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1. Introduction  

Let us consider the following equation. 

𝑢(𝑡) = 𝑢0 + 𝜑(𝑡) ℎ1 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼 − 1[𝐴𝑢(𝑠) + 𝑔(𝑠)]𝑑𝑠

𝑡

0
+

1

Γ(𝛾1)
∫ (𝑡 − 𝑠) 𝛾1− 1 [ 𝐹(𝑠, 𝐵(𝑠)𝑢(𝑠) +

𝑡

0

𝑏(𝑠)ℎ2 ] 𝑑𝑠  ,                                                                                                                         (1)   

where 0 <  𝛼 ≤  1 , 0 <  𝛾1  ≤  1 , 𝑢0  and ℎ1 are given elements in Banach space 𝐸 ,  𝐴  is a linear closed 

operator defined on a dense set 𝑆1 ⊂  𝐸 and with values in 𝐸, 𝑔(. ) is a map defined on the closed interval [0, 𝑇] 
and with values in 𝐸 , 𝑇 >  0 , 𝑏 is a real function defined on 𝐽, 

𝜑(𝑡) =
𝑡(1−𝛼)(1−𝛾)

Γ(𝛾(1−𝛼)+𝛼)
 ,  0 <  𝛾 ≤  1 

ℎ2  = ∑ 𝑐𝑖𝑢(𝑡𝑖),

𝑝

𝑖= 1

                         0 <  𝑡1  <  𝑡2  < · · ·  <  𝑡𝑝  <  𝑇, 

𝑐1;  ….  ;  𝑐𝑝 are real numbers, 𝐵(𝑡) , 𝑡 ∈  𝐽 is a family of linear closed operators defined on 𝑆2 ⊃  𝑆1 ,  𝐹 is 

map defined on  𝐽 ×  𝐸  and with values in 𝐸 . It is assumed that 𝐹 satisfies the following Lipchitz condition 

‖𝐹(𝑡2, 𝑉2) − 𝐹(𝑡1, 𝑉1)‖ ≤ 𝑀[|𝑡2  − 𝑡1| + ‖𝑉2  −  𝑉1‖] , (2) 

for all 𝑡2 ,  𝑡1  ∈  𝐽 ,  𝑉1 , 𝑉2  ∈  𝐸 , where 𝑀 is a positive constant and ∥ . ∥ is the norm in 𝐸 .It is supposed that 

the operator 𝐴 generates 𝛽 − times integrated semi groups 𝑄(𝑡): 𝑡 ≥ 0 , where 𝑄(𝑡): 𝑡 ∈ [0,1) is a family of linear 

bounded operators on 𝐸 to 𝐸 , with the following properties: 

(I) 𝑄(𝑡) is strongly continuous on [0; 1) , 

(II) There exist positive constants, 𝑀1 and 𝑀2 such that 

‖∥  𝑄(𝑡)  ∥≤ 𝑀1𝑒𝑀2𝑡‖ ,  𝑡 ≥  0 

The interval [𝑀2, ∞) is contained in the resolvent of 𝐴 and (𝐼𝜆 − 𝐴)− 1 =  𝜆𝛽  ∫ 𝑓𝑜𝑟 𝑎𝑙𝑙 
∞

0
 𝜆 >  𝑀2 where 𝐼 is 

the identity operator defined on 𝐸, 0 <  𝛽 <  1 , 

(III) ‖𝐴𝑄(𝑡)ℎ‖ ≤  
𝑘

𝑡
‖ℎ‖ , for all 𝑡 >  0 ,  ℎ ∈  𝐸 , 

(IV) ‖𝐵(𝑡2)𝑄(𝑡1)ℎ‖ ≤  
𝑘

𝑡1
𝛿 ‖ ℎ‖ , 𝑡2  ∈  𝐽 , 𝑡1 > 0 , 0 <  𝛿 <  1 , ℎ ∈  𝐸 , 

(V) 𝛽(𝑡)ℎ ∈ 𝑪𝐸(𝐽) , for every  ℎ ∈  𝑆2  , where 𝑪𝐸(𝐽) is the set of all continuous functions 𝑓  on 𝐽  , with 

respect to the norm in 𝐸 , such that 𝑓(𝑡) ∈ 𝑆  for every 𝑡 ∈  𝐽  . 

