Research Article

# Vibrational Analysis of Damped Non-Homogeneous Annular Plate Whose Thickness Changes Exponentially with Winkler's Type Elastic Foundation

### Manu Gupta<sup>1</sup>, Ajendra Kumar<sup>2</sup>, Ankit Kumar<sup>3</sup>

<sup>1</sup>Department of Mathematics, JV Jain (PG) College, Saharanpur, India <sup>2-3</sup>Department of Mathematics and Statistics, G. K. V., Haridwar, India

# Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021

Abstract: The present paper deals with the mathematical model on vibrational analysis of damped non-homogeneous annular plate considering parameters of changing thickness and Winkler's type elastic foundation. Here thickness and non-homogeneity are considered to vary exponentially. Numerical simulation is performed through QSIT (Quintic spline interpolation technique) which provides approximate results as per desired accuracy for two different combination of edge conditions CC & CS and we obtained first three modes of frequency parameter. Accuracy for the solution to our assumed mathematical model is affirmed by comparing obtained results with those available in previous literature. MATLAB (2015) is used to produced and present the results of above mathematical model.

Keywords - Annular plate, damping parameter, Winkler's foundation, exponential thickness and non-homogeneity.

# 1. Introduction

Annular plate is widely used in design of stream turbine, high speed aircraft structures, racing sports, automobiles, nuclear plant structures etc. to providing structural component with high strength. Annular plate with composite material have created lighter and stronger structures which can racist high temperature environment. So various effects and parameters have been applied in previous studies & in this present paper also, which will helps to improves structures dynamics of a mechanical structures. For practical applications, in making mechanical structures which consist of highways, pavement, damps, building foundation, airport runways etc., researchers have used different type of elastic foundation parameters and varying thickness parameter for plate structures. Winkler's, Pasternak and Vlasov's are generally used by researchers as elastic foundation parameter. Various researchers have applied Winkler's foundation in their research for studying frequency in vibration of different type plate structures.

Lal et al. [10] analysed and studied annular plate with non-homogeneity parameter & finds its vibrational behaviour for changing thickness & Winkler's type elastic foundation. Gupta et al. [4] in their research studied polar orthotropic annular plate axisymmetric vibrations whose thickness varies linearly with Pasternak foundation. Bhattacharya [1] have studied in detail effect of Vlasov's foundation on free vibration of plates. In addition to these Robin et al. [12], Sharma et al. [13], Gupta et al. [14] have also considered Winkler's foundation on behaviour of frequency of different type of plate structures. Non- homogeneity of the materials provides flexibility to mechanical structures for their operators as in case of switches, pressure capsules etc. Non-homogeneity provides us materials which are strong and light in weight in comparison to the old materials used previously, so it is necessary to study vibrations of annular plate structures considering non-homogeneity parameters. The non-homogeneity parameters have been considered by the various researchers [9, 11, 15] in their mathematical model of various shapes of plate structures. Singh & Jaiman [7] and Khare & Mittal [8] discussed on different type of boundary conditions of a thin annular circular plate.

The vibrational frequencies in mechanical structures should always be considered as damped frequencies since free vibrations are the ideal case and are practically not possible. This study of damping in structural dynamics is an important concept to be considered as they effect the vibrational behaviour of a structures [2]. The damping effect could be so small to effect the vibrational behaviour of plate or so large to effect the whole structure [5].

Thus considering the importance of ring shaped (especially annular plates) plates with various parameters, a mathematical model which consist of a fourth order partial differential equation is formulated for vibrational analysis of damped non-homogeneous annular plate considering thickness changing exponentially and tacking Winkler's elastic foundation. QSIT is used for numerical simulation of results to fetch first three modes of frequency parameter for two edge conditions viz. C-C and C-S respectively.

