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Abstract: Parkinson's disease (PD) is a progressive neurodegenerative disease that manifests itself with a variety of motor and 

non-motor symptoms. Many PD patients have difficulty moving in a normal manner in the early stages. One of the most 
common symptoms is vocal disorders. Recent PD detection studies have focused on diagnostic systems based on vocal 
disorders that hold a lot of promise as an excitingly new field of research. Deep Learning has grown in prominence in recent 
years for a variety of prediction issues that are challenging the medical professionals. In this paper, Back Propagation Deep 

Neural Networks (BPDNN) is applied with multiple architectures to create better predictive models for detection of Parkinson's 
disease (PD) based on the analysis of the features collected from different speech samples of patients. Significantly, even 

without the use of a feature selection method, Deep Neural Networks has emerged as the best classification tool for PD 
diagnosis. Finally, DNN was fine-tuned, resulting in a train precision of 99.35%.  
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1. Introduction  

Parkinson’s disease (PD) is a major neurodegenerative disease that affects 1% of the population above 60 

years age, affecting 1 - 2 persons per 1000[1]. The estimated global population affected by PD has more than 

doubled from 1990 to 2016 (from2.5 million to 6.1 million), which is a result of increased number of elderly 

people and age-standardized prevalence rates [2]. PD is a progressive neurological disorder associated with motor 

and non-motor features [3] which comprises multiple aspects of movements, including planning, initiation, and 

execution [4]. During its development, movement-related symptoms such as tremor, rigidity and difficulties in 

initiation can be observed, prior to cognitive and behavioural deficits [5]. PD severely affects patients’ quality of 

life (QoL), social functions and family relationships, and places heavy economic burdens at individual and society 

levels [6-8]. The diagnosis of PD is traditionally based on motor symptoms. Despite the establishment of cardinal 

signs of PD in clinical assessments, most of the rating scales used in the evaluation of disease severity have not 

been fully evaluated and validated [3]. Although non-motor symptoms (e.g., cognitive, and behavioural 

abnormalities, sleep disorders, sensory abnormalities such as olfactory dysfunction) are present in many patients 

prior to the onset of PD [3, 9], they lack specificity, are complicated to assess and/or yield variability from patient 

to patient [10]. Therefore, non-motor symptoms do not yet allow for diagnosis of PD independently [11], although 

some have been used as supportive diagnostic criteria. 

1.1. Different stages of Parkinson’s Disease 

There are different stages of Parkinson’s disease that are listed below. 

• Mildest Stage (Stage 1): At this point, patients with Parkinson's disease have the least interference with daily 

activities. Other signs, such as tremors, are limited to one side of the body. 

• Moderate Stage (Stage 2): At this point symptoms such as stiffness, resting tremors, and shaking can be felt 

on both sides of the body at this time. Patients with Parkinson's disease can also experience changes in their 

facial expressions. 

• Mid-Stage (Stage 3): In PD patients, significant changes such as lack of balance, reduced flexes, and stage II 

symptoms can be noted at this stage. Combining occupational therapy with medicine can help to alleviate 

symptoms. 

• Progressive Stage (Stage 4): At this point, the PD patient's health can deteriorate, making it impossible for 

the patient to travel without the use of an assistive device such as a walker. 

• Advanced stage (Stage 5): At this point, patients experience the most debilitating and painful condition in 

Parkinson's disease. Standing can be difficult if the legs are stiff. Patients also find it difficult to stand without 

collapsing. They may hallucinate and paranoia on occasion. 

Most of the common sicknesses or diseases can be segregated into communicable and non-communicable 

categories offering varying degrees of symptoms and prognosis. While certain illnesses respond to treatment and 

patients can be revived, there are other ailments that offer no solution to patients and trouble them for a long time 

or the entire lifetime. This illness affects almost 11 million people worldwide. Many studies have been carried out 
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in order to find a better treatment for the disease. Machine learning is the process of analyzing empirical  data in 

order to come up with a suitable solution for the future. [10][12]. 

1.2 Parkinson’s Disease Symptoms  

In terms of symptoms, Parkinson disease has two broad categories:  

• Motor Symptoms  

• Non-Motor Symptoms  

1.2.1 Motor Symptoms  

This is a medical condition wherein a patient has trouble in taking voluntary actions. Tremor, rigidity, freezing, 

Bradykinesia, or other voluntary muscle contraction are some symptoms of movement disorders [14]. 

1.2.2 Non-Motor Symptoms 

Apathy, cognitive dysfunction, and complex personality disorders are symptoms that are known as non-motor 

symptoms. Physicians primarily divide them as primary and secondary symptoms of Parkinson disease. 

1.2.3 Primary Symptoms 

It is the most critical symptom. Rigidity, tremor, and slowness of movement commonly manifest as regular 

symptoms.[14][17]. 

