
Turkish Journal of Computer and Mathematics Education    Vol.12 No.12 (2021), 2630-2640  

                                                                                                                                      Research Article                                                

2930 

 

Soc Estimation Of Li-Ion Battery Of Electric Vehicle Based On Ekf  
 

Vivek Viswanadha1, Sura Srinivasa Rao2, B.Arundhati3 

 
1Research Scholar,GITAM Deemed to be UNIVERSITY  
2Dept. Of Electrical & Electronics Engineering, GITAM Deemed to be UNIVERSITY, VISAKHAPATNAM 
3Dept. Of Electrical & Electronics Engineering, VIGNAN’S INSTITUTE OF INFORMATION 

TECHNOLOGY, VISAKHAPATNAM 

 

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published 

online: 23 May 2021 
 
Abstract - Due to the rising concern about global warming and depletion of fossil fuels, electric vehicles powered by lithium 

batteries are expected to become more popular over the next decade. Effective battery management relies on precise inference 

of state-of-charge (SoC) parameter which alerts drivers of their vehicle’s range capability. SOC is a demanding battery 

monitoring parameter and has a high impact on predicting the vehicle mileage, boosting battery life, and enhancing electric 

vehicle performance. In this work, a novel SOC prediction model based on Extended Kalman Filter (EKF) integrated with 

Thevenin equivalent battery circuit model is proposed. First, the LI battery is modeled in MATLAB/SIMULINK using a first 

- order resistor-capacitor (RC) equivalent circuit and battery parameters are calculated by conducting a pulse discharge test. As 

the battery’s discharge characteristics are nonlinear, EKF is preferred over simple Kalman Filter. The EKF algorithm is 

simulated under MATLAB environment. The actual SoC of the cell is obtained from the lithium-ion cell model and the 

estimated SoC is obtained from output of the EKF block. When compared it was found that the estimated value following the 

actual value with an error of 0.01. The findings demonstrate that the algorithm has good robustness that can match the functional 

requirements of technological applications. 
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1. Introduction – motivation 

 

With the ever-increasing demand for energy in green time, people prefer electric vehicles with features like 

high efficiency, energy conservation, environmental safety, etc. As an important component of electric vehicle,  an 

electric battery has direct effect on vehicle life and mobility. State charge (SOC) is used to represent the left out 

power of the battery, which is one of the most important parameters to highlight the condition of the battery. An 

accurate and reasonable estimate of the vehicle’s battery level can extend battery life, improve performance and 

ensure that the battery is operating within the proper working range. Therefore, the study of SOC estimation 

algorithms with good real time and high accuracy is very important for the promotion of electric vehicles. 

 

An algorithm derived from the extended kalman filter technique is discussed in this paper. The  main objective 

of the extended kalman filter algorithm is to build a model that illustrates a given condition, based on obtained data 

that computes parameter values with a recursive algorithm. The extended kalman filter approach has its own 

benefits in comparison to other approaches: if there are system errors, the self-correction might be within a definite 

range and a good approximation value can be obtained. The Kalman filter technique requires precise positioning 

to describe the model and precise measurement values. 

 

2. Establishment of the battery model 

 

The State Models are sets of mathematical equations that describe something physical. In this case, models or 

sets of equations that describe the behavior of lithium ion battery cells are designed. In order to do this, the way 

that a battery cell voltage responds to a change in electrical current, will be modeled by how a circuits voltage also 

would change to the same change in its input current.. And the model developed using these ideas is called the 

equivalent circuit model  because this circuit behaves in same way as the battery cell .And the equivalent circuit 

model has some desirable characteristics. They help you understand how cells respond to different cases. And 

secondly,  these models form  the basis of algorithms for battery management systems. There are many battery 

models to ensure accuracy, in this article I choose Thevenin model as the lithium battery model. This model has 

good accuracy and can reliably replicate a lithium-ion battery’s effective performance. 
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Fig. 1.THE BATTERY MODEL 

 

In figure 1. The parameters Voc , describes the open circuit voltage Vo, indicates the output voltage, I represents 

charging or discharging current, Rd, Ri, Cd , Cb are polarization resistance, internal resistance,  capacitance and 

bulk capacitance of the battery model respectively. As per Kirchhoff’s voltage and current laws, the state space 

equation of Thevenin circuit model can be represented as  

𝑉𝑜𝑐 =
1

𝐶𝑏
………… .1 

𝑉𝑑 =
1

𝐶𝑑
−

𝑉𝑑

𝑅𝑑𝐶𝑑
…… . .2 

 

𝑉𝑜 =  𝑉𝑜𝑐 +  𝑉𝑑 +  𝐼𝑅𝑖 ……… (3) 
Open circuit voltage of a battery is a nonlinear function of state of charge. Hence this relation can be 

expressed as: 

 

  

𝑉𝑜𝑐 =  𝑎. 𝑆𝑂𝐶 + 𝑏………… (4) 
 

Where the variables a and b are not constants and they vary with state of charge and temperature. Considering 

SoC and Vd as states, the state equation and the measurement equation can be obtained from the above battery 

model as shown below. 
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1
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3. Parameter identification of the battery model 

 

We have one equation that describes how state of charge changes versus time. We have another equation 

describing the evolution of the resistor current in a resistor-capacitor branch, and a final equation describing how 

to compute the cells terminal voltage. To identify model parameters of the Thevenin equivalent circuit pulse 

discharge tests are performed sequentially on LI battery modules at every 0.01 SOC, while maintaining 

temperatures within 25 ± 0.5 ° C. 

