
Turkish Journal of Computer and Mathematics Education

__
3913

Research Article

Vol.12 No.6 (2021), 3913-3922

A Content Based Filtering Approach for the Automatic Tuning of

Compiler Optimizations

Rafeef M. Al Baity 1,1 , Esraa H. Alwan 1, Ahmed B. M. Fanfakh 1
1 Department of Computer science Collage of science for women University of Babylon
1rafeefm.albayati@gmail.com, 2esraa.hadi@uobabylon.edu.iq, 3ahmed.fanfakh@uobabylon.edu.iq

Article History: Received: 10 November 2020; Revised 12 January 2021 Accepted: 27 January 2021;

Published online: 5 April 2021

__

Abstract: Recently a large number of compiler conversions have been implemented to optimize programs. A

comprehensive exploration of all possible sequences of optimization is not practical because the search space is huge

considering the large number of compiler optimizations passes. In addition, predicting the effectiveness of these

optimizations is not an easy task. In this work, the suggested approach offers automatic tuning of compiler

optimization sequences in place of manually tuning by recommended optimization sequences based on program

features. Techniques inspired from the Recommendation System (RS) field to provide a solution to the autotuning of

compiler optimizations problem. Content Based filtering method is finding a group of programs that are closest to the

unseen program based on the similarity of their features. Then the best optimization sequences for these programs are

recommended to the unseen one. Two versions of the CBF method, with and without rate value are presented.

The approach is evaluated using three benchmark suites PolyBench, Shootout, and Stanford, including 50 different

programs and using LLVM (Low Level Virtual Machine) compiler passes down Linux Ubuntu. Results obtained

showed that such method is superior to the standard level of optimization -O3 of LLVM compiler in improving the

execution time by an average of 9.3 % for CBF without rate, 13.7% for CBF with rate.

Key words: Compiler, Pass, Optimization Sequences, Recommendation system

1 Introduction

Compilers consist of three stages: the front-end, middle-end and back-end. The front end analyzes a source

program and the creates an intermediate representation (IR), the middle end represents the optimizer,

applies a series of transformations to the IR to get best execution time, size of the code, and energy

consumption, the back-end takes IR and outputs the target language. Compilers perform their optimizations

in passes, where each pass is responsible for a specific code transformation. Compiler has many

optimizations passes to be run on a program IR (Intermediate Representation). The optimization of the

second stage (optimization) plays an importance role for the performance metrics. In other words, enable

compiler optimization passes (e.g., loop unroll, allocation register , etc.) may yield great benefits in several

the performance metrics where these performance metrics could be code size, the execution time or power

consume[1].

compiler typically contain some standard optimization levels that automatically enables the user to include

a set of pre-defined sequences optimization of the assembly process [2,3]. It is known that these standard

improvements (eg -O1 or -O2 or -O3 or -O) useful for performance (or the size of the code) in most cases.

In fact, powerful optimizations can weaken the code they are applied to. Therefore, it is difficult to

determine whether to enabled specifically compiler optimizations passes on the target code [2]. Thus, to

resolve these problems, this worked presents a compiler autotuning method derived from the

Recommendation system. The Content Based Filtering method, which uses performance counters to

characterize program is introduce to find the best optimize sequences in terms of execution time.

 In this approach, we find optimizations sequences which performed well on a “similar” (previously

explored) program will work well for the new program being compiled. Using performance counter events

is attractive as it exploits knowledge of the program’s dynamic behavior. This paper is organized as

follows: the next section (2), surveys some related work, then section (3), gives details of the proposed

method. Section (4) presents some experimental results from the implementation of the Content Based

A Content Based Filtering Approach for the Automatic Tuning of Compiler Optimizations

__

__
3914

Filtering method with and without rating value. Finally, in section (5), conclusions for the proposed method

are presented.

