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Abstract: The evaluation of the quality of the water in rivers is necessary to manage the efficiency of its use, being 

necessary to carry out physicochemical and biological analyzes to determine its healthiness, but it implies in its 

determination of a series of parameters that use various analytical methods that often they are tedious and time 

consuming to calculate. The present study makes a comparison of machine learning models such as Multiple Linear 

Regression (MLR), Neural Network Backpropagation (BPNN) and Support Vector Regression (SVR) to estimate 

Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) to determine the quality of the water of the 

Rímac river. Water samples were collected from 26 stations and non-point sources of contamination along the 

Rímac River with 624 records made during the years 2010 to 2012. The physical and chemical parameters 

introduced in the models include pH, turbidity, total dissolved solids, temperature, electrical conductivity, dissolved 

oxygen, biochemical oxygen demand, chemical oxygen demand, hardness, chloride, sulfate, calcium, magnesium, 

and nitrate. The dependent variables of the output models include biochemical oxygen demand (BOD) and 

dissolved oxygen (DO). The independent variables that were selected for the BOD, these were: pH, EC, turbidity, 

Nitrites, TOC, COD, iron, and chlorides. For DO, they were temperature, Nitrites, COD, Nitrates, STD, Chlorides 

and Total Solids. Both dependent parameters have 8 independent variables and the highest correlation coefficient 

values. The models were trained for learning and validation of 70% and 30% of the data set, respectively. The 

BPNN presented for the estimation of BOD, with 16 hidden nodes, values of R2 = 0.857 for training and 0.481 for 

the test phase; For the estimation of DO, with 8 hidden nodes, this was R2 = 0.768 in training and test phase of 

0.605. These values were higher than the MLR and SVR, which showed that the BPNN was the best selection. 

Finally, the classification of water quality as Good, Fair and Poor obtained a precision of 0.88 with a sensitivity of 

0.86 and an f1-score of 85%, which evidenced its effectiveness when carrying out this process. 

Keywords: Water quality, artificial neural network, multiple linear regression, support vector regression, Rímac 

river 

1. INTRODUCTION 

In Peru, in several provinces of the Coast region you can find different valleys with cities, rural 

areas, agricultural areas, among other sectors. Over the years, these sectors have been growing; therefore, 

there is an increase in the demand for water and its quality. But one of the main problems in Peru is the 

quality of the water; since it is considered that there is an annual discharge of 960.5 million cubic meters 

of drainage on surface, underground and marine water, of which 64.0% belongs to domestic drains, 5.6% 

industrial drains, 4, 4% from fishery drains, 25.4% from mining effluents and 0.2% from oil effluents 

(National Water Authority [ANA], 2015). 

According to the Chillón Rímac Lurín Water Observatory (2019), for the year 2016, the upper basin of 

the Rímac River presents regular quality with high levels of metals, mainly: arsenic, manganese, iron and 

lead. The Huaycoloro river ravine has poor quality, due to high levels of biochemical demand for oxygen, 

phosphorus, arsenic, iron, and thermotolerant coliforms. This is due to the different anthropic pollutants 

that cause the deterioration of its quality; for example, wastewater and irrigation dumping, solid waste 
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dumps, etc. On the other hand, Mayca Zegarra (2019) determined that the water quality of the Rímac river 

in the Chicla district presents parameters with concentrations below the standards, which are pH, 

Dissolved Oxygen and Conductivity, in addition, the Manganese metal showed values higher than 

standard. In addition, the sources of contamination that affect most of these concentrations were 

identified, that is, domestic residual discharges, industrial residuals from mining, contamination due to 

accumulation of wastelands, due to the presence of solid waste dumps. 

Currently, the ANA (2018) uses a methodology to determine the ICA-PE Water Quality Index at the 

different monitoring points, based on various parameters, which are carried out along the Rímac River. 

This methodology gives a qualitative result that is expressed on five scales from poor to excellent; 

however, it is not a prediction model, since it is carried out with the parameters that are evaluated at that 

moment. The determination of the water parameters takes between 1 to 10 days after taking the samples. 

Artificial neural networks can be used as an effective tool for estimating river water quality and could 

also be used in other areas to improve understanding of river pollution trends (Adeniran, Adelodun, & 

Ogunshina, 2016). Therefore, in this study, the Backpropagation neural network (BPNN), Multiple Linear 

Regression (MLR) and Support Vector Regression (SVR) were constructed to estimate the values of 

biochemical oxygen demand and dissolved oxygen, individually, using the base of data on the physical 

and chemical parameters of the Rímac River between 2010 and 2012. This study was carried out 

independently of the methodology used by the ANA; that is, it was not related to it, proposing a different 

methodology for estimating water quality. The results obtained were compared between each model. The 

one with the highest precision was used to determine the level of water quality through a proposed 

comparative table, which will result in a qualitative value. 

2. STATE OF ART 

According to Sierra (2011), there are two ways to describe water quality: i) measuring physical, chemical 

or biological variables, and ii) using water quality indices. The data that are obtained through 

measurements can be carried out in the field or in laboratories, since, subsequently, these data must be 

analyzed. The results may vary due to contamination through the direct or indirect introduction of 

substances or energy to the aquatic environment, causing problems in living organisms, effect on human 

health, etc. 

The application of Machine Learning (ML) models for the prediction of water quality has been carried out 

in several rivers on different continents; for example, Adeniran et al. (2016) applied backpropagation 

artificial neural networks (BPNN) for the modeling of biochemical oxygen demand (BOD) and dissolved 

oxygen (DO) in the Asa river, Nigeria, with correlation coefficient (r) 0.953 and 0.956 respectively; used 

6 physical and 9 chemical parameters chosen by statistical analysis. However, Raheli et al. (2017) used 

the BPNN to estimate the BOD and DO, but applied the firefly optimizer algorithm (FF), showing the 

effectiveness of this tool when obtaining results of 2.514 mg / L, 35.296%, 0.778 and 0.818 for RMSE, 

RMSE (% ), R and WI (Willmott index). On the other hand, Areerachakul et al. (2011) analyzed the 

performance of a neural network using the Levenberg-Marquardt algorithm in the channels of the Dusit 

district, Bangkok, which estimated Dissolved Oxygen by entering 10 parameters; obtaining r equal to 

0.84, mean square error (MSE) at 0.78 and mean absolute error (MAE) at 0.7.  

