# Next Direct Left Maximum Minimum Economical Process -Protected and Unbalanced Lattice in Cloud Figuring 

K. Thiagarajan ${ }^{\text {a }}$, S. Janani ${ }^{\text {b }}$, S. Saravana Kumar ${ }^{\text {c }}$, N. Suriya Prakash ${ }^{\text {d }}$<br>a,b,c Department of Mathematics, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India<br>${ }^{d}$ Aptean India Pvt. Ltd, Bangalore, Karnataka, India<br>${ }^{\text {a }}$ vidhyamannan @yahoo.com, ${ }^{\text {b }}$ jananis0502@gmail.com, ${ }^{\text {c }}$ sskkrct@gmail.com, ${ }^{\text {d }}$ prakashsuriya@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 23 May 2021


#### Abstract

Objective: Main Objective of this study is to find the minimum cost of the corresponding Payoff.

\section*{Method:}

We Proposed "NILMMA" is to find and fix the cost in minimum level for the transportation problem, it reduced the runtime for finding the optimum cost than the existed methods in Operation research field. Also the proposed algorithm is very efficient and easy to understand.


Keywords: Assignment problem, Degeneracy, Immediate Left, Maximum, Minimum, Optimum Cost, Pay off Matrix, Pivot element, Transportation problem

## 1. Introduction

A Transportation problem is one of the most basic and most important applications of linear programming problem. Description of a classical transportation problem can be given as follows. A certain amount of homogeneous commodity is available at number of sources and a fixed amount is required to meet the demand at each number of destinations. A balanced condition (i.e. Total demand is equal to total supply) is assumed [1], [2].

In 1941 Hitchcock developed the basic transportation problem along with the constructive method of solution and later in 1949 Koopmans discussed the problem in detail [5], [6]. Again in 1951 Dantzig formulated the transportation problem as linear programming problem and also provided the solution method [8], [9].

The transportation problem is a special class of linear programming problem which has applications in industry, communication network, planning, scheduling and transportation etc. The transportation problem deals with shipping commodities from different sources to various destinations [3], [4]. The objective of the transportation problem is to determine the shipping schedule that minimizes the total shipping cost while satisfying supply and demand limits [7], [10]. The algorithm of the method is detailed with suitable numerical examples. Further comparative studies of the new technique with other existing algorithms are established by means of sample problems.

## 2. Algorithm:

## Next immediate left maximum minimum allotment (nilmxmia):

Step 1: $\quad$ Make the TT for the given pay off matrix (POM).
Step 2: Choose the maximum element from given POM.
Step 3: Supply the maximum demand for the minimum element of the next immediate left side column (or) row of the chosen maximum element column in Constructed TT (CTT).

Step 4: $\quad$ Select the next maximum element in newly CTT (NCTT) and repeat the step 2 and 3 until degeneracy condition is satisfied.

Step 5: Incase, the maximum element column is in the extreme left, then shift the entire column where the minimum element appears to the left of the maximum element column.

Note: If the problem is not balanced, make the problem as balanced by adding dummy zero row or dummy zero column, then consider the allotment for the dummy zero row or dummy zero column in end iteration

Example 1: Consider the following balanced pay off matrix to minimize the cost.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2 | 11 | 10 | 3 | 7 | 4 |
| $\mathrm{~S}_{2}$ | 1 | 4 | 7 | 2 | 1 | 8 |
| $\mathrm{~S}_{3}$ | 3 | 9 | 4 | 8 | 12 | 9 |
| Demand | 3 | 3 | 4 | 5 | 6 | 21 |

Table 1
By applying the proposed algorithm, we get
Step 1: The maximum cost in the following table no 1.1 is 12 (is a pivot element and highlighted in green colour in the following table). Along with minimum cost 2 in the next immediate left column of the Pivot element, by the procedure allot the maximum possible demand 5 units in TT $(2,4)$ and delete the same column.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2 | 11 | 10 | 3 | 7 | 4 |
| $\mathrm{~S}_{2}$ | 1 | 4 | 7 | 2 | 1 | 3 |
| $\mathrm{~S}_{3}$ | 3 | 9 | 4 | 8 | 12 | 9 |
| Demand | 3 | 3 | 4 | 0 | 6 | 16 |

Table 1.1
Step 2: The next maximum cost in the following table no 1.2 is 12 (is a pivot element and highlighted in green colour in the following table). Along with minimum cost 4 in the next immediate left column of the Pivot element, by the procedure allot the maximum possible demand 4 units in TT $(3,3)$ and delete the same column.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2 | 11 | 10 | 7 | 4 |
| $\mathrm{~S}_{2}$ | 1 | 4 | 7 | 1 | 3 |
| $\mathrm{~S}_{3}$ | 3 | 9 | 4 | 12 | 5 |
| Demand | 3 | 3 | 0 | 6 | 12 |