2 Related Work

In this section, it is listed many of the related work that has been done in this area. Manal H. Al Mohammed

2020 [4], In order to obtain best optimization sequences that can improve program performance, a parallel

genetic algorithm approach has been proposed. In this method, the programs were classified into three

groups and then three copies of the genetic algorithms were applied, each one to be grouped in parallel.

Where three optimal improvement sequences were obtained. When the results of the implementation time

compare to the levels of optimization -O2, it is found that the proposed method outperforms optimizations

-O2.

Laith H. Alhasnawy 2020[5], To solve the problem of automatic tuning caused by manual tuning compiler

optimizations, a machine learning way that relies on the use of a prediction scheme has been proposed. In

this paper, K Nearest Neighbor (KNN) classifier algorithm is applied in the prediction scheme to find the

optimization passes sequence supported to the features of the program. It also used the reduction algorithm

to remove that passes increase time the execution of the program. It was found that the proposed method

using the KNN algorithm in the prediction scheme outperforms when compared to the LLVM optimization

levels -O2. Zeyd S. Alkaaby 2018[6], In this work, Where was used multi-levels, genetic algorithm has

been used to find a good optimal sequence. Our method has three levels. The programs search space is

divided into three groups and trying to find the best optimization sequence for each program in the group.

Then use these sequences to find a best sequence of all programs in that group. Genetic algorithm will use

the resulting sequences to find out one good optimal sequence for all these groups. In general, this approach

yields better results when compared with -O2. Suresh Purini 2013 [7], In this approach a completely

different technique has been proposed from the iterative compilation and machine learning based prediction

techniques. Best optimization sequencing sets have been found, capable of covering many programs in

each group. LUIZ G. A. MARTINS 2016 [8], thorough exploration of all optimization sequences is a

complex and time consuming task. In this approach, emphasis depends on an efficient Design Space

Exploration (DSE) scheme to define the optimization sequence to improve performance of each application

function and reduce exploration time. In this approach, a clustering-based selection method is proposed to

reduce the number of translator improvements using the DSE approach. It uses a simple and fast algorithm

(Clean Algorithm) that significantly reduces DSE execution time compared to the performance

improvements achieved by using a Genetic Algorithm (GA). AMIR H. ASHOURI [9], In this article an

automatic optimization framework is proposed call MiCOMP, which Mitigates the Compiler Phase-

ordering problem. We perform phase ordering of the optimizations using optimization sub-sequences and

machine learning. We combined similarities between the problem analyzed and the context of

Recommender Systems, and integrated similarity measures to boost exploration efficiency. It was found

that this method excels outperforms LLVM’s -O3 optimization sequence. Ramani S. 2016 [10] In this

work, he proposes a sequence selection algorithm that filters out large optimization sequences on the

program area. By doing so, he identifies the best optimization sequences group that reduces the time

required to select the best optimization sequence and also reduces the runtime of the program area. The

work of this paper uses recommendation system approach to find the better optimization sequences in term

of the best passes order.

3 Propose Method

Modern compilers provide many optimization techniques that are used to solve the problem of compiler

autotuning. In this paper, a technique inspired from Recommendation System is used. The recommendation

is widely used in our daily life, that is a kind of information filtering system, by relying on huge data sets.

One of the main approaches of Recommendation System that is called Content Based Filtering (CBF) is

used in this paper. The idea of CBF is that the optimizations sequences which performed well on a

“similar” (previously explored) program will work well for the unseen program being compiled. The

features for running programs are extract from special set of registers equipped by modern processor to

measure the performance counter events. Several characteristics of running program are described by these

events such as cache hits, cache misses and branch prediction. Table 1 offers the performance counters

events where first column lists the perf-events and the second column gives the type of these events.

The training set (50 programs) is used to build a model, and to find the most similar group of programs

(NNk) to its unseen one. Since we are dealing with iterative compilation (IC), the best sequences of five

programs that the closest to unseen program based on the feature’s similarity is chosen as the best

Turkish Journal of Computer and Mathematics Education

__
3915

Research Article

Vol.12 No.6 (2021), 3913-3922

suggestions.

