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Abstract:  

In this paper, we study the bifurcation of the periodic solutions of the singularly perturbed parameterized 

differential equation(ODEs) of the form  

                                                                             
�̇� = 𝑓(𝑥, 𝑦, 𝛽)

𝜖�̇� = 𝑔(𝑥, 𝑦, 𝛽)
                                                                                              

where 𝛽 is a bifurcation parameter and 𝜖 is a perturbed parameter, 0 < 𝜖 ≪ 1. Our study focuses on Poincare map 

as a periodic solution of such ODEs. We have discussed and study the basic types of bifurcation in ODE that is 

saddle node, transcritical, pitchfork, and Hopf bifurcation. 

Keywords: Bifurcation, Periodic solution, Singular parameterized (ODEs). 

 

1. Introduction  

      Many of the nonlinear issues that arise in mathematics and physics are understood to be written in 

the form of an operator equation  

F(x, y, β) =  0 , x ∈  Rn, y ∈  Rm, β ∈  R                                             (1.1) 

In such kind of equatisons, we reduce them to an equation of  finite dimension  which is given as: 

                      
�̇� = 𝑓(𝑥, 𝑦, 𝛽)

𝜖�̇� = 𝑔(𝑥, 𝑦, 𝛽)
                                                                                             (1.2) 

where 𝑓 ∶ 𝑅𝑛 ×  𝑅𝑚 ×  𝑅 →   𝑅𝑛 , 𝑔: 𝑅𝑛 ×  𝑅𝑚 ×  𝑅 →  𝑅𝑚 , and 𝛽  is bifurcation parameter, 𝜖   is 

perturbation parameter, 0 < 𝜖 ≪ 1. Equation(1.2) is the reduced equation of (1.1) that has the same 

properties and solutions. We can rewrite (1.2) as: 

𝐴(𝜖) �̇� = 𝐹(𝑧, 𝛽)                                                                                     (1.3) 

where 𝑧 ̇ = (�̇� , �̇� )𝑇 denotes the derivative of z, 𝑧 =  (𝑥, 𝑦)𝑇 , 𝑧 ∈ 𝑅𝑛+𝑚 , and  

 

𝐴(𝜖) = (
1 0
0 𝜖

) , 

 

Systems of the form (1.3) are ubiquitous in mathematical models in physics, engineering, chemistry, 

economics,  finance, etc  [4]. When 𝜖 → 0 in (1.3) we get:  

 
�̇� = 𝑓(𝑥, 𝑦, 𝛽) 
0 = 𝑔(𝑥, 𝑦, 𝛽)

                                                                                             (1.4) 

The last equation (1.4) is the differential algebraic equation (DAE). Due to the generality of this type to 

deal with the resulting simulation, its study increases with the growth of modern modeling that focuses 

on dynamic systems. However, many of the problems that researchers face in this field, are challenging 

to study DAE. The existence of constraint 𝟎 = 𝒈(𝒙, 𝒚, 𝜷) makes DAE not easy to be studied and 

understand.  

       Perturbation theories emerged in 1886 at the hands of Poincare and Stielties and then standard 

further in the nineteenth century, and has been a lot in the application of this field from 1905[10]. 

Wazewska-Czyzewska and Lasota (1976) study of evolutionary biology [14].Chow and Mallet-

Paret(1983) studied equation (1.3) and demonstrated that for certain parametric values, Hopf bifurcation 

can occur[3].Mallet-Paret(1983) analyzed equation (1.3) and gave the product of  Hopf bifurcation and 

the continuity of periodic solutions globally [9].Weishi Liu(1999)study exchange lemmas for singular 
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perturbation problems with certain turning Points [8].Abdulah.Jamil Tamraz (1988) discussed the 

bifurcation of solution occurs near the non-hyperbolic fixed and periodic orbit of singularly perturbed 

delay differential equation [13]. Mohan K. Kadalbajoo (2002) studied a survey of numerical techniques 

for solving singularly perturbed ordinary differential equations [6]. 