Table 1.2
Step 3: The next maximum cost in the following table no 1.3 is 12 (is a pivot element and highlighted in green colour in the following table). Along with minimum cost 4 in the next immediate left column of the Pivot element, by the procedure allot the maximum possible demand 3 units in TT $(2,2)$ and delete the same row and column.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2 | 11 | 7 | 4 |
| $\mathrm{~S}_{2}$ | 1 | 4 | 1 | 0 |
| $\mathrm{~S}_{3}$ | 3 | 9 | 12 | 5 |
| Demand | 3 | 0 | 6 | 9 |

Table1.3

Step 4: The next maximum cost in the following table no 1.4 is 12 (is a pivot element and highlighted in green colour in the following table). Along with minimum cost 2 in the next immediate left column of the Pivot element, by the procedure allot the maximum possible demand 3 units in TT $(1,1)$ and delete the same column.

|  | $D_{1}$ | $D_{5}$ | Supply |
| :---: | :---: | :---: | :---: |
| $S_{1}$ | 2 | 7 | 1 |
| $S_{3}$ | 3 | 12 | 5 |
| Demand | 0 | 6 | 6 |

Table 1.4

## Step 5:

|  | $D_{5}$ | Supply |
| :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 7 | 0 |
| $\mathrm{~S}_{3}$ | 1 | 12 |
| Demand | 0 | 0 |

Table 1.5
Supply the maximum possible demand 1 units in $(1,1)$ and 5 units in $(2,1)$ which leads to the solution satisfying all the conditions.

Step 6: The resulting initial feasible solution is given below.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2 | 11 | 10 | 3 | 7 | 4 |
| 2 | 3 | 4 | 7 | 2 | 1 | 4 |
| $\mathrm{~S}_{2}$ | 1 | $\boxed{3}$ | 7 | $\boxed{5}$ | 1 | 8 |
| $\mathrm{~S}_{3}$ | 3 | 9 | 4 | 8 | 12 | 9 |
| Demand | 3 | 3 | 4 | 5 | 6 | 9 |

Table 1.6
Optimum Cost:

| S | 1 | 1 | 2 | 2 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | 1 | 5 | 2 | 4 | 3 | 5 |
| COST | 6 | 7 | 12 | 10 | 16 | 60 |
| Total Cost (Optimum Cost) |  |  |  |  |  |  |

Table 1.7
Example 2: Consider the following balanced pay off matrix to minimize the cost.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 3 | 4 | 6 | 8 | 9 | 20 |
| $\mathrm{~S}_{2}$ | 2 | 10 | 1 | 5 | 8 | 30 |
| $\mathrm{~S}_{3}$ | 7 | 11 | 20 | 40 | 3 | 15 |
| $\mathrm{~S}_{4}$ | 2 | 1 | 9 | 14 | 16 | 13 |
| Demand | 40 | 6 | 8 | 18 | 6 | 78 |

Table 2
The resulting initial feasible solution is given below.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 3 <br> 11 | 4 | 6 | 8 <br> 9 | 9 | 20 |
| $\mathrm{S}_{2}$ | 2 <br> 22 | 10 | 1 <br> 8 | 5 | 8 | 30 |
| $S_{3}$ | 7 | 11 | 20 | 40 <br> 9 | 3 <br> 6 | 15 |
| $\mathrm{S}_{4}$ | 2 <br> 7 | 1 <br> 6 | 9 | 14 | 16 | 13 |
| Demand | 40 | 6 | 8 | 18 | 6 |  |

Table 2.1

## Optimum Cost:

| S | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | 1 | 4 | 1 | 3 | 4 | 5 | 1 | 2 |  |  |
| COST | 33 | 72 | 44 | 8 | 360 | 18 | 14 | 6 |  |  |
| Optimum Cost |  |  |  |  |  |  |  |  |  | 555 |

Table 2.2
Example 3: Consider the following balanced pay off matrix to minimize the cost.