The following is an explication of the proposed method::

1- Extracting the events performance counter for each program used in this method, where 50 events are

extract that reflect the program characteristics.

2- Computing the similarity[13] for each program used in this method as follows:

Sim(p,pi)=

(1)

Table 1 presents the performance counters events

where p represent the main program and and pi represent the other programs [9].

3- For any new program that is unseen, it is calculated similarity by extracting its features and comparing

them with the features of all programs (50 programs)

4- After that, it can be identical to the unseen program with the most similar programs, and since the work

is an iterative compilation, the five programs (Top5) that the closest to unseen program is chosen as the

best suggestions.

 Figure 1 illustrates the suggested method which its main steps listed as follows:

Step 1: Extract Program Features

This way, it used 50 programs where each program that collects 50 events. Next, the similarity of the

features of each program with the features of the unseen program is calculated, as in Equation 1.

A Content Based Filtering Approach for the Automatic Tuning of Compiler Optimizations

__

__
3916

Fig. 1. The structure of the proposed method

The programs are order according to the similarity values; the high value represent the most similar.

Depending on the resulting similarity, the programs with the highest similarity ratio are taken (closest 5

neighbors to the unseen program).

Step2: Content Based Filtering without rate value.

 Content Based Filtering method is used to find the best optimization sequences that can reduce the

execution time for most programs. Thus, compiling the execution time of all the programs with

optimization sequence q is collected. Then, the relevance of all programs is calculated according to the

Equation 2. Top5 programs that the closest to unseen program are chosen. Thus, each programs p0, p1,

p2, . . .,p5 has been compiled and tested with a variety of large set of optimization sequences q0, q1, q2, .

Turkish Journal of Computer and Mathematics Education

__
3917

Research Article

Vol.12 No.6 (2021), 3913-3922

. .q1000(that generated randomly). The relevance rp(q) reflects how much the program p benefits from

the optimizations defined in q the baseline set q0 (i.e., -O3), according to the Equation 2

(2)

Where fp(q) the execution time of the program p is compiled using sequence q, and fp(q0) represents the

execution time of the program p after it is compiled using sequence of -O3 Flag. The average relevance

score for all the programs that compiled with sequence q is calculated according to Equation 3. Since, we

are dealing with iterative compilation (IC) the five sequences that have the less execution time is chosen

as the best suggestions.

(3)

Where P represent the all programs.

Step 3: Content Based Filtering with rate value.

In this step, the Content Based Filtering method is working with a rating to choose the best optimization

sequences. Where the highest rate values are given to the sequences that have the best execution time, and

the best sequence with the highest rate value is suggested. More specifics about the proposed method are

offered as follows:

1- Distant values are calculated (D ρ (qᵢ)), which is the amount of difference between program (P) execution

time optimized using sequence (qi) and the same program (P) optimal with the -O3 flag. According to the

following equation: (Equation 4)

(4)

2- A rate value is suggested for each sequence depending on the value of Distant (D ρ (qᵢ)). The lowest

Distant value (D ρ (qᵢ)) is given the highest rating.

3- For each optimization sequence, we collect the rate values that given by all the programs to that

sequence. We choose the sequence with the highest rate value.

As we are dealing with an Iterative compilation, five sequences with, highest rate values are selected.

Giving each of the five sequences a value of rate between 1 to 5. Thus, the rate value =5 is given to the

best sequence (less execution time), rate vale=4 for the next sequence, and so on.

Step 4: The evaluation step.

In this step, evaluation is done on unseen programs. Where the unseen programs are executed with the best

five sequences, the ones giving lowest execution time, that generate from the step2 (without rating). Then,

this process is repeated again where the unseen programs are executed with the best five sequences generate

from the step 3 (with rate value). The results of the first step and second step are compared with the

optimization -O3 results. The algorithm below illustrates the proposed method.