# 2. Methodology of The Problem

# Research Article

For the formulation of our problem a thin isotropic annular plate of exponentially varying thickness h(r) is considered and parameters of damping & foundation are incorporated in mathematical model which is available in previous literature [6] and we obtained our mathematical model as fourth order partial differential equation (PDE) given by:

$$D\frac{\partial^{4}\phi}{\partial r^{4}} + \frac{2}{r} \left[ D + r\frac{\partial D}{\partial r} \right] \frac{\partial^{3}\phi}{\partial r^{3}} + \frac{1}{r^{2}} \left[ -D + r(2+v)\frac{\partial D}{\partial r} + r^{2}\frac{\partial^{2}D}{\partial r^{2}} \right] \frac{\partial^{2}\phi}{\partial r^{2}} + \frac{1}{r^{3}} \left[ D - r\frac{\partial D}{\partial r} + r^{2}v\frac{\partial^{2}D}{\partial r^{2}} \right] \frac{\partial\phi}{\partial r} + \rho h \frac{\partial^{2}\phi}{\partial t^{2}} + d_{k}\frac{\partial\phi}{\partial t} + f_{e}\phi = 0$$
(1)
Where  $D = \frac{Eh^{3}}{2}$ ,  $D \neq F(r)$ ,  $d_{k}$  and  $f_{e}$  are flavorable initiality transverse deflection second effection second deflection.

Where  $D = \frac{Ln}{12(1-v^2)}$ ,  $D, \phi, E(r), d_k$  and  $f_e$  are flexural rigidity, transverse deflection, young's modulus, damping

parameter and foundation parameter respectively.

To obtain a harmonic solution, deflection function takes the form  $\phi = Z(r)e^{-\mu t} \cos \omega t$ , where  $\omega$  is called circular frequency of the plate and Assuming thickness change exponentially as  $H = H_0 e^{\alpha x}$ , Material nonhomogeneity expressed as  $E = E_0 e^{\mu x}$ ,  $\rho = \rho_0 e^{\mu x}$  where  $\mu$  is non-homogeneity parameter,  $\rho_0$  is density and  $E_0$  is Young's modulus at the inner edge. We put assumed deflection function and taking dimensional less variables r/a = x, H = h/a in equation (1).

So the dimensionless form of the mathematical model (fourth order PDE) after suitable mathematical calculation is obtain as,

$$W_0 \frac{\partial^4 Z}{\partial x^4} + W_1 \frac{\partial^3 Z}{\partial x^3} + W_2 \frac{\partial^2 Z}{\partial x^2} + W_3 \frac{\partial Z}{\partial x} + W_4 Z = 0,$$
(2)

$$W_{0} = 1$$

$$W_{1} = \frac{2}{x} [1 + x(3\alpha + \beta)]$$

$$W_{2} = \frac{1}{x^{2}} [-1 + (2 + \nu_{\theta})(3\alpha + \beta)x + x^{2}(3\alpha + \beta)^{2}]$$

$$W_{3} = \frac{1}{x^{3}} [1 - x(3\alpha + \beta) + \nu x^{2}(3\alpha + \beta)^{2}]$$

$$W_{4} = -[12(1 - \nu^{2})D_{k}^{2}I^{*2} \exp(-2x(2\alpha + \beta)) + \Omega^{2} \exp(-2\alpha x) - 12(1 - \nu^{2})F_{e} \exp(-x(3\alpha + \beta))C^{*}]$$

Here 
$$d_k^2 = \frac{3k^2}{a^2 E_0 \rho_0}$$
,  $\Omega^2 = \frac{12(1-\nu^2)a^2\omega^2\rho_0}{E_0}$ ,  $F = \frac{af_e}{E_0}$ 

The solution to the PDE (2) is obtained using 'quintic spline interpolation technique' with suitable computer programming through MATLAB to obtain desired degree of accuracy. The method used by Verma et al. [6] to find results for their problem and accurate results were obtained. For this method;

$$Z(X) = a_0 + \sum_{i=1}^{4} a_i (X - X_0)^i + \sum_{t=0}^{m-1} b_t (X - X_t)_{+}^5,$$
  
where  $(X - X_t)_{+} = \begin{cases} 0, & \text{if } X \le X_t \\ (X - X_t), & \text{if } X > X_t \end{cases},$  (3)

Here we consider a substitution X = (x - c/a)/(1 - c/a) and after necessary changes quintic spline interpolation technique is applied.