Wen et al. (2012) also used the BPNN but applied the Bayesian regularization training algorithm to 

estimate the same parameter in the Heihe River. The results obtained were r of 0.9654, 0.9841 and 

0.9680, and RMSE of 0.4272, 0.3667 and 0.4570 for training, validation, and testing, respectively. 

Contrary to Omar (2017) who used only the BP to estimate the DO with R values of 0.885, 0.869 and 

0.885 for the training, validation, and testing phase, followed by the MSE with values of 1.031, 0.143 and 

0.133 for the phases indicated respectively. 

The presence of several ML models can give us different results among them, prevailing those that show 

greater precision; To achieve the model that provides the best results, a comparison is made between 

them, where Olyaie et al. (2017) made the comparison between neural networks (Backpropagation and 

Radial Base Function), Linear Genetic Programming (LGP) and Support Vector Machine (SVM) for the 

estimation of Dissolved Oxygen in the Delaware River, resulting in the SVM with the highest value of r = 

0.991 to that of LGP, 0.934. Another case where SVM stood out was in the Wen-Rui Tang River by Ji et 
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al. (2017), when compared with the multiple linear regression (MLR), the BPNN and the generalized 

regression neural network (RNRG), where the SVM obtained the values of 0.9416 mg / L, 0.8646 and 

0.8763 for MSE, R2, and NS; furthermore, that ammonia nitrogen was the most significant variable. 

For the case of reservoirs, Chen and Liu (2013) compared the Backpropagation and ANFIS (Adaptive 

Neural-based fuzzy inference system) neural networks against the MLR, where ANFIS showed better r 

results with values of 0.89 for the training phases and then the other two models for the prediction of DO 

in the Feitsuit reservoir, Taiwan. However, Nemati et al. (2015) used these last three methods to also 

predict DO in the Tai Po River, Hong Kong; with the difference that the evaluation of the performance of 

the models was added the Nash-Sutcliffe efficiency criterion; giving as results of r for the training and 

testing phase, 0.796 and 0.798 in the case of ANN as having better results than MLR and ANFIS. 

Csábrágia et al. (2019) applied the Multiple Linear Regression (MLR) model, Radial Base Function 

neural network (RBF) and Generalized Regression neural network (GRNN) to discover which is the best 

method to predict OD. They included the runoff parameter as an input value and proposed three types of 

configurations in the training and test data of the Tisza River. As a result, the GRNN had a better result of 

r2 = 0.31 than the other models. Antanasijević et al. (2013) also used the GRNN but compared it with the 

Backpropagation neural network (BPNN) and the Recurrent neural network (RNN) for the prediction of 

OD in the Danube River. However, the GRNN model had a high value of r2 (0.99), much better than 

RNN (0.87) and BPNN (0.83). Another case study where they used GRNN, was applied by Ji et al. 

(2017), comparing it with the BPNN and the SVM to estimate the DO, with the difference that this last 

model had greater precision when obtaining results of MSE = 0.9416 mg / L, R2 = 0.8646 and NS = 

0.8763 in the test phase. 

On the other hand, Sarkar and Pandey (2015) had configurations in the training data, proposing three 

neural networks depending on the three sets of input variables that would later enter the Backpropagation 

network, choosing the case study the Yamuna River, city of Mathura, India. The highest performance was 

obtained by the second configuration where the values of RMSE, R, DC were 1.71, 0.907, 0.822 

respectively during training and 1.52, 0.928, 0.856 during the test phase. Xiao et al. (2017) also used 

BPNN, with the difference of the combination of the activation functions purelin, logsig and tansig for 

the estimation of OD, which was later compared with the autoregression, gray model and SVM, where 

the RN obtained estimated values with lower at 5% of the limit error. 

Ahmed (2017) evaluated the possibility of predicting DO with only two input parameters, Biochemical 

Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), in the Surma River, Bangladesh. He 

used the RBF neural network and the Pre-powered network; where, Ahmed confirmed that DO can be 

predicted with a small number of variables, yielding acceptable precision with values of correlation 

coefficient (0.944), MSE (1.009) and E (0.966) for the RBFN model. Additionally, Ahmed and Shah 

(2017), estimated the BOD using the ANFIS model considering 10 water parameters as independent 

variables, where they obtained for the test phase the values of 1.01, 1.67, 83.12 and 0.885 for MAE, 

MSE, EFF and R.  

Iglesias et al. (2014) did not predict DO, they focused on predicting Turbidity, since it is a key variable 

for water quality. Using the Backpropagation neural network, they concluded that temperature is the 

parameter most influenced by turbidity, and network performance increases when a synergistic variable 

with r = 0.8 is additionally entered. Wang et al. (2017) refer to the application of the LSTM neural 

network for water quality prediction, which was then compared with the Backpropagation neural network 

(BPNN) and the Online Sequential Extreme Machine Learning (OS-EML) model. The chosen model was 

used to predict Dissolved Oxygen (DO) and Total Phosphorus (FT), where the RN LSTM obtained as a 

result of a correlation coefficient of 0.89, and its RMSE value was lower than that of the other models, in 

conclusion, this neural network is more generalized. On the other hand, Zhu and Heddam (2019) 

compared the multilayer perceptron neural network (MLPNN) and extreme learning machine (ELM) for 

the estimation of DO in three different rivers, showing that these models can be applied in rivers with less 

impact, as long as it does not have a higher concentration of contamination since it is difficult for the 

models to consider the impact of anthropogenic influences. 

Bayram and Kankal (2015) applied neural networks to estimate DO, comparing it with regression 

analysis (RA). They used the multilayer neural network with results of RMSE = 0.623 mg / L and MAE 
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= 0.710 mg / L against the RA values that were 0.967 mg / L and 0.787 mg / L respectively. Therefore, 

the multilayer NR presented values closer to 0, interpreting it as the most feasible. Finally, Csábrági et al. 

(2017) adapted four models for the estimation of OD, these were multiple linear regression (MLR), 

multilayer perceptron neural network (MPNN), radial function neural network (RFNN) and generalized 

regression neural network (GRNN), where they agreed on that non-linear models showed better results 

than linear models. The GRNN showed better performance and RFNN better results with the RMSE, 

MAE, IA and R2 indicators. 