Algorithm (1): Content Based Filtering algorithm for best optimization sequence

Input : 50 different programs, vector of 50 event

A Content Based Filtering Approach for the Automatic Tuning of Compiler Optimizations

__

__
3918

Output: best five recommended optimization sequences

1: For i=1 to number of programs

 Features extraction from program

 End For I

2: For j = 1 to number of programs

 Find to classify program[j] for the closest unseen programs by its features

 End For j

3: For i=0 to number of optimization sequences

 Seq[i] à Generate random optimization sequences by selecting passes from passes

 vector.

4: For i=0 to number of optimization sequences

 For j=0 to number of programs that closest to unseen

 Exe_time[i]. p[j] à Calculate the time of execution of programs closest to the

 unseen program

5: Switch (variable): {

// best optimization sequences without rating

 Case(1):

 1: For i=0 to number of optimization sequences

 For j=0 to number of programs that closest to unseen

 Exe_time[i]. relevance[j]=(exe_time[i]. p[j]/exe_time. p_O3[j])-1

 2: For i=0 to number of optimization sequences

 Sum=0

 For j=0 to number of programs

 Sum=sum+ Exe_time[i]. relevance[j]

 Exe_time[i].score_relevance = sum /number of Programs

 3: Select minimum (Exe_time[i]. score_relevance) à best optimization

 sequences

// best optimization sequences with rating.

Case(2):

 1:For i=0 to number of optimization sequences

 For j=0 to number of programs that closest to unseen

 Exe_time[i].Dist[j]= exe_time[i].p[j]-exe_time.p_O3[j]

 2:For i=0 to number of programs that closest to unseen

 For j=0 to number of optimization sequences

 minimum (Exe_time[i]. Dist[j]) à rating

//Give the rating of each programs according to their optimization (Dist).

 3: For each optimization sequences, rating values are calculated for all

 programs in that sequences

 4: Maximum rating values à best optimization sequences and give rate.

Default: exit;

}

5:Test of unseen programs with best optimization sequences (case1 ,case2) and

 calculate execution time.

 Compare execution time(case1,case2) with optimization sequences -O3.

4 Experimental Evaluation

This part discusses the results that obtained from the implementation of the proposed method. The

description of how the dataset is built is introduced in section 4.1. In section 4.2, the proposed method is

evaluated. Table 4 summarizes the technical details of the evaluation platform.

TABLE 1. Platform details

Processor type Intel core-i7

Processor speed 1.80GHz

Processor 1 CPU, 4 Core, 2 threads per Core

L1d Cache size 32k

L1i Cache size 32k

L3 Cache size 8192k

RAM 4 GB

Turkish Journal of Computer and Mathematics Education

__
3919

Research Article

Vol.12 No.6 (2021), 3913-3922

Operating System Ubuntu 16.

TABLE 1. Platform details

4. 1. Dataset collection

Our experiments build a dataset of 50 different programs chosen from three different benchmark suite

named PolyBench, Shootout and Stanford. The work is done to find a performance counter events for each

program using perf Linux tool. And then finding the programs closest to the unseen program. These

programs are compiled with 1000 randomly generated optimization sequences. Each sequence has

generated different lengths from 1 to 60 passes. Each of the program is three times executed to obtain the

most accurate results for capturing the average execution time. More details about building a database as

follows:

1- Extract program features using performance counter events.

Performance counter events can describe the characteristic of running program. Where 50 events are

extract that reflect the dynamic behaviors of these programs [12].

2- Generating a random optimizations sequences of different lengths.

The best three sequences that are obtained from [4] are included in our data set. The rest of the

sequences are randomly generated from 60 LLVM passes showed in Table 2. Finally, the total number of

the generated sequences is equal to 1000.