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 10 | 30 | 50 | 10 | 7 |
| $\mathrm{~S}_{2}$ | 70 | 30 | 40 | 60 | 9 |
| $\mathrm{~S}_{3}$ | 40 | 8 | 70 | 20 | 18 |
| Demand | 5 | 8 | 7 | 14 | 34 |

Table 3
The resulting initial feasible solution is given below,

|  | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 10 |  |  |  |  |
| $\boxed{5}$ | 30 | 50 | 10 <br> 2 | 7 |  |
| $\mathrm{~S}_{2}$ | 70 | 30 | 40 <br> 7 | 60 <br> 2 | 9 |
| $\mathrm{~S}_{3}$ | 40 | 8 <br> 8 | 70 | 20 <br> 10 | 18 |
| Demand | 5 | 8 | 7 | 14 |  |

Table 3.1

## Optimum Cost:

| S | 1 | 1 | 2 | 2 | 3 | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | 1 | 4 | 3 | 4 | 2 | 4 |  |  |
| COST | 50 | 20 | 280 | 120 | 64 | 200 |  |  |
| Optimum Cost |  |  |  |  |  |  |  | 734 |

Table 3.2
3. Comparison with existed methods:

Comparison with North West Corner method (NWC):

| EXAMPLE | NWC | NILMxMiA | ACCURACY \% |
| :---: | :---: | :---: | :---: |
| 1 | 153 | 111 | 137.84 |
| 2 | 878 | 555 | 158.20 |
| 3 | 970 | 734 | 132.15 |
| AVERAGE ACCURACY |  | 145.18 |  |

Table 4.1

## Comparison with Least Cost Method (LCM):

| EXAMPLE | LCM | NILMxMiA | ACCURACY \% |
| :---: | :---: | :---: | :---: |
| 1 | 78 | 111 | 70.27 |
| 2 | 555 | 555 | 100.00 |
| 3 | 814 | 734 | 110.90 |
| AVERAGE ACCURACY |  |  | 93.72 |

Table 4.2

## Comparison with Vogal's Approximation Method (VAM):

| EXAMPLE | VAM | NILMxMiA | ACCURACY \% |
| :---: | :---: | :---: | :---: |
| 1 | 68 | 111 | 61.26 |
| 2 | 267 | 555 | 48.11 |
| 3 | 734 | 734 | 100.00 |
| AVERAGE ACCURACY |  |  |  |
|  |  |  | 69.79 |

Table 4.3

## 4. Results and Discussion:

| Overall Accuracy |  |
| :---: | :---: |
| With NWC | 145.18 |
| With LCM | 93.72 |
| With VAM | 69.79 |
| Average Accuracy | 102.89 |

Table 5.1
The proposed algorithm gives $\mathbf{2 . 8 9 \%}$ more accuracy in optimal feasible solution than the existed Optimization Methods.

## 5. Acknowledgement

The authors would like to thank Dr. Ponnammal Natarajan, Former Director of Research, Anna University, Chennai , India for her intuitive ideas and fruitful discussions with respect to the paper's contribution and support to complete this research article..

## References

1. Amaravathy, V. Seerengasamy, S. Vimala, Comparative study on MDMA Method with OFSTF Method in Transportation Problem, International Journal of Computer \& Organization Trends(IJCOT) - Volume 38 Number 1 - December 2016, ISSN 2249-2593.
2. Amaravathy, K. Thiagarajan , S. Vimala, Cost Analysis - Non linear Programming Optimization Approach, International Journal of pure and applied mathematics Volume 118 No. 10 2018, 235-245 ISSN:1311-8080(printed version), ISSN:1314-3395(on -line version)
3. Amaravathy, K. Thiagarajan, S. Vimala, MDMA Method -An Optimal Solution for Transportation Problem, Middle - East Journal of Scientific Research 24(12):3706-63710,2016 ISSN 1990-9233
4. Amaravathy, K. Thiagarajan , S. Vimala, Optimal Solution of OFSTF, MDMA Methods with Existing Methods Comparison, International Journal of pure and applied mathematics Volume 119 No. 10 2018, 989-1000 ISSN:1311-8080(printed version), ISSN:1314-3395(on -line version)
5. Gass, SI (1990). On solving the transportation problem. Journal of Operational Research Society, 41(4), 291-297.
6. Goyal, SK (1984). Improving VAM for unbalanced transportation problems. Journal of Operational Research Society, 35(12), 1113-1114.
7. K. Thiagarajan, A. Amaravathy, S. Vimala, K. Saranya (2016). OFSTF with Non linear to Linear Equation Method - An Optimal Solution for Transportation Problem, Australian Journal of Basic and Applied Sciences, ISSN - 1991-8178 Anna University-Annexure II, SI No. 2095.
8. Reinfeld, NV and WR Vogel (1958). Mathematical Programming. Englewood Gliffs, New Jersey: Prentice-Hall.
9. Shih, W (1987). Modified Stepping-Stone method as a teaching aid for capacitated transportation problems. Decision Sciences, 18, 662-676.
10. S. Vimala, K. Thiagarajan, A. Amaravathy, OFSTF Method -An Optimal Solution for Transportation Problem, Indian Journal of Science and Technology, Vol 9(48), DOI:17485/ijst/2016/v9i48/97801, December 2016. ISSN (Print) : 0974-6846, ISSN (Online) : 0974-5645.