The studies analyzed in this section helped to understand how the DO and BOD estimation could be 

carried out, since the authors consider that they are essential values to determine the water quality in 

rivers. 

 

3. BACKGROUND 

The quality of the water is one of the main characteristics of a river, the quality of the water must be 

simulated and predicted through mathematical models. If the predicted quality is not satisfactory, some 

changes or precautions should be implemented. To avoid this unwanted trend, controlling water pollution 

has become essential to maintain the sustainability of water resources. Water quality can be assessed 

using a series of critical parameters carefully selected to represent the level of contamination of the water 

body of interest and reflect its overall water quality status. It is for this reason that mathematical models 

are used, which allow a more adequate evaluation of the behavior of water quality in a natural stream. In 

addition, the models allow the creation of fundamental future scenarios for the planning and proper 

management of natural resources. The mathematical models applied in the modeling of water to 

determine its quality are non-linear and complex, naturally due to the processes to be replicated. Today, 

with the use of machine learning algorithms it has simplified their use for the determination of water 

quality. 

3.1 Streeter-Phelps Water Quality Model 

There is a great variety of water quality models, with which it is possible to establish a discharge behavior 

in a receiving water body. The main differences lie in the transport processes (advection, dispersion) and 

reaction (transformation of the water quality determinants) that they include and therefore in the 

assumptions they make. Harold Streeter and Earle Phelps carried out studies in the Ohio River between 

1914 and 1916 to be able to carry out the mathematical modeling of Dissolved Oxygen. This 

mathematical model is related to two main mechanisms that define dissolved oxygen in a surface water 

channel that receives wastewater discharge: (i) Oxidation of biodegradable organic matter, and (ii) 

Reaeration of oxygen (Joaquín Suárez, 2008). 

3.1.1. Biodegradable organic matter oxidation 

The Biochemical Oxygen Demand is a chemical parameter that allows to determine the content of organic 

matter in a water sample. This parameter is measured by how much oxygen is required by 

microorganisms to degrade, oxidize, stabilize, etc. organic matter. The results are given in milligrams per 

liter (mg / L) of oxygen consumed (Sierra Ramírez, 2011). 

 
Figure 1. Biochemical oxidation 

Source: Sierra Ramírez, 2011 
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Figure 1 shows the biochemical oxidation process, where the BOD exerted (oxygen consumed) per unit of 

time due to the oxidation of organic matter is represented, which is directly proportional to the amount of 

organic matter that remains to be oxidized in a certain moment. 

𝑑𝑂𝐷

𝑑𝑡
= −𝐾1. 𝐿 

where K1 is the degradation parameter that varies with the type of water and with the degree of 

wastewater treatment. (Joaquín Suárez, 2008). 

 

Figure 2. BOD remnant in time 

Source: Sierra Ramírez, 2011 

 

If what you want is to demonstrate the remaining BOD (oxygen not consumed) in time, figure 2 shows 

this, then the equation would be as: 

𝑑𝐿𝑡

𝑑𝑡
= −𝐾1. 𝐿𝑡 

where L is the BOD not consumed at instant t (Joaquín Suárez, 2008). 

 

If we integrate the equation; therefore, the formula to determine the amount of BOD exerted at instant t is 

as follows: 

𝐷𝐵𝑂𝑡 = 𝐷𝐵𝑂𝑢(1 − 𝑒−𝑡𝐾1) 

3.1.2. Surface Reaeration 

The low concentration of Dissolved Oxygen (DO) is reflected in an unbalanced ecosystem, fish kills, 

odors and other aesthetic annoyances. It is considered the most important parameter in the diagnosis of 

the state of contamination of an aquatic ecosystem. The problem can be summarized as the dumping of 

organic and inorganic waste into the water causing the decrease in DO which interferes with beneficial 

uses of the water. The most important discharges are the discharges of industrial waste and domestic 

sewage, oxidizable forms of nitrogen and nutrients that stimulate the growth of phytoplankton (Sierra 

Ramírez, 2011). 

DO concentration reflects the balance between oxygen production and oxygen consumption, processes in 

the aquatic ecosystem. This depends on many factors such as temperature, salinity, oxygen depletion, 

oxygen source, and others. The DO level is the health criterion, which is frequently used for the control of 

water quality in different aquatic ecosystems such as reservoirs and wetlands (Olyaie, Zare Abyaneh, & 

Danandeh Mehr, 2017). 

To determine the degree of contamination by biodegradable organic matter in a river, the amount of 

dissolved oxygen must be measured. 
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Figure 3. Surface Reaeration 

Source: Sierra Ramírez, 2011 

3.2. Multiple Linear Regression 

The MLR learns the relationship between dependent variables and a dependent one. It offers simple and 

easily interpretable models; however, it can lead to inaccurate models that predict poorly in the presence 

of a non-linear or non-additive relationship. In the linear case, the functional relationship between the 

dependent variable and its predictors is estimated by minimizing the residual sum of squares (Nemati 

2015).  

The best MLR equation is based on the high multiple correlation coefficient, the lowest standard 

deviation, and the magnitude of the F-radius. The general model of the MLR is expressed as: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖+. . . +𝛽𝑞𝑥𝑞𝑖 

where yi is the dependent variable, n is the sample size and i = 1,…, n; x1, x2,…, xq are the dependent 

variables; x1i, x2i,…, xqi are the measured values; β0 is a constant; and β1, β2,…, β3 are the multiple 

regression coefficients (Ouma et al., 2020).. 

3.3. Neural Network Backpropagation 

It is a forward feeding neural network with one or more hidden layers, which are between the input and 

the output. It is the most popular type of network that generally uses the backward propagation error 

technique to train the network configuration. The meaning of feedforward is that the data flows in one 

direction from the input layer to the output layer. This type of network is trained with the backpropagation 

learning algorithm. (Olyaie et al., 2015). The single layer BPNN training process is relatively 

straightforward because the loss function is applied as a direct function of the weights, allowing a simple 

gradient to be applied. For multilayers, the loss is a complicated function made up of the weights of the 

nearby layers. The backpropagation algorithm uses the differential calculation chain rule, which 

calculates the error gradient in terms of sums of squares of local gradient over the various paths from a 

node to the output (Aggarwal, 2018). 