Notice that 𝑄(𝑡)ℎ satisfies the following representation: 

𝑄(𝑡)ℎ =
𝑡𝛽ℎ

𝛤(1+𝛽)
+ ∫ 𝑄(𝑠)𝐴ℎ 𝑑𝑠

𝑡

0
  , ℎ ∈  𝑆1,                                                (3) 
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(See [1],[2],[3],[4],[5]) 

In section 2 , we shall study a special case, when (𝑡, 𝐵(𝑡)𝑢(𝑡)) = 0 , (the zero element in 𝐸) and 𝑏(𝑡) ≡ 0 . In 

section 3 , we shall solve the general nonlinear case. Some properties are also studied under suitable conditions. 

The results in this paper can be considered as a generalization of our previous results in ([4],[5]). There are many 

important applications of the nonlocal Cauchy problems for Hilfer fractional differential equations with integrated 

semi groups, (see [6],[7],[8],[9],[10],[11],[12],[13],[14]). 

 (Times New Roman 10)  

2. Strong solutions 

Consider the following linear fractional Hilfer abstract differential equation 

𝑢(𝑡) = 𝑢𝑜 + 𝜑(𝑡)ℎ1 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
[𝐴𝑢(𝑠) + 𝑔(𝑠)]𝑑𝑠.                 (4) 

Equation (4) can be written in the form 

𝑢(𝑡) = 𝑢𝑜 + 𝜑(𝑡)ℎ1 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
[𝐴𝑢(𝑠) + 𝑔1(𝑠)]𝑑𝑠 +

𝑡𝛼

𝛤(𝛼+1)
𝑔(0),  (5) 

where  𝑔1(𝑡) = 𝑔(𝑡) − 𝑔(0). Consequently, 

𝑢(𝑡) = 𝑢0 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)−𝛼𝛽𝑡

0
𝑔3(𝑠)𝑑𝑠,                                                           (6) 

Where 

𝑔2(𝑡) =
1

𝛤(1 − 𝛼𝛽)

𝑑

𝑑𝑡
∫ (𝑡 − 𝑠)−𝛼𝛽

𝑡

0

𝑔1(𝑠)𝑑𝑠 

=
1

𝛤(1 − 𝛼𝛽)
∫ (𝑡 − 𝑠)−𝛼𝛽

𝑡

0

𝑔1(𝑠)𝑑𝑠 

𝑔3(𝑡) = 𝑔2(𝑡) + 𝜙1(𝑡)𝑢1 + 𝜙2(𝑡)𝑔(0) 

𝜙1(𝑡) =
𝛤(1 + 𝛾2)𝑡𝛾2−𝛾1

𝛤(𝛾3)𝛤(1 + 𝛾2 − 𝛾1)
 

𝜙2(𝑡) =
𝑡−𝛼𝛽

𝛤(1 − 𝛼𝛽)
 

𝛾1  =  𝛼𝛽 +  𝛼 , 

𝛾2 = (1 − 𝛼)(1 − 𝛾) , 

𝛾3 = 𝛾(1 − 𝛼) + 𝛼 , 

It is supposed that  𝛼𝛽 <  𝛾2 . Thus 𝛾2  −  𝛾1  +  𝛼 >  0 , 𝛼𝛽 +  𝛼 <  1 . 

Theorem 2.1 Suppose that 
𝑑𝑔1(𝑡)

𝑑𝑡
∈ 𝑪𝑆1

(𝐽)  ,  𝑔 ∈ 𝑪𝑆1
(𝐸)  if 𝑢0 , 𝐴𝑢0 , ℎ1 ∈ 𝑆1 , then there exists a unique 

function 𝑢 ∈ 𝑪𝑆1
(𝐽) such that 𝑢 satisfies equation (4) 

Proof: It easy to get from (6): 

𝑢∗(𝑠) = 𝑠𝛼−1(𝑠𝛼𝐼 − 𝐴)−1𝑢0 + 𝑠−𝛼𝛽(𝑠𝛼𝐼 − 𝐴)−1𝑔∗(𝑠),  (7) 