Table 1. specifications of the test cells 

 

Type Nominal 

capacity (Ah) 

Nominal 

voltage(V) 

Upper cut-off 

voltage(V) 

Lower cut-off 

voltage(V) 

 

Li FePO4 

 

30 

 

4 

 

4.2 

 

2.25 

 

 

4. Ekf algorithm 

 

Kalman Filter is a estimator of linear states. With the help of Kalman filter the error in estimating the states can 

be reduced greatly by the selection of appropriate error co variances. Kalman filter can only be applied to linear 

systems. For non-linear systems it can’t be applied directly. Therefore, the Taylor series of state and measurement 

equations is extended to the operating point and the kalman filter algorithm is applied. It is called  the EKF  

algorithm because it is an extended version of the column filter. Other than EKF, algorithms like Adaptive Kalman 
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Filter (AKF), Unscented Kalman Filter (UKF) and Particle Filter can be applied. Here in this study EKF was 

selected as the computations involved are less and the error in estimation is also negligible. Figure 4 gives a brief 

idea on the terms predicted state, optimal state estimate and measured state. 

 

 
Fig .2. TERMS RELATED TO STATE ESTIMATION 

 

The battery model can be expressed as: 

 

ẋ =  s(ẋ, u)  +  q  
 

𝑦 =  m(ẋ, u)  +  𝑟 

 

Where s(x, u) is the state equation, m(x, u) is the measurement equation, y is the output matrix, x is the state 

matrix, and q and r are process noise and measurement noise respectively. Then the below can be deduced as: 

                                          𝑠(𝑥, 𝑢) =
1

𝑎𝐶𝑏
……………(A) 

𝑠(𝑥, 𝑢) =
1

𝐶𝑑
−

𝑉𝑑

𝑅𝑑𝐶𝑑
……… (𝐴) 

 

𝑚(𝑥 , 𝑢)  =  𝑎. 𝑆𝑂𝐶 +  𝑉𝑑 + 𝐼𝑅𝑖 +  𝑏 . . . . . . . . . . . . . (𝐵) 
The KF algorithm has two steps of computation namely prediction step and update step. In prediction step error 

covariance is predicted from the given values of process noise, measurement noise, and initial state. Once the 

predictions are made, Kalman gain is found and the states of the system and error covariance are updated which 

comes under update step. Figure 4 shows the flow of KF algorithm. The state space representation of any system can 

be written as: 

𝑥   =  𝐴𝑚𝑥  +  𝐵𝑚 

𝑦 =  𝐶𝑚𝑥  +  𝐷𝑚 

 

Since discrete EKF is used, the battery model equations should be discretized after linearization. For linearizing 

the system, Taylor series expansion of the battery model equations are taken at the operating  points. Let the states 

of the system be SoC (denoted as x1), Vd (denoted as x2) and the input be I (denoted as u). Then the equations (A) 

and (B) can be rewritten as: 

 

The battery model after linearization can be written as: 

 

x = 𝐴𝑘𝑥 ̇ + 𝐵𝑘 

 

Now the battery model which is linearized is obtained. The linearized battery model can be discretized as 

shown below. 

Consider the above model with the matrices Ak, Bk, Ck and Dk. Then the state equation can be written as: 

 

(𝑋𝑘 + 1 −
𝑋𝑘

𝑇𝑠
) = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑈𝑘 

𝑥 𝑘 + 1 −  𝑥 𝑘 =  𝐴𝑘𝑥 𝑘𝑇𝑠 +  𝐵𝑘𝑢𝑘𝑇𝑠 

 𝑥 𝑘 + 1 =  𝐴𝑘𝑥 𝑘𝑇𝑠 +  𝐵𝑘𝑢𝑘𝑇𝑠 + 𝑥 𝑘  
𝑥 𝑘 + 1 =  (1 +  𝐴𝑘𝑇𝑠)𝑥 𝑘 +  𝐵𝑘𝑢𝑘𝑇𝑠 

 



Turkish Journal of Computer and Mathematics Education    Vol.12 No.12 (2021), 2630-2640  

                                                                                                                                      Research Article                                                

2933 

 

 

Now the battery model which is linearized is obtained. The linearized battery model can be discretized as 

shown below. 

Consider the above model with the matrices Ak, Bk, Ck and Dk. Then the state equation can be written as: 

 

Let the term (1 + Ak Ts ) = A and BkTs = B. Then state equation can be written as 

 

Xk+1 = Axk + Buk 

 

Similarly, the output equation can be written as: 

 

Yk+1 = Cxk + Duk 

Where C = Ck , D = Dk 

 

 

Fig.3. KALMAN FILTER ALGORITHM 

 

Now the battery model which is linearized is obtained. The linearized battery model can be discretized as 

shown below. 