The output of a neuron (Ahmed, 2017) can be expressed as: output = f (n) 

Where: 

𝑛 = ∑ 𝜔𝑗𝑥𝑗 + 𝑏

𝑅

𝑗=1

 

x1, x2,…, xR are the input values; ω1, ω2,…, ωR are the weights of the neuron; b is bias value and f(n) is 

activation function. The activation function ReLu (Rectified Linear Unit) is used in the architecture of the 

neural network for the hidden layers (Aggarwal, 2018), expressed as:𝑓(𝑛) = 𝑚𝑎𝑥{𝑛, 0} 

The output y of the output node can be calculated as: 

𝑦 = ∑ (𝜔𝑗,𝑖(2)𝑚𝑎𝑥(∑ 𝑥𝑗𝜔𝑖,𝑗(1)
+ 𝑏𝑖(1), 0)

𝑅

𝑗=1

)

𝑧

𝑖=0

+ 𝑏1(2) 
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where R is the number of input nodes, z is the number of hidden nodes, ωi, j (1) is the weight of the first 

layer between the input j and the hidden i, ωi, j(2) the weight of the second layer between hidden neuron i 

and exit neuron, bi(2) is the biased weight for hidden neuron i and b1(2) is the biased weight for exit neuron. 

 

Figure 4. Neural network Model 

Source: Own elaboration 

3.4. Support Vector Regression 

In principle, SVM was developed to solve classification problems, later its use has been extended to 

applications of regression by estimation functions, generating the Support Vector Regression (SVR). It 

estimates an output variable based on a set of input variables. The development includes the principle of 

Structural Risk Minimization (SRM), which is superior to the traditional Empirical Risk Minimization 

(ERM) principle, used for conventional neural networks. The SRM minimizes the upper limit of the 

expected risk, opposite to the other principle that minimizes the error of the training data (Olyaie et al., 

2015). 

The regression of the SVM can be expressed as: 

𝑓(𝑛) = 𝑤 ∙ 𝜙(𝑥) + 𝑏 

where w is the weight vector, ϕ (x) the nonlinear transfer function and b the bias. The coefficients of w 

and b can be determined by minimizing the regularized hazard function: 

 

Minimize: 
1

2
‖𝑤‖2 + 𝑐 ∑ (𝜀𝑖; 𝜀𝑖 ∗)𝑛

𝑖  

Subject to {

𝑦𝑖 − 𝑤 ∙ 𝜙(𝑥) − 𝑏 ≤ 𝜀 + 𝜀𝑖

𝑤 ∙ 𝜙(𝑥) + 𝑏 − 𝑦𝑖 ≤ 𝜀𝑖 + 𝜀𝑖 ∗
𝜀𝑖; 𝜀𝑖 ∗ ,   𝑖 = 1, 2, 3, . . . , 𝑛

  

 

where c is the regularization parameter, εi and εi * are stationary variables. To solve the optimization 

problem, the Lagrangian multipliers are used: 

 

Maximize: −
1

2
∑ ∑ (𝑎𝑖 − 𝑎𝑖 ∗)(𝑎𝑗 − 𝑎𝑗 ∗)𝐾(𝑥𝑖, 𝑥𝑗) − ∑ (𝑎𝑖 − 𝑎𝑖 ∗) + ∑ (𝑎𝑖 − 𝑎𝑖 ∗)𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  

Subjet to ∑ (𝑎𝑖 − 𝑎𝑖 ∗)𝑛
𝑖=1 , 0 ≤ 𝑎𝑖 ≤ 𝐶  0 ≤ 𝑎𝑖 ∗≤ 𝐶 

where K(xi,x) is a function of . 

Imposing the Karush-Kuhn-Tucker (KKT) optimizing condition, w * is obtained as: 

𝑤∗ = ∑(𝑎𝑖 − 𝑎𝑖 ∗) ∙ 𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

 

Therefore, the SVR expression is: 
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𝑓(𝑥) = ∑(𝑎𝑖 − 𝑎𝑖 ∗) ∙ 𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

 

For the kernel function four options can be applied, these are: polynomial, sigmoid, linear and RBF. The 

latter maps the input vectors into a non-linear multi-dimensional space; in addition, it could model 

complicated non-linear relationships. The RBF is easier to use than the polynomial and sigmoid kernels, 

due to the fewer tunable parameters available. Its formula is: 

𝐾(𝑥𝑖, 𝑥) = 𝑒𝑥𝑝(−𝑔‖𝑥𝑖 − 𝑥‖2) 

where g is the adjustable kernel parameter (Ji et al., 2017; Olyaie et al., 2016). 

3.6. Performance Evaluation 

To evaluate the performance of the explained models, some statistical measurements should be 

considered depending on the models that are chosen. Those measurements considered were correlation 

coefficient (R), root mean square error (RMSE), mean absolute error (MAE) and Nashe-Sutcliffe 

coefficient of efficiency. 

The R measures the degree of correlation between the experimental variable and the measure (Ahmed, 

2017). This is in the range of -1 to 1. If R = 0, there is a non-linear relationship, on the other hand, if R = 

1 or -1, there is a perfect positive or negative linear relationship (Olyaie et al., 2017). The equation is: 

𝑅 =
∑ (𝐷𝑂𝑚(𝑖) − 𝐷𝑂̅̅ ̅̅

𝑚)(𝐷𝑂𝑒(𝑖) − 𝐷𝑂̅̅ ̅̅
𝑒)𝑛

𝑖=1

√∑ (𝐷𝑂𝑚(𝑖) − 𝐷𝑂̅̅ ̅̅
𝑚)2𝑛

𝑖=1 ∑ (𝐷𝑂𝑒(𝑖) − 𝐷𝑂̅̅ ̅̅
𝑒)2𝑛

𝑖=1

 

The RMSE measures the number of squares of errors between the estimated and measured value (Ahmed, 

2017). It is calculated as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝐷𝑂𝑒(𝑖) − 𝐷𝑂𝑚(𝑖))2𝑛

𝑖=1

𝑛
 

The MAE verifies the robustness of the implemented model, offers an indication about the overestimation 

and underestimation of a model (Omar, 2017). 

