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Abstract: Recently a large number of compiler conversions have been implemented to optimize programs.  A 

comprehensive exploration of all possible sequences of optimization  is not practical because the search space is huge 

considering the large number of compiler optimizations passes. In addition, predicting the effectiveness of these 

optimizations is not an easy task.  In this work, the suggested approach offers automatic tuning of compiler 

optimization sequences in place of manually tuning by recommended optimization sequences based on program 

features. Techniques inspired from the Recommendation System (RS) field to provide a solution to the autotuning of 

compiler optimizations problem. Content Based filtering method is finding a group of programs that are closest to the 

unseen program based on the similarity of their features. Then the best optimization sequences for these programs are 

recommended to the unseen one. Two versions of the CBF method, with and without rate value are presented.  

The approach is evaluated using three benchmark suites PolyBench, Shootout, and Stanford, including 50 different 

programs and using LLVM (Low Level Virtual Machine) compiler passes down Linux Ubuntu. Results obtained 

showed that such method is superior to the standard level of optimization -O3 of LLVM compiler in improving the 

execution time  by an average of 9.3 % for CBF without rate, 13.7% for CBF with rate. 
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1 Introduction 

Compilers consist of three stages: the front-end, middle-end and back-end. The front end analyzes a source 

program and the creates an intermediate representation (IR), the middle end represents the optimizer, 

applies a series of transformations to the IR to get best execution time, size of the code, and energy 

consumption, the back-end takes IR and outputs the target language. Compilers perform their optimizations 

in passes, where each pass is responsible for a specific code transformation. Compiler has many 

optimizations passes to be run on a program IR (Intermediate Representation). The optimization of the 

second stage (optimization) plays an importance role for the performance metrics. In other words, enable 

compiler optimization passes (e.g., loop unroll, allocation register , etc.) may yield great benefits in several 

the performance metrics where these performance metrics could be code size,  the execution time or power 

consume[1]. 

compiler typically contain some standard optimization levels that automatically enables the user to include 

a set of pre-defined sequences optimization of the assembly  process [2,3]. It is known that these standard 

improvements (eg -O1 or -O2 or -O3 or -O) useful for performance (or the size of the code) in most cases. 

In fact, powerful optimizations can weaken the code they are applied to. Therefore,  it is difficult to 

determine whether to enabled specifically compiler optimizations passes on the target code [2]. Thus, to 

resolve these problems, this worked presents a compiler autotuning method derived from the 

Recommendation system. The Content Based Filtering method, which uses performance counters to 

characterize program is introduce to find the best optimize sequences in terms of execution time.  

 In this approach, we find optimizations sequences which performed well on a “similar” (previously 

explored) program will work well for the new program being compiled.  Using performance counter events 

is attractive as it exploits knowledge of the program’s dynamic behavior. This paper is organized as 

follows: the next section (2), surveys some related work, then section (3), gives details of the proposed 

method. Section (4) presents some experimental results from the implementation of the Content Based 



A Content Based Filtering  Approach for the Automatic Tuning of Compiler Optimizations 

________________________________________________________________________________________________________________ 

__________________________________________________________________________________ 
3914 

Filtering method with and without rating value. Finally, in section (5), conclusions for the proposed method 

are presented. 

  

2   Related Work 

In this section, it is listed many of the related work that has been done in this area. Manal H. Al Mohammed 

2020 [4], In order to obtain best optimization sequences that can improve program performance, a parallel 

genetic algorithm approach has been proposed. In this method, the programs were classified into three 

groups and then three copies of the genetic algorithms were applied, each one to be grouped in parallel. 

Where three optimal improvement sequences were obtained. When the results of the implementation time 

compare to the levels of optimization -O2, it is found that the proposed method outperforms optimizations 

-O2. 