Where 𝑢∗(𝑠) and 𝑔∗(𝑠) are the Laplace transform of 𝑢(𝑡) and 𝑔3(𝑡) respectively. From (7) and property (3), 

one gets: 

𝑢∗(𝑠) = 𝑠𝛾1−1 ∫ 𝑒−𝑡𝑠∝
𝑄(𝑡)𝑢0𝑑𝑡

∞

0
+ ∫ 𝑒−𝑡𝑠𝛽

𝑄(𝑡)𝑔∗(𝑠)𝑑𝑡
∞

0
   (8) 

From (3): 

𝑄(0)ℎ = 0 , for every ℎ ∈ 𝑆1.  (9) 

Using the results in [4], we get from (8), (9) and the simple facts about the Laplace transform of fraction of 

derivatives, the following representation 
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𝑢(𝑡) =
𝑑𝛼𝛽

𝑑𝑡𝛼𝛽 ∫ 𝜉𝛼(𝜃)𝑄(𝑡𝛼𝑜)𝑢0𝑑𝜃
∞

0
+ ∫ ∫ 𝛼𝜃(𝑡 − 𝜏)𝛼−1∞

0

𝑡

0
𝜉𝛼(𝜃)𝑄((𝑡 − 𝜏)𝛼𝜃)𝑔3(𝑡)𝑑𝜃𝑑𝜏  (10) 

Where 𝜉𝛼(𝑡) is a probability function defined on (0, ∞) and satisfies the following identity: 

∫ 𝑒𝜃𝑠𝜉𝛼(𝜃)𝑑𝜃
∞

0
= 𝐸𝛼(𝑠),                (11) 

where 𝐸𝛼(𝑠)  is the Mittag-Loffler function defined by 

𝐸𝛼(𝑠) = ∑
𝑠𝑗

𝛤(1 + 𝛼𝑗)

∞

𝑗=0

 

Using (3) and (10), we get 

𝑢(𝑡) = 𝛹1(𝑡)𝑢𝑜 + ∫ 𝛹2(𝑡𝑖 − 𝜏)𝑔3(𝜏)𝑑𝜏
𝑡

0
 ,  (12) 

where  

𝛹1(𝑡) = 𝐼 +
1

𝛤(1−𝛼𝛽)
∫ 𝜏−𝛼𝛽𝛹2(𝑡 − 𝜏)𝐴𝑑𝜏

𝑡

0
, 

𝛹2(𝑡) = ∫ 𝛼𝜃𝑡𝛼−1𝜉𝛼(𝜃)𝑄(𝑡𝜃)𝑑𝜃
∞

0
. 

From property II and (11), we can find a constant  𝑀 >  0 , such that, 

‖𝑢(𝑡) − 𝑢0‖ ≤ 𝑀𝑡𝛼(1−𝛽)[‖𝑔(0)‖ + ‖𝐴𝑢0‖] + 𝑀𝑡𝛾2−𝛾1+𝛼‖𝑢1‖ 

(See [[15]-[22]]). It is clear from (12) that u ∈ 𝑪𝑆1
(𝐽) . 

3. Nonlinear equations 

Consider the following equation: 

𝑢(𝑡) = 𝑢0 + 𝜑(𝑡)ℎ1 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[𝐴𝑢(𝑠) + 𝑔(𝑠)]𝑑𝑠

𝑡

0

 

+
1

𝛤(𝛾1)
  ∫ (𝑡 − 𝑠) 𝛾1−1[𝐹(𝑠, 𝐵(𝑠)𝑢(𝑠)) + 𝑏(𝑠)ℎ2]𝑑𝑠

𝑡

0
   (13) 

We can write (13) in the form 

𝑢(𝑡) = 𝑢0 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝐴𝑢(𝑠)𝑑𝑠

𝑡

0
+

1

𝛤(𝛾1)
∫ (𝑡 − 𝑠) 𝛾1−1[𝐹(𝑠, 𝐵(𝑠)𝑢(𝑠)) + 𝑏(𝑠)ℎ2 + 𝑔3(𝑠)]𝑑𝑠

𝑡

0
     (14) 