𝑀𝐴𝐸 =
∑ |𝐷𝑂𝑒(𝑖) − 𝐷𝑂𝑚(𝑖)|𝑛

𝑖=1

𝑛
 

The NS has been used to evaluate the performance of hydrological models (Ahmed, 2017). It is an 

alternative to R as a measure of relative error where it is sensitive to the differences between the measured 

and estimated mean and variance (Olyaie et al. 2017): 

𝑁𝑆 = 1 −
∑ (𝐷𝑂𝑚(𝑖) − 𝐷𝑂𝑒(𝑖))2𝑛

𝑖=1

∑ (𝐷𝑂𝑚(𝑖) − 𝐷𝑂̅̅ ̅̅
𝑚)2𝑛

𝑖=1

 

where DOm (i) and DOm (i) are the measured and estimated DO, respectively. The DO is the mean, and n 

is the number of data considered. 

4. METHODOLOGY 

The methodology seeks to determine the water quality of a point in a given place in a riverbed. The first 

point that was made was the identification of the river, which would form the case study, since the 

information with the water parameters that the entities have in their databases over several years will be 

extracted from that place. After obtaining the information, the parameter selection analysis was carried 

out, since not all the parameters are essential to the model. After that, they entered the three models 

chosen to meet the main objective, these are Multiple Linear Regression (MLR), Neural Network 

Backpropagation (BPNN) and Support Vector Regression (SVR), implemented in Python language with 

Jupyter. These models had a particular objective, the estimation of Dissolved Oxygen and Biochemical 

Oxygen Demand, independently. However, the results of the three models were not taken, but the one 
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with the highest precision in its results and the best reliability was chosen.The base of the two objective 

parameters of the chosen model was obtained. These two parameters went through a classification table 

prepared based on the Water Quality Standards (ECA), this classification is 4 categories of water quality: 

awfully bad, bad, good, incredibly good. This classification corresponds to each sample carried out. 

Figure 6 shows the methodology in a simplified and structured way. 

 

Figure 5. Proposed methodology for estimating water quality 

Source: Own elaboration 

4.1. Study area 

The Rímac River is born on the western slope of the Andes Mountains in the Pacay mountain range at a 

maximum altitude of 5,508 m.a.s.l. approximately 132 km northeast of the city of Lima, flowing into the 

Pacific Ocean, through Callao (Chillón Rímac Lurín Water Observatory, 2019). It is the most important 

river in the department, being the capital of the republic the main consumer of surface water and aquifer. 

In figure 6 we observe the hydrographic map of the Rímac river basin, where mining settlements are 

verified along its channel, causing contamination in its waters. 

 

Figure 6. Hydrographic map of the Rímac river basin 

Source: Ministry of Energy and Mines (MEM) 

 In addition, there is a presence of mining activity in the upper basin, evacuating some discharges directly 

to the river (General Directorate of Environmental Health, [DIGESA], 2011). DIGESA monthly monitors 

the Rímac river basin with 26 stations, where samples are evaluated with up to 32 physical, chemical and 

biological parameters such as dissolved oxygen, biochemical oxygen demand, arsenic, cadmium, copper, 

total chromium, iron, manganese. , lead, mercury, zinc, hydrogen potential (pH), thermotolerant 

coliforms, among others. The set of parameters used for this study consists of 624 records between the 

years 2010 and 2012. The values of this set are quantitative, there are no qualitative values. 
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4.2. Parameter selection 

Dutta and Chaki (2012) provide us with which are the parameters that affect water quality and are 

essential in the application of the different Machine Learning models. These are: pH, DO, BOD, Total 

dissolved solids, Electrical Conductivity, Specific Conductance, Water level, Temperature, Turbidity, 

Tidal effect, Calcium, Magnesium, Nitrate, Phosphate, Sulfate, Ammonia, Chloride, rainfall, mining, and 

industry. 

In the case of the Rímac River, the selection of parameters was made not by the identification carried out 

in other studies but based on the relationship that these parameters maintain with the dependent variables. 

First, those parameters that did not have a sufficient amount of data to enter the model were removed, 

leaving only the following: pH, temperature (° C), specific conductivity (EC), turbidity, total nitrogen 

(NT), Nitrites (NO2-), Nitrates (NO3-), Chloride (Cl-), Total Organic Carbon (TOC), Chemical Oxygen 

Demand (COD), Total Solids, Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Aluminum, 

and Iron, among others. 

Table 1. Basic statistics of the water quality parameters in the Rímac River.2010-2012 

Variables Statistical Measure  Correlation Pearson 

Mean Std deviation Minimum Maximum BOD DO 

Temperature 14.257 5.898 4.39 29.6  0.573 -0.130 

Nitrite 0.048 0.183 0 1.986  0.411 -0.246 

TOC 2.984 4.856 0.3 41.27  0.292 -0.327 

COD 28.062 52.12 4 472  0.401 -0.181 

Nitrate 0.692 0.548 0.123 5.046  0.413 -0.143 

C.E. 583.692 318.269 11 1890  0.250 -0.300 

STD 463.526 270.792 120 1495  0.350 -0.151 

Chlorides 22.493 61.559 0.31 673.5  0.312 -0.175 

Turbidity 124.976 207.724 0 1205  0.281 0.190 

Total Solids 549.032 325.481 148 1630  0.373 -0.066 

NT 1.403 1.702 0.12 14.02  0.278 -0.141 

Iron 4.359 10.781 0.03 61.35  0.182 0.215 

Aluminum 1.292 1.859 0.045 18.08  0.180 -0.131 

STS 85.506 148.957 5 854  0.178 0.131 

pH 8.81 0.51 7.13 9.86  -0.047 -0.224 

Zinc 1.118 2.181 0.009 23.51  -0.160 0.070 

Arsenic 0.027 0.021 0.002 0.145  -0.123 0.023 

Manganese 1.501 5.001 0.013 36.6  -0.127 0.000 

Own elaboration 

Table 1 shows the statistical data of these parameters. However, as there is many independent variables, 

those that maintain the highest correlation coefficient with each dependent variable were chosen, having a 

total of seven independent variables for each model. The independent variables with a correlation 

coefficient greater than 0.290 were selected for the BOD, these were: pH, EC, turbidity, Nitrites, TOC, 

COD, iron and chlorides. For DO, the variables had a correlation coefficient greater than ± 0.170. which 

were: temperature, Nitrites, COD, Nitrates, TDS, Chlorides and Total Solids. Both dependent parameters 

have 8 independent variables with the highest correlation coefficient values. Figure 7 shows the 

correlation coefficients of the water parameters classified between selected and not selected. 
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Figure 7. Correlation coefficients between parameters and independent variables 

Source: Own elaboration 

4.4. Construction of DO and BOD estimation models. 

The dataset went through a normalization process for greater benefit and rapid convergence. Feature 

Scaling was used, where the normalized value is calculated from the division of the subtraction of the 

unnormalized value and its minimum value, and the subtraction of the maximum and minimum value of 

the attribute set. The result of the normalization was in a range between 0 and 1. After that, the data were 

divided into two groups, data train and data test, where the percentage of data each had is 80% and 20% 

respectively. this division was made randomly. 