Vol.12 No.12 (2021), 2096-2105

(5)

Now putting the value of equation (3) in equation (2); The  $j^{th}$  knot, reduced equation take the form:

$$W_{4} a_{0} + \left[W_{4} \left(X_{j} - X_{0}\right) + W_{3}\right] a_{1} + \left[W_{4} \left(X_{j} - X_{0}\right)^{2} + 2W_{3} \left(X_{j} - X_{0}\right) + 2W_{2}\right] a_{2} + \left[W_{4} \left(X_{j} - X_{0}\right)^{3} + 3W_{3} \left(X_{j} - X_{0}\right)^{2} + 6W_{2} \left(X_{j} - X_{0}\right) + 6W_{1}\right] a_{3} + \left[W_{4} \left(X_{j} - X_{0}\right)^{4} + 4W_{3} \left(X_{j} - X_{0}\right)^{3} + 12W_{2} \left(X_{j} - X_{0}\right)^{2} + 24W_{1} \left(X_{j} - X_{0}\right) + 24W_{0}\right] a_{4} + \sum_{t=0}^{m-1} b_{t} \left[W_{4} \left(X_{j} - X_{t}\right)_{+}^{5} + 5W_{3} \left(X_{j} - X_{t}\right)_{+}^{4} + 20W_{2} \left(X_{j} - X_{t}\right)_{+}^{3}\right] = 0.$$

$$(4)$$

Equation (4) provides us undetermined system of homogeneous liner equation of the form [A][B] = 0,

Where A is coefficient matrix of type  $(m+1)\times(m+5)$  and B is column matrix of type  $(m+5)\times 1$ . Now, boundary conditions at X=c/a, X=1,

(i) C-C (Clamped - Clamped):  $Z = \frac{dZ}{dX} = 0.$ 

$$Z = \frac{d^2 Z}{dX^2} + (v_{\theta}/X) \left(\frac{dZ}{dX}\right) = 0.$$

(ii) C-S (Clamped - Simply supported):

Using these boundary conditions four additional equation are obtained in (m+5) unknowns for both the boundary conditions which on combining with equation (5), provides us two system of linear homogeneous equations as:

$$\begin{bmatrix} \frac{A}{T^{CC}} \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = 0$$

$$\begin{bmatrix} \frac{A}{T^{CSS}} \end{bmatrix} \begin{bmatrix} B \end{bmatrix} = 0$$
(6)
(7)

For two edge conditions C-C and C-S, two equations (6, 7) provides a non-zero solution when the characteristic determinant of the equations becomes zero.

#### 3. Results and discussion

Equations (6) & (7) provide two different frequency equations for edge combinations, C-C and C-S and we obtain three mode values of frequency parameter with our assumed plate parameters up to four decimal places.



Research Article

| Fig. (i) | Fig. (ii) |
|----------|-----------|
| Fig. (i) | Fig. (ii) |

**Figure 1.** % Error in  $\Omega$  for (i) C-C Combination (ii) C-S Combination for I, II and III modes, for  $\alpha = 0.5$ , K = 0.02,  $d_k = 0.01$ , b/a = 0.3,  $\beta = 1$ ,  $\upsilon = 0.3$ . -----I mode; .....II mode; ---- III mode. %

error =  $\left(\frac{\left|\Omega_m - \Omega_{180}\right|}{\Omega_{180}}\right) \times 100$ 

To obtained appropriate interval we have considered  $\Delta X = \frac{1}{m}$  where m = 20(20)200 but for  $m \ge 180$ , the results shows no improvement. The results for convergence for number of increasing nodes for C-C & C-S combinations taking;  $\alpha = 0.5$ , F = 0.02,  $D_k = 0.02$ , c/a = 0.3, v = 0.3 are presented in Figure 1. The variations in different parameters used for the present problem are considered as Taper constant  $\alpha = -0.5$ , -0.3, 0.0, 0.3, 0.5, Foundation parameter F = 0.0(0.01)0.03 Damping Parameter  $d_k = 0.0(0.01)0.05$  and Non-homogeneity parameter  $\beta = -0.5, 0.0, 0.5, 1.0$ . Also, assumed fixed values for calculation the above variations in plate parameters are considered as v = 0.3, h = 0.1 and m = 180.