Laith H. Alhasnawy 2020[5],  To solve the problem of automatic tuning caused by manual tuning compiler 

optimizations, a machine learning way that relies on the use of a prediction scheme has been proposed. In 

this paper, K Nearest Neighbor (KNN) classifier algorithm is applied in the prediction scheme to find the 

optimization passes sequence supported to the features of the program. It also used the reduction algorithm 

to remove that passes increase time the execution of the program. It was found that the proposed method 

using the KNN algorithm in the prediction scheme outperforms when compared to the LLVM optimization 

levels -O2. Zeyd S. Alkaaby 2018[6], In this work, Where was used  multi-levels, genetic algorithm has 

been used to find a good optimal sequence. Our method has three levels. The programs search space is 

divided into three groups and trying  to find the best optimization sequence for each  program in the group. 

Then use these sequences to find a best sequence of all programs in that group. Genetic algorithm will use 

the resulting sequences to find out one good optimal sequence for all these groups. In general, this approach 

yields better results when compared with -O2. Suresh Purini 2013 [7], In this approach a completely 

different technique has been proposed from the iterative compilation and machine learning based prediction 

techniques. Best optimization sequencing sets have been found, capable of covering many programs in 

each group. LUIZ G. A. MARTINS 2016 [8], thorough exploration of all optimization sequences is a 

complex and time consuming task. In this approach, emphasis depends on an efficient Design Space 

Exploration (DSE) scheme to define the optimization sequence to improve performance of each application 

function and reduce exploration time. In this approach, a clustering-based selection method is proposed to 

reduce the number of translator improvements using the DSE approach. It uses a simple and fast algorithm 

(Clean Algorithm) that significantly reduces DSE execution time compared to the performance 

improvements achieved by using a Genetic Algorithm (GA). AMIR H. ASHOURI [9],  In this article an 

automatic optimization framework is proposed  call MiCOMP, which Mitigates the Compiler Phase-

ordering problem. We perform phase ordering of the optimizations using optimization sub-sequences and 

machine learning. We combined similarities between the problem analyzed  and the context of 

Recommender Systems, and integrated similarity measures to boost exploration efficiency. It was found 

that this method excels outperforms LLVM’s -O3 optimization sequence. Ramani S. 2016 [10] In this 

work, he proposes a sequence selection algorithm that filters out large optimization sequences on the 

program area. By doing so, he identifies the best optimization sequences group that reduces the time 

required to select the best optimization sequence and also reduces the runtime of the program area. The 

work of this paper uses recommendation system approach to find the better optimization sequences in term 

of the best passes order. 

  

3   Propose Method 

Modern compilers provide many optimization techniques that are used to solve the problem of compiler 

autotuning. In this paper, a technique inspired from Recommendation System is used. The recommendation 

is widely used in our daily life, that is a kind of information filtering system, by relying on huge data sets. 

One of the main approaches of Recommendation System that is called Content Based Filtering (CBF) is 

used in this paper.  The idea of CBF is that the optimizations sequences which performed well on a 

“similar” (previously explored) program will work well for the unseen program being compiled. The 

features for running programs are extract from special set of registers equipped by modern processor to 

measure the performance counter events. Several characteristics of running program are described by these 

events such as cache hits, cache misses and branch prediction.  Table 1 offers the performance counters 

events where first column lists the perf-events and the second column gives the type of these events.   

The training set (50 programs) is used to build a model, and to find the most similar group of programs 

(NNk) to its unseen one. Since we are dealing with iterative compilation (IC), the best sequences of five 

programs that the closest to unseen program based on the feature’s similarity is chosen as the best 
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suggestions.  

The following is an explication of the proposed method:: 

1- Extracting the events performance counter for each program used in this method, where 50 events are 

extract that reflect the program characteristics.   

2- Computing the similarity[13] for each program used in this method as follows: 

 

 

Sim(p,pi)=                                                            

(1) 

  

   

Table 1 presents the performance counters events 

 
where p represent the main program and and pi represent the other programs [9].   