Consider the above model with the matrices Ak, Bk, Ck and Dk. Then the state equation can be written as: 

 

Let the term (1 + Ak Ts ) = A and BkTs = B. Then state equation can be written as 

 

Xk+1 = Axk + Buk 

 

Similarly, the output equation can be written as: 

 

Yk+1 = Cxk + Duk 

Where C = Ck , D = Dk 

 

 

Fig.3. KALMAN FILTER ALGORITHM 
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5. Simulation results 

 

The measured value ’y’ is then given to Extended Kalman Filter block and the value of SoC is obtained at the 

output. 

 

 

Fig.4. SCHEMATIC DIAGRAM OF PERFORMED SIMULATION 

 

The actual SoC of the cell is obtained from the lithium-ion cell model and the estimated SoC is obtained from 

output of the EKF block 

        The values of process noise covariance (Q), measurement noise covariance (R), error covariance (P) and 

initial state 

(x) needs to be given to the EKF block for estimation. Below are the values which were provided as initial 

inputs 

 

 

2e − 8 0 

Q = [ 

0 3e − 7
]
 

Initial value:. The preliminary value of SOC is presumed to be 100% (full battery charge) whereas initial 

value for Vd is assumed to be 0. 

 

x = (1¦0) 

 

Initial  Covariance:  Initial covariance signifies how accurate and reliable the initial assumptions are. 

Assume that the maximum initial approximation error is 10% for SOC and 1V for Vd. 

0.01 0 

P =  

0 1
]
 

 

In this work , the simulink model is analysed and simulated for different C-rate conditions and the 

corresponding values are shown in table 5.1 and the plots of real SoC vs. estimated SoC and difference between 

them in terms of error are presented.
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Table 5.1 Actual SoC & Estimated SoC at different C-rates 

 

S.No AMPLITUDE 

OF C-RATE 

ACTUAL SoC ESTIMATED 

SoC 

ERROR 

1. C/10 0.9318 0.9322 -0.002784 

2. C/5 0.8937 0.8942 -0.002856 

3. C/3 0.8428 0.8432 -0.002624 

4. C/2 0.7792 0.7793 -0.002286 

5. C 0.5883 0.5888 -0.002655 

 

CASE (i): AT C/10 RATE (3A) 

 

 

 

 

ACTUAL SoC vs. ESTIMATED SoC ERROR IN SoC 

ESTIMATION 
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CASE (ii): AT C/5 RATE (6A) 

 

 

ACTUAL SoC vs. ESTIMATED SoC ERROR IN SoC ESTIMATION 

 

CASE (iii): AT C/3 RATE (10A) 

 

 

ACTUAL SoC vs. ESTIMATED SoC ERROR IN SoC ESTIMATION 
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CASE (iv): AT C/2 RATE (15A) 

 

 

ACTUAL SoC vs. ESTIMATED SoC ERROR IN SoC ESTIMATION 

 

 

 

CASE (V): AT C-RATE (30A) 

 

 

 

ACTUAL vs. ESTIMATED SOC ERROR IN SoC ESTIMATION 
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It can be observed from graphs and table that at every C-rate, the estimated value was found to be following 

the actual value with an error less than 0.01. After an initial estimation error, the SOC converges quickly to the 

real SOC. The final estimation error is within 0.01. Thus, the Extended Kalman Filter gives an accurate estimation 

of SOC. 

At every discharge-charge transition, the battery capacity is estimated to improve the SOC estimation. The 

battery system outputs indicator signals to inform what process the battery is in. Discharging process is represented 

by -1 in the indicator signals while charging process is represented by 1. 

In order to verify the SOC estimation algorithm based on EKF, the experiments of simulating the dynamic 

condition under complex conditions are carried in this paper. The test steps of the dynamic condition are as follows. 

First, charge the battery fully. Then, run 500s with 3A discharge, 1000s with 6A discharge, 1000 s with 10A 

discharge, 1000 s with 15A discharge, 1000 s with 30 A discharge, and so on. Figure 5.5 shows the dynamic input 

cycle. 

 

 

Dynamic working condition 

 

The results of the experiment are shown in Figs.5.6 and 5.7. It can be seen from Fig.5.7 that at the initial stage 

of SOC estimation, the SOC estimation error is very large because the initial value of SOC estimation is derived 

from the SOC-OCV relationship of the battery. However, the estimated value of SOC quickly converges to the 

true value according to the Kalman filter estimation algorithm, and the estimation accuracy is improved. The final 

estimation error is stable within 1%. 
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6. Conclusion 

 

The simulation results show that when the initial error of SOC is large, this algorithm can converge fast and 

have good robustness. The SOC estimation error is less than 1% in the dynamic condition, which can meet the 

requirements of engineering practice. 
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