Table 1 shows the damping parameter effect on frequencies of non-homogeneous annular plate with assumed fixed plate parameters as F = 0.02, c/a = 0.3, v = 0.3,  $\beta = 1$ ,  $\alpha = 0.5$  for C-C and C-S edge conditions. Figure 2 shows the frequency parameter behaviour for three modes of vibration with varying damping parameter values which is taken in increasing order. It is observed that from fig. 2 that, as we increase damping parameter value then its corresponding vibrational frequencies decreases continuously in all the three modes and for both the edge conditions. The linear change which occurs in frequencies is same for every modes and for both the limiting conditions. The calculated results for frequency parameter  $\Omega$  for the variation on the value of taper parameter ( $\alpha$ ) for a damped ( $d_k = 0.02$ ) and non-damped ( $d_k = 0.0$ ) annular plate for both boundary conditions that is C-C plate position & C-S plate position are shown in table 2and fig. 3(a) & 3(b) respectively with fixed values F = 0.02, c/a = 0.3, v = 0.3,  $\beta = 1$  for vibration analysis of three modes. For the variation in values of taper constant  $\alpha = -0.5$ , -0.3, 0.0, 0.3, 0.5, the frequency parameter shows the exponentially increment in fig. 1(a) and this increasing order continue when values of taper constant increases for non-damped annular plate. Similar is the nature of graphical representation of fig. 1(b) as in fig. 1(a) for damped annular plate under both boundary condition are same for all three modes of vibration for both non-damped annular plate.

Table 3 and fig. 4(a), 4(b) shows the change for frequency parameter by taking different values of foundation parameter under assumed fixed plate parameters such as  $\alpha = 0.5$ , c/a = 0.3,  $\nu = 0.3$ ,  $\beta = 1$ , h = 0.1 for both non-damped and damped annular plate respectively. We observe that all the value of frequencies are increasing corresponding to both edge conditions for all modes and this increment found same with respect to damping effect. Further, we note that all the frequency corresponding to both non-damped and damped annular plate respectively to be linear for both non-damped and damped annular plate respectively.

In the series of result discussion of present paper, now we consider outcome of non-homogeneity parameter on frequency of vibration of non-damped and damped annular plate for assumed boundary conditions and plate parameters. From table 4 we analysed that, frequencies corresponding to C-C plate position are increasing but for C-S plate position it decreases continuously for non-damped and damped annular plate respectively. After observing this behaviour of frequency parameter, fig. 5 (a) & 5 (b) shows the linear change in values of frequency parameter corresponding to all three modes for both boundary conditions respectively.

Validation of results for our present paper shows that results are well compared with those obtained by [6] and different researcher through their findings which are given in references [6,10,12] and different validation are presented in the form of tables given by tables 5 and 6 respectively.

**Table 1.** Table for Numerical Values of  $\Omega$  for isotropic annular plate for different values of damping parameter  $(d_k)$  tacking v=0.3, c/a = 0.3, m = 180, F = 0.02,  $\alpha = 0.5$ ,  $\beta = 1$ , h = 0.1,

| $d_k$ (Damping parameter ) |
|----------------------------|
|----------------------------|

| Modes         | 0.0      | 0.01     | 0.02     | 0.03     | 0.04     | 0.05     |
|---------------|----------|----------|----------|----------|----------|----------|
| I Mode-C-C    | 65.4443  | 65.4313  | 65.3923  | 65.3273  | 65.2362  | 65.1188  |
| II Mode C-C   | 176.2953 | 176.2902 | 176.2748 | 176.2493 | 176.2134 | 176.1674 |
| III Mode C-C  | 343.2686 | 343.2659 | 343.2579 | 343.2450 | 343.2255 | 343.2013 |
| I Mode-C-SS   | 38.6570  | 38.6386  | 38.5832  | 38.4906  | 38.3606  | 38.1929  |
| II Mode C-SS  | 137.0700 | 137.0636 | 137.0443 | 137.0121 | 136.9670 | 136.9090 |
| III Mode-C-SS | 290.2309 | 290.2278 | 290.2183 | 290.2025 | 290.1803 | 290.1520 |