3- For any new program that is unseen, it  is calculated  similarity by extracting its features and comparing 

them with the features of all programs (50 programs) 

4- After that, it can be identical to the unseen program  with the most similar programs, and since the work 

is an iterative compilation, the five programs (Top5) that the closest to unseen program is chosen as the 

best suggestions. 

 Figure 1 illustrates the suggested method which its main steps listed as follows:  

Step 1: Extract Program Features 

This way, it used 50 programs  where each program that collects 50 events. Next, the similarity of the 

features of each  program with the features of the unseen program is calculated, as in Equation 1. 
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Fig. 1. The structure of the proposed method 

  

The programs are order according to the similarity values; the high value represent the most similar. 

Depending on the resulting similarity, the programs with the highest similarity ratio are taken (closest 5 

neighbors to the unseen program).           

 

Step2: Content Based Filtering without rate value. 

    Content Based Filtering method is used to find the best optimization sequences that can reduce the 

execution time for most programs. Thus, compiling  the execution time of all the programs with  

optimization sequence q is collected. Then, the relevance of all programs is calculated according to the 

Equation 2.  Top5 programs that the closest to unseen program are chosen. Thus, each programs p0, p1, 

p2, . . .,p5 has been compiled and tested with a variety of large set of optimization sequences q0, q1, q2, . 
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. .q1000( that generated randomly).  The relevance rp(q) reflects how much the program p benefits from 

the optimizations defined in q the baseline set q0 (i.e., -O3), according to the Equation 2 

 

 

 

 

(2) 

Where fp(q) the execution time of the program p is compiled using sequence q, and fp(q0) represents the 

execution time of the program p after it is compiled using sequence of -O3 Flag. The average relevance 

score for all the programs that compiled with sequence q is calculated according to Equation 3. Since, we 

are dealing with iterative compilation (IC) the five sequences that have the less execution time is chosen 

as the best suggestions. 
  

     

(3) 

 

Where P represent the all programs. 

Step 3:  Content Based Filtering with rate value. 

In this step, the Content Based Filtering method is working with a rating to choose the best optimization 

sequences. Where the highest rate values are given to the sequences that have the best execution time, and 

the best sequence with the highest rate value is suggested. More specifics about the proposed method are 

offered as follows: 

1- Distant values are calculated (D ρ (qᵢ)), which is the amount of difference between program (P) execution 

time optimized using sequence (qi) and the same program (P) optimal with the -O3 flag. According to the 

following equation: (Equation 4)  

  

    

(4) 

                                         
2- A rate value is suggested for each sequence depending on the value of Distant (D ρ (qᵢ)). The lowest 

Distant value (D ρ (qᵢ)) is given the highest rating. 

3- For each optimization sequence, we collect the rate values that given by all the programs to that 

sequence. We choose the sequence with the highest rate value.  

As we are dealing with an Iterative compilation, five sequences with, highest rate values are selected. 

Giving each of the five sequences a value of rate between 1 to 5. Thus, the rate value =5 is given to the 

best sequence (less execution time), rate vale=4 for the next sequence, and so on. 

 

 

Step 4: The evaluation step. 

In this step, evaluation is done on unseen programs. Where the unseen programs are executed with the best 

five sequences, the ones giving lowest execution time, that generate from the step2 (without rating). Then, 

this process is repeated again where the unseen programs are executed with the best five sequences generate 

from the step 3 (with rate value).  The results of the first step and second step are compared with the 

optimization -O3 results.  The algorithm below illustrates the proposed method. 

 

 
Algorithm (1): Content Based Filtering algorithm for best optimization sequence 

 
Input : 50 different programs, vector of 50 event 
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Output: best five recommended optimization sequences 

1: For i=1 to number of programs 

    Features extraction from program  

  End For I 

2:    For j = 1 to number of programs 

               Find to classify program[j] for the closest unseen programs by its features 

        End For j 

3: For i=0 to number of optimization sequences 

   Seq[i] à Generate random optimization sequences by selecting passes from passes 

    vector.    