Set: 

𝑉(𝑡) = 𝐹(𝑡, 𝐵(𝑡)𝑢(𝑡1)) + 𝑏(𝑡)ℎ2                                                                                            (15) 

Thus we can write formally: 

𝑢(𝑡) = 𝛹1(𝑡)𝑢0 + ∫ 𝛹2(𝑡 − 𝜏)[𝑔3(𝜏) + 𝑉(𝜏)]𝑑𝜏
𝑡

0
                                                                             (16) 

If equation (15) has a solution 𝑉 ∈ 𝐶𝐸(𝐽), we call formula (16) a mild solution of equation (13). 

Notice that 

ℎ2 = ∑ 𝑐1𝛹1(𝑡𝑖)𝑢0

𝑝

𝑖 = 1

+ ∑ 𝑐𝑖 ∫ Ψ2(𝑡𝑖 − 𝜏)𝑉(𝜏)𝑑𝜏
𝑡𝑖

0

𝑝

𝑖=1

+ ∑ 𝑐𝑖 ∫ Ψ2(𝑡𝑖 − 𝜏)𝑔3(𝜏)𝑑𝜏
𝑡𝑖

0

𝑝

𝑖=1

 .              (17) 

Theorem 3.1 Equation (13) has a unique mild solution 

Proof: Let us prove the uniqueness of the mild solution. Let 𝑢1 and 𝑢2 be two mild solutions of equation (13) 

and 

𝑉𝑗(𝑡) = 𝐹 (𝑡, 𝐵(𝑡)𝑢𝑗(𝑡)) + ∑ 𝑐𝑖𝑢𝑗(𝑡𝑖)

𝑝

𝑖 = 1

,        𝑗 = 1,2                                                                                                     (18) 

From properties (2), (5) and (2), (16), (17), (18) one can find a constant 𝑀 >  0 such that 
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‖𝑉1(𝑡)  − 𝑉2(𝑡)‖ ≤  𝑀 ∑|𝑐𝑖| ∫ (𝑡𝑖 − 𝜏)𝛼−1‖𝑉1(𝜏)  −  𝑉2(𝜏)‖𝑑𝜏
𝑡𝑖

0

𝑝

𝑖 = 1

+ 𝑀 ∫ (𝑡 − 𝜏)𝛾4−1‖𝑉1(𝜏)  −  𝑉2(𝜏)‖𝑑𝜏
𝑡

0

   (19) 

Where  𝛾4 = 𝛼(1 −  𝛿)  . 

Let 

𝑯 = 𝐦𝐚𝐱
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉1(𝑡)  − 𝑉2(𝑡)‖] 

where 𝜆 >  0 

∫ (𝑡 −  𝜏)𝛾4−1‖𝑉1(𝜏)  − 𝑉2(𝜏)‖𝑑𝜏
𝑡

0

 ≤  𝜆1−𝛾4𝐻 ∫ 𝑒𝜆𝜏𝑑𝜏 
𝑡−

1
𝜆

0

+ 𝐻 ∫ 𝑒𝜆𝜏(𝑡 −  𝜏)𝛾4−1𝑑𝜏
𝑡

𝑡−
1
𝜆

 ≤ (
1

𝜆
)𝛾4  [1 +

1

𝛾4

]𝐻𝑒𝜆𝜏 

(20) 

∑ ∫ |𝑐𝑖|
𝑡𝑖

𝟎

𝑝

𝑖 = 1

∫ (𝑡 − 𝜏)𝛼−1
𝑡𝑖

𝟎

‖𝑉1(𝑡) − 𝑉2(𝑡)‖𝑑𝑡 ≤ ∑ |𝑐𝑖|(
1
𝜆

)
𝛼

[1 +
1
𝛼

]𝐻𝑒𝜆𝜏

𝑝

𝑖 = 1

                                                                        (21) 

From (19), (20), (21), we get 

𝑒−𝜆𝜏‖𝑉1(𝑡)  −  𝑉2(𝑡)‖ ≤ (
1

𝜆
)𝛾4[1 +

1

𝛾4

][1 + ∑|𝑐𝑖|

𝑝

𝑖 = 1

𝑒𝜆Τ−𝜆𝛿] 

For sufficiently large  𝜆 , one gets 

(
1

𝜆
)𝛾4[1 +

1

𝛾4

] <
1

2
 

Now if  ∑ |𝑐𝑖|
𝑝
𝑖 = 1 ≤ 𝑒𝜆Τ . we get  

𝐻 ≤  𝑐𝐻 

Where c 𝜖 (0,
1

2
). 