Research Article

**Figure 2:** Graph for  $\Omega$  for isotropic annular plate for different values of damping parameter  $(d_k)$ 



tacking v=0.3, c/a = 0.3, m = 180, F = 0.02,  $\alpha = 0.5$ ,  $\beta = 1$ , h = 0.1

| Table 2. Table for Numerical Values of $\Omega$ | for different values of taper constant ( $\alpha$ ) for non-damped annular           |
|-------------------------------------------------|--------------------------------------------------------------------------------------|
| plate $(d_k = 0.0)$ and damped annular plate    | $(d_k=0.02)$ tacking v=0.3, $c  /  a = 0.3$ , $m = 180$ , $F = 0.02$ , $\beta = 1$ , |
|                                                 | h = 0.1                                                                              |

|                   | Non-Damped condition $(d_k = 0.0)$ |                 |                |                |                |                 | D               | amping effe    | ct $(d_k = 0.02)$ | 2)             |
|-------------------|------------------------------------|-----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-------------------|----------------|
| Modes             | $\alpha = -0.5$                    | $\alpha = -0.3$ | $\alpha = 0.0$ | $\alpha = 0.3$ | $\alpha = 0.5$ | $\alpha = -0.5$ | $\alpha = -0.3$ | $\alpha = 0.0$ | $\alpha = 0.3$    | $\alpha = 0.5$ |
| I Mode-C-C        | 34.9047                            | 39.1009         | 47.0062        | 57.1719        | 65.4443        | 34.5793         | 38.8756         | 46.8767        | 57.0971           | 65.3923        |
| II Mode C-C       | 91.0659                            | 103.7535        | 126.4272       | 154.2905       | 176.2953       | 90.9405         | 103.6674        | 126.3776       | 154.2615          | 176.2748       |
| III Mode C-<br>C  | 177.6891                           | 202.7471        | 247.0878       | 301.0186       | 343.2686       | 177.6246        | 202.7027        | 247.0622       | 301.0034          | 343.2579       |
| I Mode-C-<br>SS   | 24.8595                            | 26.7581         | 30.4013        | 35.0179        | 38.6570        | 24.4228         | 26.4508         | 30.2210        | 34.9125           | 38.5832        |
| II Mode C-<br>SS  | 73.3561                            | 82.9731         | 100.0494       | 120.8239       | 137.0700       | 73.2021         | 82.8671         | 99.9879        | 120.7876          | 137.0443       |
| III Mode-C-<br>SS | 152.5714                           | 173.5754        | 210.5871       | 255.3478       | 290.2309       | 152.4966        | 173.5239        | 210.5571       | 255.3310          | 290.2183       |







tacking v = 0.3, c / a = 0.3, m = 180, F = 0.02,  $\beta = 1$ , h = 0.1

**Figure 3(b):** Graph for  $\Omega$  for different values of taper constant ( $\alpha$ ) for damped annular plate ( $d_k = 0.02$ ) tacking  $\upsilon = 0.3$ , c/a = 0.3, m = 180, F = 0.02,  $\beta = 1$ , h = 0.1