1.2.4 Secondary Symptoms 

Such a symptom has a significant effect on a person's life. These can either be motorised or non-motorized. Its 

impact varies from person to person. Parkinson's disease manifests itself in a wide variety of symptoms. Around 

90% of people with Parkinson's disease experience vocal dysfunction [6]. Vocal defects should not come out of 

nowhere. They are the culmination of a long phase that can go overlooked in its early stages. As a result, early 

detection and tele-monitoring technologies based on precise, effective, and impartial predictive models are critical 

for patients and researchers. Latest experiments have used machine learning techniques to diagnose speech 

problems using acoustic tests (features) of dysphonia [16]. The diagnosed conditions reflect basic frequency 

fluctuations or changes in pitch of vocal oscillation (F0). Other conditions include absolute sound pressure level 

that signifies the relative loudness of speech. Among other conditions, jitter represents the cyclic changes in 

fundamental frequency, while shimmer represents cyclic variation in speech amplitude. A condition like 

harmonicity represents the degree of acoustic periodicity. Here, we have sought to apply Back Propagation Deep 

Neural Networks (BPDNN) to the extracted features from different voice samples of tested persons with different 

configurations to predict possibility of Parkinson’s disease (PD) [17]. When the DNN is training, the model 

obtains better initial parameters through unsupervised parameter pre-training algorithm. On this basis, the model 

uses the supervised training method to optimize parameters further [18][22]. 

2. Proposed Work 

Typically, it is a challenging exercise to classify persons with Parkinson's disease, wherein control efficiency is a 

pattern classification problem. The data is divided into sub-datasets containing tests of individuals having a unique 

form of expression, referred to as speech samples, to successfully identify such patterns. Thereafter, voice sample 

features are selected, after which, their role in the presence of PD is assessed. Then, the selected features extracted 

from each voice sample (m denotes the number of samples) are used in a Classifier as input. Each classifier 

predicts its own class name, with a majority preference deciding the outcome. A block diagram of the proposed 

method is shown in Fig.1. 
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Fig.1. PD Patients Identification/Classification System Model 

2.1. Feature Extraction from Speech PD Data  

The extraction of speech feature parameters is crucial in voiceprint recognition. The speech signal changes at a 

slower rate. When it is perceived in a short time, the speech signal is generally considered to be stable at intervals 

of 10-30 ms. Hence, short-time spectrum analysis can be applied for calculation [20]. The frequency perception of 

the human ear is estimated by applying Mel scale, and it is calculated by 1000 Hz corresponding to 1000 Mel. 

This study uses temporal speech quality, spectrum, and cestrum domains to develop more objective assessments to 

detect speech impairments [19][21]. Factors like the fundamental frequency of vocal cord vibration (F0), absolute 

sound pressure level, jitter, shimmer, and harmonics noise ratio (HNR) are marked as the basic measurements. 

Table.1. Acoustic Analysis results of Healthy with PD 

Condition Sex 
Age 

(Range) 
F0(HZ)  Jitter (%) Shimmer (%) HNR(dB)  

Person Healthy M 12.6 58.5 127.4 17.4  0.05 0.37 0.24  0.11 14.9  4.7 

Person Healthy F 11.8 55.7 205.6 37.8  1.24 1.27 0.36  0.47 11.2  7.2 

Person with Disease M 62.3 9.8 120.6 20.7 0.96 0.78 0.38  0.17 10.5  3.8 

Person with Disease F 61.9 10.8 193.6 16.6  1.92 1.34 0.69  0.92 8.2  5.2 

Based on the pronunciation characteristics of PD patients, the characteristic parameters were extracted for 

analysis. However, each component contained in the feature parameters has different speech characterization 

capabilities for different speech samples. 

2.2. DNN Classification 

Various features are extracted to train the DNN with Back Propagation for classification as follows. 

 

Fig.2. Schematic Diagram of the DNN Structure 
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DNN is a multilayer perceptron with multiple hidden layers. Because it contains multiple hidden layers, it can 

abstract useful high-level features or attributes from high redundant low-level features, and then discover the 

inherent distribution of data. The neural network designed in this paper includes input layer, hidden layer, and 

output layer. Fig.3 shows the input layer written as Layer 0, while the output layer is written as layer L [19]. A 

DNN can have multiple hidden layers, and the output of the current hidden layer is the input of the next hidden 

layer or the output layer. This study uses the Back propagation (BP) algorithm to calculate the gradient of each 

layer's parameters. The activation function is a Rectified Linear Unit (ReLU), which has the advantage that the 

network can introduces sparsity on its own and greatly improve the training speed. 