TABLE 2. Optimization passes of -O3 standard optimization level
List of -O3 optimization passes

-domtree

-inline

-scalarizer

-called-value-propagaton

-tti

-assumption-cache-tracker

-opt-remark-emitter

-lazy-block-freq

-block-freq

-instsimplify

-loop-unswitch

-licm

-simplifycfg

-memoryssa

-loop-rotate

-callsite-splitting

-aa

-demended-bits

-loop-unroll

-pgo-memop-opt

-lcssa-verification

-loop-accesses

-globaldce

-loop-load-elim

-inferattrs

-div-rem-pairs

-profile-summary

-tbaa

-libcalls-shrinkwrap

-jump-threading

-globals-aa

-targetlibinfo

-scalar-evolution

-basiccg

-loop-simplify

-speculative-execution

-loops

-sroa

-basicaa

-lazy-block-free

-early-cse-memssa

-rpo-functionattrs

-prune-eh

-ipsccp

-globaldce

-indvars

-forceattrs

-mem2reg

-globalopt

-tailcallelim

-instcombine

-reassociate

3-The execution time of all programs.
The group of programs are evaluated where each program (p) is compiled with all optimization sequences

created in step (1). The execution time of program p that is compiled using sequence q is denoted by fp(q)

refer with (Equation 1).

4- O3 program execution time.

All the programs are compiled with -O3 flag which represents the stander optimization sequence and it is

denoted by fp(q0) refer with (Equation 1).

4. 2. Experimental Results

The results of applying the CBF method are presented in this section where 50 programs are used to build

the dataset and 5 unseen programs are used to evaluate the proposed method. A set of best optimization

sequences was recommended as final obtained results. The comparison is made between the set of best

optimization sequences (CBF without rate value) and -O3 flag. Figure 1 shows the comparisons between

the execution time for set of unseen programs compiled with -O3 flag and the same set compiled with best

A Content Based Filtering Approach for the Automatic Tuning of Compiler Optimizations

__

__
3920

five sequences (wrec_seq1, wrec_seq2, wrec_seq3, wrec_seq4, wrec_seq5) resulted from Content Based

Filtering method without rate value. Moreover, it shows that for most of these programs the CBF method

outperforms the -O3 optimization sequence of a factor 9.3% in term of reduction in the execution time.

Fig. 1. Execution time of unseen programs (CBF without rate value)

In Fig. 1. the X AXIS represents the unseen programs (5 unseen programs) that was tested using the

method CBF without rating and obtained the best 5 different optimization sequences for each unseen

program (The numbers in the parentheses of the group represent the numbers of the top 5 improvement

sequences obtained out of 1000 improvement strings (which we randomly generated)) and compare with

-O3 flag . As for the Y AXIS, it represents the time of execution of each unseen program with the -O3 flag

and (5TOP) the best different optimization sequences of obtained.

4. 2. 1. The results of the CBF with rate value.

 In this approach, the results of applying the CBF method with rate value are presented. The sets of best

recommended optimization sequences were identified for comparison. The results of compilation of the

best five sequences over a set of unseen programs are compared to the results of the same set of unseen

programs compiled with -O3 optimization sequence.

Turkish Journal of Computer and Mathematics Education

__
3921

Research Article

Vol.12 No.6 (2021), 3913-3922

Fig. 2. Execution time of unseen programs (CBF with rate value)

In Fig. 2. the X AXIS represents the unseen programs (5 unseen programs) that was tested using the

method CBF with rating and obtained the best 5 different optimization sequences for each unseen program

(The numbers in the parentheses of the group represent the numbers of the top 5 improvement sequences

obtained out of 1000 improvement strings (which we randomly generated)) and compare with -O3 flag .

As for the y axis, it represents the time of execution of each unseen program with the -O3 flag and (5TOP)

the best different optimization sequences of obtained. The results show that on average for most of these

programs outperforms the -O3 optimization sequence of a factor 13.7% in term of reduction in the

execution time.

 5 Conclusion

 This paper presented a method that provides autotuning compiler optimization instead of manual tuning.