Thus 

𝑯 = max
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉1(𝑡)  −  𝑉2(𝑡)‖] = 0 

(See [23]-[30]). 

To prove the existence, we define a sequence {𝑉𝑘(𝑡)} where 

𝑉𝑘+1(𝒕) = 𝐅(𝐭 , 𝐁(𝐭)𝐮𝐤(𝐭)) + ∑ 𝑐𝑖𝑢𝑘(𝑡𝑖)

𝑝

𝑖 = 1

,                    𝑘 = 1, 2,   .  .  . 

So 

‖𝑉𝑘+1(𝑡) − 𝑉𝑘(𝑡)‖ ≤ 𝑀 ∑|𝑐𝑖| ∫ (𝑡𝑖 − 𝑡)𝛼−1‖𝑉𝑘(𝑡) − 𝑉𝑘−1(𝑡)‖𝑑𝑡
𝑡𝑖

0

𝑝

𝑖 = 1

 

+𝑀 ∫ (𝑡𝑖 − 𝑡)𝛾−1‖𝑉𝑘(𝑡) − 𝑉𝑘−1(𝑡)‖𝑑𝑡
𝑡

0

 

where 𝑀 >  0 is a constant. Thus 

max
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉𝑘+1(𝑡) − 𝑉𝑘(𝑡)‖] ≤ 𝑐 max
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉𝑘(𝑡) − 𝑉𝑘−1(𝑡)‖]. 

By induction, one gets 

max
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉𝑘+1(𝑡) − 𝑉𝑘(𝑡)‖] ≤ 𝑐𝑘 max
𝒕 ∈ 𝑱

 [ 𝑒−𝜆𝑡‖𝑉1(𝑡) − 𝑉0(𝑡)‖] 

Where 𝑉0(𝑡) is the zero approximation, which can be taken the zero element in 𝐸. 
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Thus ∑  ‖𝑉𝑘+1(𝑡) − 𝑉𝑘(𝑡)‖∞
𝑘=0  uniformly converges on 𝐽 . Thus the sequence 𝑉𝑛+1(𝑡) = ∑ (𝑉𝑘+1(𝑡) −∞

𝑘=0

𝑉𝑘(𝑡)) is uniformly convergent to an element  𝐶𝐸(𝐽) . 

Consequently 𝑢 ∈ 𝐶𝐸(𝐽). Where 

𝑢(𝑡)  =  𝛹1(𝑡)𝑢0 +    ∫ 𝛹2(𝑡 − 𝜏)𝑉 (𝑡)𝑑𝜏
𝑡

0

+ ∫ 𝛹2(𝑡 − 𝜏)𝑔3(𝑡)𝑑𝜏
𝑡

0

 

Hence the required result. 

Let us prove now the stability of solutions. Consider the following equations 

𝜗𝑛(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝐴𝜗𝑛(𝑠)𝑑𝑠

𝑡

0

+
1

𝛤(𝛾1)
∫ (𝑡 − 𝑠)𝛾1−1[𝐹(𝑠, 𝐵(𝑠)𝑢𝑛(𝑠)) + 𝑏(𝑠)ℎ2𝑛]𝑑𝑠

𝑡

0

 

+
1

𝛤(𝛾1)
∫ (𝑡 − 𝑠)𝛾1−1𝑔3𝑛(𝑠)𝑑𝑠

𝑡

0
      (22) 