For any 0  l( l L )  layer, 

1−= +l l l lz W v b  

=l lv f ( z )  

where 
1 LNlz R is the excitation vector, 

1
 lNlv R is the activation vector, 1−

 l lN NlW R is the weight, 
1

 lNlb R is the bias, and lN R is the number of neurons in the 
thl layer. •f ( ) is the activation function 

ReLU, with a mathematical expression: 

Re LU(z) max(0, z)=  

When using back propagation for parameter training, the model parameters of the DNN are trained through a set 

of training 1 i i( x , y ), i N , where 
ix is the feature vector of the first i samples, and 

iy is the corresponding 

label. The back propagation algorithm is explicitly summarized below. 

 

Back Propagation Deep Neural Networks (BPDNN) Model 

1. Input x : Set the corresponding activation value for the input layer. 

2. Forward Propagation: For each layer calculate. 

1−= +l l l lz W v b  

=l lv f ( z )  

3. Output layer 
Le : The error vector is calculated by: 


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4. Back propagation: The error of defining the layer 1node is: 
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The BP algorithm is the core algorithm for training DNN. It optimizes the parameter values in the network 

according to the predefined loss function. An important step in determining. the quality of the network model is 

the optimization of the parameters in the neural network model. The optimization algorithm randomly extracts m 

samples from all samples, where m is the total number of training samples. The m samples are m
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1 2 i mX ,X ,...,X ,....,X . and b are the sets of weights and bias in the network. iY and iA are the expected output 

and the actual output of the first i samples input, and • is a norm operation. The mean squared error is 

calculated as follows: 
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The above equation estimates the overall gradient using m sample data, and larger the m is, the more accurate 

the estimates result is. At this point, the formula for the update is. 
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Wherein, is a positive number, whose range of value is [0,1], and is called the learning rate. 

3. Parkinson's Disease Dataset 

In the present study, the implementation of the developed system is based on a Parkinson's disease dataset 

selectively extracted from the UCI Machine Learning repository 

(https://archive.ics.uci.edu/ml/datasets/parkinsons). The selected PD dataset includes 195 voice recordings from 

31 people with each having 22 characteristics (referred to as “predictors” or “explanatory variables” throughout 

this study). Among these 31 individuals, 23 of them are in good health. In the 22 characteristics, a range of 

biomedical voice measurements like the average of fundamental speech frequency, maximum and minimum 

changes in fundamental frequency, changes in amplitude, noise- to- tonal components over voice ratio, dynamic 

nonlinear complexities, focus fractal scale of the signal exponents and nonlinear channels of fundamental 

frequency variations. All the characteristics describing the characteristics of the speech presented in the recordings 

are calculated from speech and voice signals. The detailed characteristics of each element are presented in Table 

2. In addition, each observation is labelled with a response variable indicating whether people have PD or not. The 

response variable is referred to as "status" in the PD dataset.  

4. Results and Discussion 

In our work, to analyse the models and network implemented, performance metrics like Accuracy, Sensitivity and 

Specificity have been used. Various performance metrics are taken considering Confusion Matrix that provides 

the True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)  

TP+TN
Accuracy= *100%

(TP+FP+FN+TN)
 

TN
Specificity= ×100%

FP+TN
 

TP
Sensitivity=

TP+FN
 

The machine learning models used audio samples that were just 10 seconds long. We expect that voice can be best 

used as a dense biomarker for PD diagnosis as such models are highly accurate in their performance. In contrast to 

the most recognised biomarkers for diagnosis, such as DaT scans or clinician-scored/monitored motor test in the 

Unified Parkinson's Disease Rating Scale, our model only uses self-reported indicators of clinical diagnosis 

(UPDRS). Better machine learning models can be built and applied with better disease severity benchmarks. 

Furthermore, while conducting analysis, insignificant volumes of data have been used in comparison to the 
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number of samples analysed as well as the data type. A ten-second vocalisation of /aa/ by a patient is less 

informative as compared to the clinical assessment of many symptoms as done by a doctor.  The outcomes of 

various DNN configurations for determining test accuracy (of the test population) and training precision are 

shown in Tables 3 and 4 

 

Table.2. Characteristic characteristics of the PD dataset 

F_No F_Name Description 

X1 Jitter (local) 

Frequency Parameter 

X2 Jitter (local, absolute) 

X3 Jitter (rap) 

X4 Jitter (ppq5) 

X5 Jitter (ddp) 

X6 Number of Pulses 

Pulse Parameters 
X7 Number of Periods 

X8 Mean Period 

X9 Standard Deviation of Period 

X10 Shimmer (local) 

Amplitude Parameters 

X11 Shimmer (local, dB) 

X12 Shimmer (apq3) 

X13 Shimmer (apq5) 

X14 Shimmer (apq11) 

X15 Shimmer (dda) 

