definition, the order of x is the order of the subgroup created by x.
As a result of Theorem 1.7, the order of G is divisible by the order of x.
Hence proved.
Theorem 2.8
A graph $F l_{H}(G)$ has a commutative group if and only if $F l_{H}(G)$ is a group.
Proof:
Assume $\mathrm{G}=F l_{H}(G)$ is a $K_{2, n}$ graph with an order of 6.
To put it another way, $\mathrm{G}=\{0,1,2,3,4,5\}$ is an element of the $K_{2,3}$ graph.
Let's pretend that G is a commutative group.
To prove: G is a group
By default, G is a group.
Conversely,
Assume that G is a group
To prove: G is a commutative group
That is to prove: $a+b=b+\mathrm{a}$ where $a, b \in \mathrm{G}$
Let $a=2$ and $\mathrm{b}=3$ then $2+3=4 \in \mathrm{G}$,
Also, $3+2=4 \in G$
Therefore G is a commutative group.
In general, G is also commutative group.
Hence, A graph $F l_{H}(G)$ has a commutative group if and only if $F l_{H}(G)$ is a group.

3. Degree Divisor $\boldsymbol{F l}_{\boldsymbol{H}}(\boldsymbol{G})$ on Group

Definition: $\mathbf{3 . 1}$

Let G be a finite group. Then $F l_{H_{D D}}(G)$ denotes the degree divisor Factorial harmonious graph whose vertex set is G such that two distinct vertices a and b having same degree are adjacent provided that $f^{*}(e=a b)=\frac{[f(a)+f(b)]!}{[f(a)!![f(b)]!}+\{f(a)+f(b)\}(\bmod m)$ is isomorphism then $\mathrm{d}(a) \mid d(b)$ or $\mathrm{d}(b) \mid$ $d(a)$.
Theorem: 3.2
The degree divisor graph $F l_{H_{D D}}(G)$ is a $K_{2, n}$ graph if and only if every element of the group G has prime degree.
Proof:
Assumed, if every element of G has prime degree, then $F l_{H_{D D}}(G)$ is a $K_{2, n}$ graph.
Conversely,
Assume $F l_{H_{D D}}(G)$ is a $K_{2, n}$ graph.
Obviously, graph structure shows each vertex has 2 degree.
Hence each n is prime degree.
Theorem 3.3
If $F l_{H_{D D}}(G)$ is a finite group whose non-identity vertex degree is a prime number p,then G is a cyclic group. Further $F l_{H_{D D}}(G)$ is a sequential join $\left(G_{1} \diamond G_{2} \triangleright G_{3}\right) \diamond k_{2}$.
i.e., Degree sequence of $F l_{H D D}(G)=\left(G_{1}+G_{2}+G_{3}\right)+K_{1}+K_{2}$ always even.

Proof:
Let p be a prime and G be a group, such that $\operatorname{deg}(\mathrm{G})=\mathrm{p}$ be the result.
Then G is made up of many elements.
Let $\mathrm{a} \in \mathrm{G}$ such that $\mathrm{a} \neq \mathrm{e}$.
Then $<\mathrm{a}>$ contains more than one element.
Since, $\langle\mathrm{a}>\leq \mathrm{G}$
$\operatorname{deg}(\langle\mathrm{a}\rangle)$ divides p .

Since $\operatorname{deg}(\langle\mathrm{a}\rangle)>1$ and $\operatorname{deg}(\langle\mathrm{a}\rangle)$ divides a prime, $\operatorname{deg}(\langle\mathrm{a}\rangle)=\mathrm{p}=\mathrm{G}$.
Hence $\langle\mathrm{g}\rangle=\mathrm{G}$
Hence G is cyclic group.
Also note that all vertices in G are independent.
Hence $\operatorname{deg}(\mathrm{G})=\left(G_{1}+G_{2}+G_{3}\right)+K_{1}+K_{2}$ and add all prime degree must be even.
Therefore, Degree sequence of $P_{H_{D D}}(G)=\left(G_{1}+G_{2}+G_{3}\right)+K_{1}+K_{2}$ always even.
Theorem 3.4
If $F l_{H_{D D}}(G)$ is connected for abelian group G then $\operatorname{diam}\left(F l_{H_{D D}}(G)\right)=2$.
Proof:
Let a and b be two distinct vertices of $F l_{H_{D D}}(G)$. If $(|a|,|b|)=1$, then a is adjacent to b and hence $\mathrm{d}(a, b)=1$.
In this manner, we may expect that a and b are non-identity elements of $\mathrm{G}(|a|,|b|) \neq 1$.
Note that $(|a|,|e|)=1$ and $(|b|,|e|)=1$, then the vertex e is neighboring both a and b and we get $\mathrm{d}(a, b)$ $=2$.
This implies that $F l_{H}(G)$ is connected and $\operatorname{diam}\left(F l_{H_{D D}}(G)\right)=2$.

Theorem 3.5

Let G be a group. If $F l_{H_{D D}}(G)$ contains a cycle, then $g\left(F l_{H_{D D}}(G)\right)=4$.
Proof:
Permit us to accept $F l_{H_{D D}}(G)$ contains a cycle. We ensure that the length of most short cycle present in $F l_{H_{D D}}(G)$ is 4. In this view, if there is an example of length 4, by then outcome follows itself.

In this case, it contains a cycle $a_{1}-e-a_{2}-\cdots-a_{n}-a_{1}$ for $\mathrm{n} \geq 2$.
Now, for all i, a_{i} should be same degree.
Subsequently, $a_{1}-e-a_{2}-e-a_{3}-e-a_{4}-e-a_{1}$ is a cycle of length 4 in $F l_{H_{D D}}(G)$
Hence $g\left(F l_{H_{D D}}(G)\right)=4$.

Conclusion:

We may deduce that if a Factorial Harmonious Graph is a commutative group with an order that is not prime, it is not a cyclic group, but an Eulerian graph. A Group's order is divided by the order of its elements.

Degree Divisor Factorial Harmonious graph is a commutative group with degree prime, it is also a cyclic group with a diameter of two and a girth of four.

References:

[1] A. Anitha, Some Graph Structures Through Integers.
[2] M. Angeline Ruba, J. Golden Ebenezer Jebamani and G. S. Grace Prema "Degree Divisor Harmonious Graph on Groups", Malaya Journal of Matematik, Vol, S, No. 1, 288-289, 2021.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, in:GTM. Vol.244. Springer.2008.
[4] Dushyant Tanna, Harmonious Labeling of Certain Graphs, University of Newcastle, July 2013.
[5] A. Edward Samuel and S. Kalaivani " Factorial Labeling For Some Classes of Graphs" AIJRSTEM, 23(1), June-August, 2018, pp.09-17.
[6] R. L. Graham, N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM, J. Alg. Dis. Meth. 1 (1980) 382-404.
[7] Herbert Fleischner, Eulerian Graphs and Related Topics Part 1.
[8] I. N. Herstein, Topics in algebra, $2^{\text {nd }}$ edition.
[9] R. C. Read, Euler graphs on labeled nodes, Canad. J. Math., 14(1962), 482-486.
[10] A. Rosa, On certain valuations of the vertices of a graph, Internet Symposium, Rome, July 1966, 349-355.