Python language libraries were used for the implementation of MLR, BPNN and SVR. With respect to 

BPNNs, the input layer has eight nodes for the DO and BOD architecture, this due to the selection made 

in the previous section. Ji et al. (2017) indicates that the appropriate number of nodes in the hidden layer 

should be in the range between (α + 〖2n〗 ^ (1/2)) and (2n + 1), where α is the number of output nodes 

and n, the number of input nodes. Therefore, the determination of the number of hidden nodes was 

carried out in the range of 5 and 17, through trial and error to obtain the quantity that most favored the 

prediction of the dependent variable; This layer had the ReLu activation function; finally, the output layer 

was the estimated value of DO and BOD, independently, the linear activation function was used. 

The determination of cost (C) and gamma (g) is important for increasing SVR performance. Grid 

Search was applied to obtain these parameters, of which the chosen ones are presented as the optimum of 

the model. The range of C was between 1 and 100, for g between 0.0001 and 0.1 with a jump of 0.001, 

and for epsilon it was between 0.1 and 0.5. The RBF function was used for the kernel. 

4.5. Determination of water quality 

Supreme Decree No. 004-2017-MINAM indicates that for rivers within Category 1-2A, the DO must be 

greater than or equal to 5 mg / L, and for the BOD it must be less than 5 mg / L, complying with the 

Water Quality Standards (ECA). On the other hand, Regalado et al. (2008) indicates that the DO being 

less than 4 mg / L is considered bad, greater than this and less than 8 mg / L is acceptable and greater 

than the latter is good. For the BOD, if it is less than 3 mg / L it is exceptionally good, greater than this 

and less than 5 mg / L is acceptable, and greater than the latter is bad. 

Table 2 shows the proposal to classify the quality of the water qualitatively, taking into consideration the 

cases of the previous paragraph. This is interpreted as follows: if the DO is greater than or equal to 5, it is 

assigned True, if it is less than 5, False; If the BOD is less than or equal to 5, True is assigned, otherwise, 

False. If both obtain True, it is qualified as Good quality, if both are False, it is classified as Bad; and if 

one is different from the other, the classification is Regular. This classification was applied after 

obtaining the estimated values of DO and BOD of the model that obtained more precise results compared 

to the other two models. 
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Table 2. Determination of the proposed water quality. 

Water quality DO (mg/L) 

≥ 5 

BOD (mg/L) 

≤ 5 

Good True True 

Regular 
False 

True 

True 

False 

Bad False False 

Own elaboration 

5. RESULTS 

In this study, Machine Learning models were performed to estimate each dependent variable, dissolved 

oxygen (DO) and biochemical oxygen demand (BOD), through the parameters of Temperature, Nitrites, 

Total Organic Carbon, Chemical Oxygen Demand, Nitrates, Electrical Conductivity, Total Dissolved 

Solids and Chlorides, in the Rímac River. These models were developed using Multiple Linear 

Regression (MLR), Neural Network Backprogation (BPNN) and Support Vector Regression (SVR), 

implemented in Python language with Jupyter. 

Equation (1) was used to estimate the DO value for the training and testing phases of the MLR. 

The performance criteria of the model for both phases are shown in Table 3. Figure 8 presents the 

measured and estimated DO values for the mentioned phases. The MAE, RMSE, R and NS values for the 

training phase were 0.117 mg / L, 0.147 mg / L, 0.633 and 0.400, while the values for the test phase were 

0.151 mg / L, 0.195 mg / L, 0.245 and 0.038 respectively. 

𝐷𝑂 = 0.736 − 0.881 × 𝐶𝑂𝑇 − 0257 × 𝐶𝐸 − 0.216 × 𝑁𝑂2 − 0.206 × 𝑝𝐻 + 0.039 × 𝐹𝑒
+ 0.341 × 𝑇𝑢𝑟𝑏 − 0.407 × 𝐷𝑄𝑂 + 1.122 × 𝐶𝑙 

Table 3. Performance criterion of the MLR model 

Own elaboration 

 

Figure 8. Comparison of graphs of DO measured and estimated using MLR for a training data and b test 

data. 

Output Training   Test  

MAE RMSE R NS MAE RMSE R NS 

DO  0.117  0.147 0.633 0.400  0.151 0.195 0.24

5 

0.03

8 

BOD 0.106 0.145 0.708 0.502  0.129 0.184 0.47

3 

0.16

4 
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Source: Own elaboration 

 

For the estimation of the BOD, equation (2) was applied for the training and testing phase. The criteria 

are also shown in Table 3. The measured and estimated values of the BOD were presented in Figure 9. In 

the training phase, the MAE, RMSE, R and NS values were obtained, these were 0.106 mg / L, 0.145 mg 

/ L, 0.708 and 0.502, while the values for the test phase were 0.129 mg / L, 0.184 mg / L, 0.473 and 

0.164, respectively.  

𝐵𝑂𝐷 = 0.015 + 0.487 × °𝐶 + 0.205 × 𝑁𝑂3 + 0.247 × 𝑁𝑂2 + 0.475 × 𝐷𝑄𝑂 − 0.015 × 𝑆𝑇
+ 0.111 × 𝑆𝑇𝐷 − 0.840 × 𝑆𝑇𝐷 + 0.266 × 𝐶𝑙 

 

Figure 9. Comparison of graphs of measured and estimated BOD using MLR for a training data and b test 

data. 

Source: Own elaboration 

 

Two BPNN models were built to estimate DO and BOD, independently. For the BPNN DO the 

activation function ReLu was used in the hidden layer and the linear function between the hidden layer 

and the output. The network was trained with 1000 epochs and a batch size of 10. Table 4 shows the 

performance criteria of the different architectures chosen. These architectures were selected from a range 

of hidden nodes of 5 and 17, where three architectures were highlighted with the best results.. 