Table 3. Table for Numerical Values of  $\Omega$  for different values of foundation parameter (*F*) for a non-damped annular plate ( $d_k = 0.0$ ) and damped annular plate ( $d_k = 0.02$ ) tacking v = 0.3, c/a = 0.3 m = 180,  $\alpha = 0.5$ ,  $\beta = 1$ , h = 0.1

|               | No       | n-Damped co | ondition $(d_k =$ | 0.0)            | Damping effect $(d_k = 0.02)$ |          |          |                 |
|---------------|----------|-------------|-------------------|-----------------|-------------------------------|----------|----------|-----------------|
| Modes         | F = 0.0  | F = 0.01    | <i>F</i> = 0.02   | <i>F</i> = 0.03 | F = 0.0                       | F = 0.01 | F = 0.02 | <i>F</i> = 0.03 |
| I Mode-C-C    | 64.7905  | 65.1182     | 65.4443           | 65.7687         | 64.7380                       | 65.0660  | 65.3923  | 65.7170         |
| II Mode C-C   | 176.0502 | 176.1728    | 176.2953          | 176.4177        | 176.0297                      | 176.1523 | 176.2748 | 176.3973        |
| III Mode C-C  | 343.1421 | 343.2054    | 343.2686          | 343.3319        | 343.1313                      | 343.1946 | 343.2579 | 343.3211        |
| I Mode-C-SS   | 37.6379  | 38.1509     | 38.6570           | 39.1565         | 37.5620                       | 38.0760  | 38.5832  | 39.0836         |
| II Mode C-SS  | 136.7588 | 136.9145    | 137.0700          | 137.2254        | 136.7330                      | 136.8887 | 137.0443 | 137.1997        |
| III Mode-C-SS | 290.0820 | 290.1565    | 290.2309          | 290.3054        | 290.0693                      | 290.1438 | 290.2183 | 290.2927        |



**Figure 4(a):** Graph for  $\Omega$  for different values of foundation parameter (*F*) for non-damped annular plate  $(d_k = 0.0)$  tacking v = 0.3, c/a = 0.3 m = 180,  $\alpha = 0.5$ ,  $\beta = 1$ , h = 0.1



**Figure 4(b):** Graph for  $\Omega$  for different values of foundation parameter (*F*) for damped annular Plate  $(d_k = 0.02)$ , tacking v = 0.3, c/a = 0.3, m = 180,  $\alpha = 0.5$ ,  $\beta = 1$ , h = 0.1

Table 4. Numerical Values of  $\Omega$  for different values of non-homogeneity parameter ( $\beta$ ) for a non-damped annular plate ( $d_k = 0.02$ ) and damped annular plate ( $d_k = 0.02$ ) tacking v = 0.3, c / a = 0.3, m = 180, F = 0.02,  $\alpha = 0.5$ , h = 0.1

|              | Non-Damped condition $(d_k = 0.0)$ |               |               |             |                | Damping effect $(d_k = 0.02)$ |               |             |  |
|--------------|------------------------------------|---------------|---------------|-------------|----------------|-------------------------------|---------------|-------------|--|
| Modes        | $\beta = -0.5$                     | $\beta = 0.0$ | $\beta = 0.5$ | $\beta = 1$ | $\beta = -0.5$ | $\beta = 0.0$                 | $\beta = 0.5$ | $\beta = 1$ |  |
| I Mode-C-C   | 64.8288                            | 64.9785       | 65.0237       | 65.4443     | 64.4910        | 64.6289                       | 64.9275       | 65.3923     |  |
| II Mode C-C  | 174.4433                           | 174.8845      | 175.5062      | 176.2953    | 174.3180       | 174.8177                      | 175.4697      | 176.2748    |  |
| III Mode C-C | 341.0129                           | 341.5999      | 342.3542      | 343.2686    | 340.9489       | 341.5656                      | 342.3352      | 343.2579    |  |
| I Mode-C-SS  | 43.1017                            | 41.4506       | 39.9863       | 38.6570     | 42.5920        | 41.1845                       | 39.8465       | 38.5832     |  |
| II Mode C-SS | 138.9217                           | 138.1536      | 137.5420      | 137.0700    | 138.7644       | 138.0699                      | 137.4961      | 137.0443    |  |
| III Mode-C-  |                                    |               |               | 290.2309    |                |                               |               |             |  |
| SS           | 291.4724                           | 290.9126      | 290.5014      |             | 291.3974       | 290.8725                      | 290.4793      | 290.2183    |  |