X16 Fraction of locally unvoiced frames 

Voicing Parameters X17 Number of voice breaks 

X18 Degree of voice breaks 

X19 Median pitch 

Pitch Parameters 

X20 Mean pitch 

X21 Standard deviation 

X22 Minimum pitch 

X23 Maximum pitch 

X24 Autocorrelation 

Harmonicity Parameters X25 Noise-to-harmonic 

X26 Harmonic-to-noise 

 

Table.3. Test Accuracy of different DNN Configuration. 

 r | 0 |  r | 0.25 |  r | 0.3 |  r | 0.35 |  r | 0.4 |  

DNN_5 0.6537 0.6588 0.6931 0.6979 0.6822 

DNN_10 0.6837 0.6654 0.6515 0.7313 0.6780 

DNN_5-5 0.6445 0.6514 0.6873 0.7296 0.7089 

DNN_10-10 0.6779 0.7019 0.6623 0.7188 0.6522 

DNN_5-10-5 0.6487 0.6676 0.6681 0.7355 0.6777 

 

Table.4. Training Accuracy of different DNN Configuration. 

 r | 0 |  r | 0.25 |  r | 0.3 |  r | 0.35 |  r | 0.4 |  

DNN_5 0.9908 0.8833 0.8914 0.8835 0.8436 

DNN_10 0.9923 0.9275 0.9265 0.9264 0.8767 

DNN_5-5 0.9968 0.9185 0.9187 0.9212 0.8796 

DNN_10-10 0.9935 0.9613 0.9679 0.9627 0.9250 

DNN_5-10-5 0.9924 0.9417 0.9499 0.9393 0.8843 
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Fig.3. Accuracy of Test and Train Data for different DNN Configurations 

This work uses various correlation coefficients i.e.(r | 0 |, r | 0.25 |, r | 0.3 |, r | 0.35 |, r | 0.4 |)      on both 

test and train data. Amongst the tested DNN configurations, a result of r | 0.35 | is recorded as showing the best 

accuracy, while the training accuracy is seen gradually decreasing with higher correlation coefficients as shown in 

fig.3. 

Table.5. Sensitivity of different DNN Configuration 

 r | 0 |  r | 0.25 |  r | 0.3 |  r | 0.35 |  r | 0.4 |  

DNN_5 0.6783 0.6621 0.7687 0.8299 0.8936 

DNN_10 0.6957 0.6695 0.7475 0.849 0.8667 

DNN_5-5 0.6836 0.6608 0.7712 0.8555 0.8996 

DNN_10-10 0.7022 0.7366 0.8177 0.8588 0.8250 

DNN_5-10-5 0.6880 0.6937 0.7792 0.8385 0.8651 

 

Table.6. Specificity of different DNN Configuration 

 r | 0 |  r | 0.25 |  r | 0.3 |  r | 0.35 |  r | 0.4 |  

DNN_5 0.6183 0.6465 0.5987 0.5599 0.4436 

DNN_10 0.6557 0.6495 0.5375 0.5994 0.4767 

DNN_5-5 0.5836 0.6117 0.5812 0.5855 0.4996 

DNN_10-10 0.6524 0.6466 0.4877 0.5688 0.4552 

DNN_5-10-5 0.5989 0.6237 0.5394 0.6185 0.4651 

The sensitivity and specificity outcomes of various DNN configurations are shown in Tables 5. & 6. Sensitivity 

measures the true positive rate that increases in gradual steps when the rate of feature selection rises. Also, higher 

precision is achieved for nearly all DNN configurations when the correlation coefficient kept increasing. DNN 5-5 

produced the best sensitivity outcomes among all configurations with r | 0.4 | . As a measure of the true negative 

rate, Specificity is seen as being increasingly unstable when the rate of feature selection kept increasing. DNN 10-

10 configuration produced the best specificity levels with r | 0 |  as shown in fig.4. 
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Fig.4. Sensitivity and Specificity for different DNN Configurations 

5. Conclusion 

Multiple DNNs aligned to different correlation coefficients are examined in this study to resolve problems in 

accurate diagnosis of Parkinson’s disease. Individuals are classified into classes by using various DNN 

algorithms. Based on a majority voting mechanism, each subject is listed as either "healthy" or "PD." One of the 

challenges of Machine Learning is finding a typical collection of features for building a classification model for 

performing a specific task. By reducing the dimensionality of the data with feature selection, the procedure size of 

the problem is minimized, while DNN efficiency can be improved by eliminating noisy or irrelevant features and 

avoiding too many attempts at fixing noisy data. When more neurons are added to the existing layers, in addition 

to the use of multiple concealed layers, significant changes in outcomes is noticed, thus implying that DNN 

architecture has capacity to determine DNN response. To sum up, our experimental outcomes prove ANN 10-10 

as the best ANN topology to address problems in accurate diagnosis of Parkinson’s disease with accuracy levels 

reaching up to 99.35%. 
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