Table 4. BPNN performance criteria for estimating DO. 

Layers Training   Test  

MAE RMSE R NS MAE RMSE R NS 

8 – 8 – 1 0.082 0.122 0.768 0.583  0.117 0.162 0.605 0.337 

8 – 11 – 1 0.078 0.119 0.776 0.602  0.126 0.168 0.540 0.283 

8 – 12 – 1 0.083 0.123 0.765 0.579  0.126 0.168 0.548 0.280 

Own elaboration 

The selection of the BPNN DO (8 - 8 - 1) is due to the most optimal values in the test and training phase. 

The MAE, RMSE, R and NS values for the training phase were 0.082 mg / L, 0.122 mg / L, 0.768 and 

0.583, while in the test phase these were 0.117 mg / L, 0.162 mg / L, 0.605 and 0.337, respectively. 

Figure 10 shows the comparison between the measured results and the estimates obtained from the model 

for the DO training and testing phase. The measured and estimated values are compared in Figure 10. 
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Figure 10. Comparison of graphs of DO measured and estimated using BPNN for a training data and b 

test data 

Source: Own elaboration 

 

The same hyperparameters as the BPNN DO model were taken for the BOD case, where the number of 

hidden nodes with more precise values were 15, 16 and 17, as shown in Table 5. However, the one that 

stood out the best between them was 16 hidden nodes. The measured and estimated values of the BOD of 

this number of hidden nodes were presented in Figure 11. In the training phase, the MAE, RMSE, R and 

NS values were obtained, these were 0.062 mg / L, 0.106 mg / L, 0.857 and 0.733, while the values for 

the test phase were 0.111 mg / L, 0.182 mg / L, 0.481 and 0.183 respectively.  

Table 5. BPNN performance criteria for estimating BOD. 

Own elaboration 

 

Figure 11. Comparison of graphs of measured and estimated BOD using BPNN for a training data and b 

test data 

Source: Own elaboration 

 

Layers Training   Test  

MAE RMSE R NS MAE RMSE R NS 

8 - 15 - 1 0.071 0.119 0.820 0.661  0.110 0.182 0.498 0.187 

8 - 16 - 1 0.062 0.106 0.857 0.733  0.111 0.182 0.481 0.183 

8 - 17 - 1 0.066 0.113 0.844 0.695  0.118 0.194 0.406 0.174 
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Grid Search was used to determine the SVR hyperparameters, where C = 6, γ = 0.0991 and e = 

0.3 were the optimized values for the DO estimation. The performance he had is shown in Table 6. The 

MAE, RMSE, R and NS values were 0.127 mg / L, 0.161 mg / L, 0.541 and 0.278 for the training phase; 

On the other hand, for the test phase, these values were 0.144 mg / L, 0.181 mg / L, 0.465 and 0.165. The 

comparison between the measured and estimated values is observed in Figure 12.   

Table 6. SVR performance criteria. 

Dependent 

variable 

C, γ, e Training  Test  

MAE RMSE R NS MAE RMSE R NS 

DO 6, 0.0991, 0.3 0.127 0.161 0.541 0.278  0.144 0.181 0.465 0.165 

BOD 1, 0.0991, 0.1 0.110 0.153 0.694 0.442  0.122 0.181 0.444 0.197 

Own elaboration  

 

 

Figure 12. Comparison of graphs of DO measured and estimated using SVR for a training data and b test 

data 

Source: Own elaboration 

The BOD estimation also used Grid Search to determine the optimal hyperparameters, their values were 

C = 1, γ = 0.0991 and e = 0.1. The performance can be observed in Table 6. The MAE, RMSE, R and NS 

values for the training phase were 0.110 mg / L, 0.153 mg / L, 0.694 and 0.442, for the test phase these 

were 0.122 mg / L, 0.181 mg / L, 0.444 and 0.197, respectively. Figure 13 shows the graphs of the 

comparison between the measured and estimated values of the BOD.  

 

Figure 13. Comparison of graphs of measured and estimated BOD using SVR for a training data and b 

test data 
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Source: Own elaboration 

6. DISCUSSION 

The input variables for the model were divided into two groups because each group is intended for a 

dependent variable. These variables were pH, specific conductivity (EC), turbidity, nitrites, total organic 

carbon (TOC), chemical oxygen demand (COD), iron and chlorides, for BOD, with a correlation 

coefficient greater than +0.29. For DO, the variables with a coefficient greater than ± 0.17 were 

temperature, nitrites, COD, nitrates, total dissolved solids (TDS), chlorides and total solids (TS). The 

reason for the selection of these two correlation values is due to the number of parameters that have 

greater than indicated, which in total are 10 for the BOD and DO, independently. In addition to this, it 

should be considered that Antanasijević et al. (2013) and Csábrági et al. (2019) indicated that pH and EC 

are relevant due to their simple, easy and continuous measurement in monitoring stations; furthermore, its 

change in a negative direction reflects the entry of wastewater and the increase in the decomposition of 

organic material. Most of the studies analyzed include pH, EC and temperature within the model because 

they present correlation coefficient values greater than 0.3; This coefficient is used mainly to determine 

the essential parameters for the model. 

 

Figure 14. Comparison of models chosen in the estimation of DO and BOD in the test phase. 

Source: Own elaboration 

Obtaining the results in the previous section leads to the comparison of the models to meet the stated 

objective. Table 7 shows the values of the statistical indicators of each of the MLR, BPNN and SVR 

models for estimating DO. Regarding R in the test phase, it can be ordered as MLR <SVR <BPNN, like 

that obtained by Ji et al. (2017) with the difference that the SVM obtained the highest value. 

Additionally, other authors concluded that the performance of the MLR was below the BPNN and SVM 

(Csábrágia et al., 2019; Chen and Liu, 2013; Csábrági et al., 2017; Nemati et al., 2015). 