**Figure 5(a):** Graph for  $\Omega$  for different values of non-homogeneity parameter ( $\beta$ ) for non-damped plate  $(d_k = 0.0)$  tacking v = 0.3, c / a = 0.3, m = 180, F = 0.02,  $\beta = 1$ , h = 0.1



**Figure 5 (b):** Graph for  $\Omega$  for different values of non-homogeneity parameter ( $\beta$ ) for damped plate ( $d_k = 0.02$ ) tacking v = 0.3, c / a = 0.3, m = 180, F = 0.02,  $\beta = 1$ , h = 0.1

**Table 5-** Validation of results for frequency parameter  $\Omega$  considering an isotropic homogeneous  $(\beta = 0.0)$  annular plates of uniform thickness  $(\alpha = 0.0)$  for c / a = 0.3, v = 0.3.

|             | Edge conditions                  |         | C-C      |          | C-S     |          |           |  |  |  |
|-------------|----------------------------------|---------|----------|----------|---------|----------|-----------|--|--|--|
|             |                                  |         | Mode     |          |         |          |           |  |  |  |
|             | Value taken<br>from<br>reference | Ι       | П        | III      | Ι       | Π        | III       |  |  |  |
|             | Lal R.<br>[ 1987 ]               | 45.3371 | 125.6191 | 246.6944 | 29.9689 | 100.6065 | 211.562 9 |  |  |  |
| F = 0.0     | Sharma S.<br>[ 2006]             | 45.3462 | 125.3621 | 246.1573 | 29.9777 | 100.4228 | 211.1294  |  |  |  |
|             | Dhiman<br>[ 2019 ]               | 45.3461 | 125.3631 | 246.1626 | 29.9776 | 100.4235 | 211.1336  |  |  |  |
| $D_k = 0.0$ | Present                          | 45.3461 | 125.3612 | 246.1838 | 29.9776 | 100.4264 | 211.1508  |  |  |  |

Research Article

|              | Edges               |         | C-C      |          |         | C-S      |          |  |  |  |
|--------------|---------------------|---------|----------|----------|---------|----------|----------|--|--|--|
|              |                     |         | Mode     |          |         |          |          |  |  |  |
|              | Reference           | Ι       | II       | III      | Ι       | II       | III      |  |  |  |
|              | Lal R.<br>[ 1987 ]  | 46.5259 | 126.0531 | 246.9155 | 31.7385 | 101.1478 | 211.8208 |  |  |  |
| F = 0.01     | Sharma S.<br>[2006] | 46.5347 | 125.7969 | 246.379  | 31.7469 | 100.9651 | 211.3878 |  |  |  |
|              | Dhiman<br>[ 2019 ]  | 46.5346 | 125.7979 | 246.3843 | 31.7468 | 100.9657 | 211.3921 |  |  |  |
| $D_k = 0.01$ | Present             | 46.4172 | 125.7585 | 246.3834 | 31.5743 | 100.9146 | 211.3834 |  |  |  |

**Table 6-** Validation of results for frequency parameter  $\Omega$  considering an isotropic homogeneous ( $\beta = 0.0$ ) damped annular plates of uniform thickness ( $\alpha = 0.0$ ) for c / a = 0.3, v = 0.3

**4. Conclusion:** Present study results has been carried out by using computer program on MATLAB 2015 to obtain results in permissible range and desired accuracy. The effect of damping on non-homogeneous isotropic annular plate with thickness varying exponentially and also considering Winkler's foundation effect have been discussed with three modes of vibration under two boundary conditions C-C and C-S. After suitable mathematical formulation we form tabulated data and its graphical representations, observe that that damping effect reduced vibrational frequencies with different plate parameters. So damping phenomenon in the present study decreases the vibration frequencies when we continuously increase its value with assumed plate parameters. The results so obtained for present problem helps us to obtain desired frequency by changing various parameters and help to make design structure strong and shock proof.