4: For i=0 to number of optimization sequences 

      For j=0 to number of programs that closest to unseen 

       Exe_time[i]. p[j] à Calculate the time of execution of programs closest to the 

     unseen program 

5: Switch (variable): { 

// best optimization sequences without rating 

   Case(1):   

              1: For i=0 to number of optimization sequences 

                  For j=0 to number of programs that closest to unseen  

                     Exe_time[i]. relevance[j]=(exe_time[i]. p[j]/exe_time. p_O3[j])-1                                   

              2: For i=0 to number of optimization sequences 

                     Sum=0 

                     For j=0 to number of programs 

                         Sum=sum+ Exe_time[i]. relevance[j] 

                         Exe_time[i].score_relevance = sum /number of  Programs                     

              3: Select minimum (Exe_time[i]. score_relevance) à  best optimization  

                  sequences 

// best optimization sequences with rating. 

Case(2):   

           1:For i=0 to number of optimization sequences 

               For j=0 to number of programs that closest to unseen 

                   Exe_time[i].Dist[j]= exe_time[i].p[j]-exe_time.p_O3[j]                                          

          2:For i=0 to number of programs that closest to unseen  

             For j=0 to number of optimization sequences 

                 minimum (Exe_time[i]. Dist[j]) à  rating  

//Give the rating of each programs according to their optimization (Dist). 

       

         3: For each optimization sequences, rating values are calculated for all  

                    programs in that sequences  

         4: Maximum rating values  à  best optimization sequences and give rate. 

Default: exit; 

} 

5:Test of unseen programs with best optimization sequences (case1 ,case2) and  

     calculate execution time. 

  Compare execution time(case1,case2) with optimization sequences -O3. 

 

 

4 Experimental Evaluation 

This part discusses the results that obtained from the implementation of the proposed method. The 

description of how the dataset is built is introduced in section 4.1. In section 4.2, the proposed method is 

evaluated.  Table 4 summarizes the technical details of the evaluation platform. 

  

TABLE 1.  Platform details 

 
Processor type Intel core-i7 

Processor speed 1.80GHz 

Processor    1 CPU, 4 Core, 2 threads per Core 

L1d Cache size  32k 

L1i Cache size  32k 

L3 Cache size  8192k 

RAM  4 GB 
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Operating System  Ubuntu 16.  

 

 

TABLE 1.  Platform details 

  

4. 1. Dataset collection 

Our experiments build a dataset of 50 different programs chosen from three different benchmark suite 

named PolyBench, Shootout and Stanford. The work is done to find a performance counter events for each 

program using perf Linux tool. And then finding the programs closest to the unseen program. These 

programs are compiled with 1000 randomly generated optimization sequences. Each sequence has 

generated different lengths from 1 to 60 passes. Each of the program is three times  executed to obtain the 

most accurate results for capturing the average execution time. More details about building a database as 

follows: 

1- Extract program  features using performance counter events.  

Performance counter events can describe the characteristic of running program.  Where 50 events are 

extract that reflect the dynamic behaviors of these programs [12].  

2- Generating a random optimizations sequences of different lengths.  

The best three sequences that are obtained from [4] are included in our data set.  The rest of the 

sequences are randomly generated from 60 LLVM passes showed in Table 2. Finally, the total number of 

the generated sequences is equal to 1000.  

  

TABLE 2. Optimization passes of -O3 standard optimization level 
List of -O3 optimization passes 