Content Based filtering (CBF) method is used to find the best optimization sequences that can reduce the

execution time for unseen program based on the similarity measure. Two versions of CBF method (with

and without rate value) were proposed. Thus, 50 different programs and 1000 randomly generated

sequences are used to build the dataset. The results of two versions that were evaluated using 5 unseen

programs showed the performance of the proposed method in improving the time of execution by average

of 9.3% for CBF without rate, 13,7% for CBF with rate in term of execution time reduction.

6 References

1. Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos and

Cristina Silvano: COBAYN: Compiler Autotuning using Bayesian Networks ACM Trans. Architec.

Code Optim. 0, N, Article A (2015), 25 pages.

2. Leif Uhsadel, Andy Georges, Ingrid Verbauwhedey: Exploiting Hardware Performance Counters.

p.59-67(2008).

3. Enneth Hoste and Lieven Eeckhout : Cole: compiler optimization level exploration. In Proceedings of

the 6th annual IEEE/ACM international symposium on Code generation and optimization. ACM, 165–

174. 2008, Boston, Massachusetts, USA.

4. Manal H. Almohammed, Ahmed B. M. Fanfakh(B), and Esraa H. Alwan. Parallel Genetic Algorithm

for Optimizing Compiler Sequences Ordering. NTICT 2020, CCIS 1183, pp. 128–138, 2020.

5. Laith H. Alhasnawy, Esraa H. Alwan, and Ahmed B. M. Fanfakh. Using Machine Learning to

Predictthe Sequences of Optimization Passes. NTICT 2020, CCIS 1183, pp. 139–156, 2020.

6. Zaid S. Alkaaby, Esraa H. Alwan, and Ahmed B. M. Fanfakh: Finding a Good Global Sequence using

Multi-Level Genetic Algorithm. Journal of Engineering and applied Science 13 (22):9777-9783, 2018.

A Content Based Filtering Approach for the Automatic Tuning of Compiler Optimizations

__

__
3922

7. Purini, S., Jain, L.: Finding good optimization sequences covering program space. ACM Trans. Archit.

Code Opt. (TACO) 9(4), 56 (2013).

8. Luiz G. A. Martins, Ricardo Nobre, Jo˜ao M. P. Cardoso, Alexandre C. B. Delbem, and Eduardo

Marques: Clustering-Based Selection for the Exploration of Compiler Optimization Sequences. ACM

Trans. Archit. Code Optim. 13, 1, Article 8 (March 2016), 28 pages.

9. Ashouri, A.H.,Bignoli, A., Palermo, G., Silvano, C.,Kulkarni, S.,Cavazos, J.: Mitigating the compiler

phase-ordering problem using optimization sub-sequences and machine learning (MiCOMP). ACM

Trans. Archit. Code Opt. (TACO) 14(3), 29 (2017).

10. Ramani S, Boominathan P, Swathi J, Narayanana , Rajkumar S.: Improving Optimization Sequence of

Compilers by Using Sequence Selection Approach. IJPT| June-2016 | Vol. 8 | Issue No.2 | 13471-

13480.

11. John Cavazos1 Grigori Fursin2 Felix Agakov1 Edwin Bonilla1: Rapidly Selecting Good Compiler

Optimizations using Performance Counters.

12. Nisbet, A.P.: GAPS: Iterative feedback directed parallelization using genetic algorithms. In: Workshop

on Profile and Feedback-Directed Compilation (1998).

13. Kumar, T.S., Sakthivel, S., Kumar, S.: Optimizing code by selecting compiler flags using parallel

genetic algorithm on multicore CPUs. Int. J. Eng. Technol. (IJET) 6, 544–555 (2014).

14. Stefano Cereda, Gianluca Palermo, Paolo Cremonesi and Stefano Doni: A Collaborative Filtering

Approach for the Automatic Tuning of Compiler Optimisations. In Proceedings of 21st

ACMSIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,

London, United Kingdom, June 16, 2020 (LCTES ’20), 10 pages.