#### **Conflict of Interest and Acknowledgement**

There is no conflict of interest between authors for present publication. The authors acknowledges the contribution of various researchers whose research articles have been studied in completion of this paper.

#### References

- [1] Bhattacharya, B. (1977). Free Vibration of Plates on Vlasov's Foundation. *Journal of Sound and Vibration*, 54 464-467, https://doi.org/10.1016/0022-460X (77)90459-X.
- [2] Crandall, S.H. (1970). The role of damping in vibration theory. *Journal of Sound and Vibration*, 11(1) 3-18, https://doi.org/10.1016/S0022-460X (70)80105-5.
- [3] Gorman, D. G. (1982). Natural frequencies of polar orthotropic annular uniform plates. *Journal of Sound and Vibration*, 80, 145-154.
- [4] Gupta, U. S., Lal R., and Sharma S. (2005). Axisymmetric vibration of polar orthotropic annular plate of variable thickness resting on Pasternak foundation. *Conf. on IMS held at I.I.T. Roorkee*, Dec. 27-29,
- [5] Gupta, M., Kumar, A., Kumar, A., Robin, and Kumar, A. (2021). Study of Modes and Deflection for Ring Shaped Plate with Variable Thickness. *Materials Today:Proceedings*, ISSN: 2214-7853.
- [6] Gupta, U.S., Lal, R., and Verma, C.P. (1985). Effect of an elastic foundation on axisymmetric vibrations of polar orthotropic annular plates of variable thickness. *Journal of Sound and Vibration*, 103 159-169, https://doi.org/10.1016/0022-460X (85)90230-5.
- [7] Jaiman, Y. and Singh, B. (2019). Free vibration of circular annular plate with different boundary conditions. *Vibroengineering Procedia*, 29 82-86, https://doi.org/10.21595/vp.2019.21116.
- [8] Khare, S., and Mittal, N. D. (2015). Free vibration analysis of thin circular and annular plate with general boundary conditions. *Engineering Solid Mechanics*, 3 245-252, doi: 10.5267/j.esm.2015.6.002.
- [9] Lal R., and Dhanpati. (2007). Transverse vibrations of non-homogeneous orthotropic rectangular plates of variable thickness: a spline technique. *J. of sound and vibration*, 306 203-214.
- [10] Lal R., Gupta, U. S. and Sharma, S. (2003). Axisymmetric vibration of non-homogeneous polar orthotropic annular plates of variable thickness resting on an elastic foundation. *Proc. Conf. of Indian Society of Mechanical Engineering held at I.I.T. Roorkee*, Dec.-30-31, MD-74.
- [11] Leissa, A.W. (1969). Vibration of plates. Washington, DC: U.S. Government Printing Office (NASA SP 160).

- [12] Robin, Dhiman, N., Chauhan, A. and Dhiman M. (2019). Modeling and Simulation of Vibrations of Non-Homogeneous Annular Plate of Quadratic Thickness Resting on Elastic Foundation. *International Journal of Innovative Technology and Exploring Engineering*, 8, 61-65.
- [13] Sharma, S., Gupta, U.S. and Singhal, P. (2012). Vibration analysis of non-homogeneous orthotropic rectangular plates of variable thickness resting on Winkler's foundation. *Journal of applied science and engineering* 15 291-300.
- [14] Gupta, M., Kumar, A. and Kumar, A. (2020). A Spline Technique Solution For Vibrations Analysis Of Rectangular Plate Having Parabollically Varying Thickness Considering The Parameters 'Thermally Induced Non-Homogeneity', Damping And Elastic Foundation. *International Journal of Scientific & Technology Research*, 9, 1523-1534.
- [15] Sony, S.R., and Amba-Rao, C.L. (1975). Axisymmetric vibrations of annular plates of variable thickness. *Journal of Sound and Vibrations*, 38 465-473, https://doi.org/10.1016/S0022-460X (75)80134-9.