-domtree 

-inline 

-scalarizer 

-called-value-propagaton 

-tti 

-assumption-cache-tracker 

-opt-remark-emitter 

-lazy-block-freq 

-block-freq 

-instsimplify 

-loop-unswitch 

-licm 

-simplifycfg 

-memoryssa 

-loop-rotate 

-callsite-splitting 

-aa 

-demended-bits 

-loop-unroll 

-pgo-memop-opt 

-lcssa-verification 

-loop-accesses 

-globaldce 

-loop-load-elim 

-inferattrs 

-div-rem-pairs 

-profile-summary 

-tbaa 

-libcalls-shrinkwrap 

-jump-threading 

-globals-aa 

-targetlibinfo 

-scalar-evolution 

-basiccg 

-loop-simplify 

-speculative-execution 

-loops 

-sroa 

-basicaa 

-lazy-block-free 

-early-cse-memssa 

-rpo-functionattrs 

-prune-eh 

-ipsccp 

-globaldce 

-indvars 

-forceattrs 

-mem2reg 

-globalopt 

-tailcallelim 

-instcombine 

-reassociate 

3-The execution time of all programs.   
The group of programs are evaluated where each program (p) is compiled with all optimization sequences 

created in step (1). The execution time of program p that is compiled using sequence q is denoted by fp(q) 

refer with (Equation 1).    

4- O3 program execution time.  

All the programs are compiled with -O3 flag which represents the stander optimization sequence and it is 

denoted by fp(q0) refer with (Equation 1). 

  

4. 2.  Experimental Results 

The results of applying the CBF method are presented in this section where 50 programs are used to build 

the dataset and 5 unseen programs are used to evaluate the proposed method. A set of best optimization 

sequences was recommended as final obtained results. The comparison is made between the set of best 

optimization sequences (CBF without rate value) and -O3 flag. Figure 1 shows the comparisons between 

the execution time for set of unseen programs compiled with -O3 flag and the same set compiled with best 
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five sequences (wrec_seq1, wrec_seq2, wrec_seq3, wrec_seq4, wrec_seq5) resulted from Content Based 

Filtering method without rate value. Moreover, it shows that for most of these programs the CBF method 

outperforms the -O3 optimization sequence of a factor 9.3% in term of reduction in the execution time. 

  

 
Fig. 1.  Execution time of unseen programs (CBF without rate value) 

 

In Fig. 1. the X AXIS represents the unseen programs (5 unseen programs ) that was tested using the 

method CBF without rating and obtained the best 5 different optimization sequences for each unseen 

program (The numbers in the parentheses of the group represent the numbers of the top 5 improvement 

sequences obtained out of 1000 improvement strings (which we randomly generated) ) and compare with 

-O3 flag . As for the Y AXIS, it represents the time of execution of each unseen program with the -O3 flag 

and  (5TOP) the best different optimization sequences of obtained. 

 

4. 2. 1. The results of the CBF with rate value. 

 In this approach, the results of applying the CBF method with rate value are presented. The sets of best 

recommended optimization sequences were identified for comparison. The results of compilation of the 

best five sequences over a set of unseen programs are compared to the results of the same set of unseen 

programs compiled with -O3 optimization sequence. 
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Fig. 2.  Execution time of unseen programs (CBF with rate value) 

 

In Fig. 2. the X AXIS represents the unseen programs (5 unseen programs ) that was tested using the 

method CBF with rating and obtained the best 5 different optimization sequences for each unseen program 

(The numbers in the parentheses of the group represent the numbers of the top 5 improvement sequences 

obtained out of 1000 improvement strings (which we randomly generated) ) and compare with -O3 flag . 

As for the y axis, it represents the time of execution of each unseen program with the -O3 flag and  (5TOP) 

the best different optimization sequences of obtained. The results show that on average for most of these 

programs outperforms the -O3 optimization sequence of a factor 13.7% in term of reduction in the 

execution time. 

 

 5 Conclusion 

 This paper presented a method that provides autotuning compiler optimization instead of manual tuning. 

Content Based filtering (CBF) method is used to find the best optimization sequences that can reduce the 

execution time for unseen program based on the similarity measure. Two versions of CBF method (with 

and without rate value) were proposed. Thus, 50 different programs and 1000 randomly generated 

sequences are used to build the dataset. The results of two versions that were evaluated using 5 unseen 

programs showed the performance of the proposed method in improving the time of execution by average 

of 9.3% for CBF without rate, 13,7% for CBF with rate in term of execution time reduction. 
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