Where 

𝜗𝑛(𝑡) = 𝑢𝑛(𝑡)  −  𝑢𝑜𝑛 

ℎ2𝑛 = ∑ 𝑐𝑖𝜗𝑛(𝑡𝑖)
𝑛
𝑖=1  , 

𝑔3𝑛(𝑡)  =  𝑔2𝑛(𝑡) + 𝜙2(𝑡)𝑔𝑛(0) + 𝜙2(𝑡)𝐴𝑢𝑜𝑛 + 𝜙1(𝑡)ℎ1𝑛 + (𝑏(𝑡) ∑ 𝑐𝑖

𝑝

𝑖=1

) 𝑢𝑜𝑛 

𝑔2𝑛(𝑡) =
1

Γ(1 − 𝛼𝛽)
∫ (𝑡 −  𝑠)−𝛼𝛽 𝑑𝑔1𝑛(𝑠)

𝑑𝑠

𝑡

0
 , 

𝑔1𝑛(𝑡)  =  𝑔𝑛(𝑡)  −  𝑔(0) , 

𝜗𝑛(𝑡) = ∫ 𝛹2(𝑡 − 𝜏)𝑉𝑛(𝜏)𝑑𝜏
𝑡

0
+ ∫ 𝛹2(𝑡 − 𝜏)𝑔3𝑛(𝜏)𝑑𝜏

𝑡

0
 (23) 

Where 

𝑉𝑛(𝑡) = 𝐹(𝑡, 𝐵(𝑡)𝑢𝑛(𝑡)) + 𝑏(𝑡)ℎ2𝑛  (24) 

Theorem 3.2 Suppose that the sequence 
𝑑𝑔𝑛

𝑑𝑡
∈ 𝐶𝐸(𝐽) uniformly converges on 𝐽 to 

𝑑𝑔

𝑑𝑡
∈ 𝐶𝐸(𝐽) . Suppose also 

that the sequences {𝑢𝑜𝑛 ∈ 𝐸} , {𝐵𝑢𝑜𝑛 ∈ 𝐸} , {𝐴𝑢𝑜𝑛 ∈ 𝐸} and {ℎ𝑖𝑛 ∈ 𝐸} are convergent such that 

lim
𝑛→∞

𝑢𝑜𝑛 = 𝑢𝑜  ∈ 𝑆1 

lim
𝑛→∞

𝐵𝑢𝑜𝑛 = 𝐵𝑢𝑜  ∈ 𝐸 

lim
𝑛→∞

𝐴𝑢𝑜𝑛 = 𝐴𝑢𝑜  ∈ 𝐸 

lim
𝑛→∞

 ℎ1𝑛 = ℎ1 ∈ 𝐸 

Then the sequence 𝑢𝑛 ∈ 𝐶𝐸(𝐽) of mild solutions of equation (22) uniformly converges on 𝐽 to the mild solution 

{𝑢 ∈ 𝐶𝐸(𝐽)} of equation (13) 

Proof: From (4), (23) and (24), one gets 

‖𝑉𝑛(𝑡) − 𝑉𝑚(𝑡)‖ ≤  𝑀 ∫ (𝑡 − 𝜏)𝛾4−1‖𝑉𝑛(𝜏) − 𝑉𝑚(𝜏)‖𝑑𝜏
𝑡

0

+ 𝑀 ‖𝐵𝑢𝑜𝑛 − 𝐵𝑢𝑜𝑚‖

+ 𝑀 ∑|𝑐𝑖| ∫ (𝑡𝑖 − 𝜏)𝛼−1‖𝑉𝑛(𝜏) − 𝑉𝑚(𝜏)‖𝑑𝜏
𝑡𝑖

0

𝑝

𝑖 = 1

 

Where 𝑀 >  0 is a constant. Since 𝐸 is a complete space, it follows that for every   휀 >  0 , we can find a 

positive integer 𝑁 such that   𝑛 >  𝑁 , 𝑚 >  𝑁 implies 

‖𝑉𝑛(𝑡) − 𝑉𝑚(𝑡)‖ ≤ (1 −  𝑐)ε  

Since 𝐸 is a complete space, it follows that the sequence { 𝑉𝑛(𝑡) } is uniformly convergent on 𝐽  . From (23), 

we find that the sequence 𝜗𝑛(𝑡) ∈ 𝐶𝐸(𝐽) is uniformly convergent . Hence the required result, comp [[31]-[34]]. 
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