It is observed that the BPNN has the R values of 0.768 and 0.605 for the training and test phase 

respectively, being higher than the SVR. This is not the case for Ji et al (2017) because they obtained an 

R of 0.9298 for the SVM showing that it estimates the DO in rivers with low oxygen; contrary to the 

value obtained from the SVR in 0.465 mg / L in the test phase. However, Chen and Liu (2013) obtained 

an R of 0.5 for the BPNN close to the ANFIS model that they compared. Furthermore, the MAE and 

RMSE values of the developed network are closer to 0 for both phases than the other models. Therefore, 

the BPNN was chosen for the estimation of DO, which afterwards entered its values to determine the 

water quality. Figure 14 shows the comparison of the values between the mentioned models for the DO. 

Table 7. 

Performance comparison for DO estimation. 

Output Training   Test  

MAE RMSE R NS MAE RMSE R NS 

MLR  0.117  0.147 0.633 0.400  0.151 0.195 0.24

5 

0.03

8 

BPNN 0.082 0.122 0.768 0.583  0.117 0.162 0.60

5 

0.33

7 



Turkish Journal of Computer and Mathematics Education                  Vol.12 No.12 (2021), 552-572 

                                                                                                                                       Research Article          

568 

 

 

 

Own elaboration 

On the other hand, for the estimation of the BOD, Table 8 shows the comparison of the statistical 

indicators between the MLR, BPNN and SVR. Like the DO, the BPNN showed values of R = 0.857 in 

the training phase, being higher than 0.708 and 0.694 of the MLR and SVR, respectively. For the MAE 

and RMSE, these two are close to 0, with a difference of 0.5 less than the other two models. The 

comparison of the values between the models to estimate the BOD is shown in Figure 13. The BPNN 

demonstrated its effectiveness in predicting the BOD as in the case studies of the Langat River (Raheli et 

al., 2017) and in the Asa river (Adeniran et al., 2016), with the difference that they implemented different 

learning algorithms, which were firefly and Levenberg-Marquardt, respectively.  

Table 8. 

Performance comparison for BOD estimation 

 

Own elaboration 

After the comparison of the models and the choice for DO and BOD, the results obtained from the test 

phase entered the classification of water quality in Table 3. The determination of the performance of this 

second classification process was performed using the Confusion Matrix. Said matrix can be seen in 

figure 13 where the good classification is the one with the greatest amount present and with effective 

precision. 

 

Figure 13. Confusion matrix of water quality in the Rímac river 

Source: Own elaboration 

The good category had a precision of 0.89 and a sensitivity of 0.94, showing that the model handles the 

class almost perfectly. On the other hand, the Regular has a precision of 0.76 and 0.68, these values being 

not close to one and below the previous category, it does not manage to obtain a correct class in the 

SVR 0.127 0.161 0.541 0.278  0.144 0.181 0.46

5 

0.16

5 

Output Training   Test  

MAE RMSE R NS MAE RMSE R NS 

MLR  0.106 0.145 0.708 0.502  0.129 0.184 0.47

3 

0.16

4 

BPNN 0.062 0.106 0.857 0.733  0.111 0.182 0.48

1 

0.18

3 

SVR 0.110 0.153 0.694 0.442  0.122 0.181 0.44

4 

0.19

7 
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classification. Finally, the Bad category, having a precision of 1 and sensitivity of 0.57, does not allow 

the exact detection of the class, but it is exceptionally reliable when it does. 

In summary, the average obtained in precision and sensitivity were 0.88 and 0.86, which shows that the 

model correctly classifies most of the entered set, in addition, it presents an f1-score of 85% considered 

acceptable. 

Table 10. Water quality classification report 

 
Precision Sensibility F1-score Support 

Good 0.89 0.94 0.91 108 

Regular 0.76 0.68 0.72 7 

Bad 1.00 0.57 0.73 41 

Mean 0.88 0.86 0.85 156 

Own elaboration 

Figure 14 shows us the comparison between the measured and estimated water quality, where the greater 

presence of good quality is observed in the estimated part, which must be lower due to the values 

obtained from the information sources, there is also a difference in regular and poor quality; However, 

the measured quality values are slightly higher than the estimated. 

 

Figure 14. Comparison of measured and estimated water quality 

Fuente: Own elaboration 

7. CONCLUSIONS 

In the present study, three Machine Learning (ML) models were compared to estimate the biochemical 

oxygen demand (BOD) and dissolved oxygen (DO), which was subsequently used as a model to 

determine the water quality in the Rímac river (Peru). These ML models were Multiple Linear 

Regression (MLR), Neural Network Backpropagation (BPNN) and Support Vector Regression (SVR). 

Water quality parameters such as pH, specific conductivity (EC), turbidity, nitrites, total organic carbon, 

chemical oxygen demand (COD), iron and chlorides entered the models to estimate the BOD, while 

parameters such as temperature, Nitrites, COD, nitrates, total dissolved solids, chlorides, and total solids 

estimated the DO. The results obtained in the comparison of the three models demonstrated the 

effectiveness of each one in estimating BOD and DO; However, the performance of the MLR and SVR 

did not exceed that of the BPNN, since it presented for the estimation of the BOD, with 16 hidden nodes, 

MAE, RMSE and R values such as 0.062 mg / L, 0.106 mg / L, 0.857 for training and 0.111 mg / L, 

0.182 mg / L, 0.481 for the test phase. For the estimation of DO, with 8 hidden nodes, these were .082 mg 

/ L, 0.122 mg / L, 0.768 in training, while in the test phase these were 0.117 mg / L, 0.162 mg / L, 0.605. 

Finally, the classification of water quality as Good, Fair and Bad obtained a precision of 0.88 with a 
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sensitivity of 0.86 and an f1-score of 85%, demonstrating its effectiveness when carrying out this process, 

comparing it with the quality determined with the measured values. In summary, the analysis presented in 

this study shows that BPNN was superior to SVR and MLR in estimating DO and BOD independently, 

and subsequently the precision of its results in determining water quality was favorable. 

8. FUTURE WORK 

The scope for determining the quality of water in rivers can not only be determined with the biochemical 

oxygen and dissolved oxygen demand values, but other chemical and physical elements can be used just 

as important as the two mentioned; Furthermore, the use of microbiological parameters provides another 

way to determine quality, such as larvae, algae, among others. On the other hand, parameter calibration 

can be applied to obtain other parameters that have a greater relationship with the estimated parameters of 

the study. Like the use of Machine Learning models contemplated in the research literature that were not 

used in the application of the general objective of this study. 
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