     For equation (1.3) periodic solutions depend on small perturbations. In other words equation(1.3)  

has 𝑇-periodic solution if and only if 𝑧(𝑡 +  𝑇)  =  𝑧(𝑡), based on 𝜖. The study of the solution of 

equation (1.3) in one dimension is easier than if it has two dimensions. That is because step space can 

become overcrowded when plotting the solutions to any nonlinear issues and the underlying structure 

can become blurred [6]. At the end of the nineteenth century, a simple instrument was proposed by 

Henri Poincare is called the Poincare map, and it is a useful tool when it comes to understanding the 

behavior of periodic orbits of two-dimensional systems. It reduces the problem in one dimension and 

provides a deeper understanding [7]. In this paper, we study the bifurcations of the periodic solution of 

the equation of type (1.3) by studying the conditions on its Poincare map, by assuming 𝑃(𝑧, 𝛽) is the 

Poincare map of the singularity perturbed for the equation (1.3), and the periodic solution is non-

hyperbolic. As a result, this enables us to study the bifurcation of the periodic solution of two-

dimensional systems. 

 

2. Related definitions and theorems  

      In this section, we compose the basic definitions and theorems we need and build upon for our 

subsequent study. 

Definition 2.1.[11] Assume that   z(t) = Φt(𝑧0, 𝛽0) = Φ(t, z0, 𝛽0) is a periodic solution of equation 

(1.3) and  𝑃(𝑧, 𝛽) is the Poincare map then z(t) is a non-hyperbolic periodic solution iff  𝐷𝑃(𝑧0, 𝛽0) has 

eigenvalues with unit modulus, and it is a hyperbolic periodic solution iff none of the eigenvalues of  

𝐷𝑃(𝑧0, 𝛽0)  has unit modulus where 𝐷𝑃(𝑧0, 𝛽0)  is Jacobian matrix at (𝑧0, 𝛽0). 
    The following lemma is related to this topic. 

Lemma 2.1. [5]. If 𝚽(𝒕, 𝒛𝟎, 𝜷𝟎 ) is the periodic solution of the equation (1.3) with initial condition 

𝚽(𝒕, 𝒛𝟎, 𝜷𝟎 ) = 𝒛𝟎, 𝒕 ∈  [𝟎, 𝑻] , then 
𝝏𝚽 

𝝏𝐳𝟎
(𝒕, 𝒛𝟎, 𝜷𝟎)  is a solution for the equation : 

�̇�(𝒕) = 𝑨−𝟏(𝝐)
𝝏𝐅 

𝝏𝐳
(𝚽(𝒕, 𝒛𝟎, 𝜷𝟎))𝑯  , 𝑯(𝟎) = 𝟏,                                                (𝟐. 𝟏) 

where,  

𝐻(𝑡) =
𝜕Φ

𝜕𝑧0
 (𝑡, 𝑧0, 𝛽0) =  𝑒𝑨−𝟏(𝝐) ∫

𝜕F

𝜕𝑧
 (𝑡,Φ(𝑡,𝑧0,𝛽0))𝑑𝑡

𝑇

0                             (2.2) 

Proof: See reference [5]. 

 

Consider singularly perturbed ODEs in the form: 

 

𝐴(𝜖)�̇�  =  𝐹(𝑧 , 𝛽)                                                                      (2.3) 
 

where 𝑧 ∈  𝑅𝑛+𝑚 , 𝛽 ∈ 𝑅;  0 <  𝜖 ≪ 1 , 𝐹 =  (𝑓, 𝑔)𝑇 ∈ 𝑅𝑛+𝑚 .  Let Φ(𝑡, 𝑧0, 𝛽0) is a periodic solution 

to the system (2.3). Assume that for 𝛽 = 𝛽0 , the system has a periodic orbit  Γ0 given by 𝑧(𝑡) =
 Φt(𝑧0, 𝛽0) .  Let   Σ   hyperplane perpendicular to periodic orbit at (𝑧0, 𝛽0) ∈ Σ, then ∀ (𝑧, 𝛽) ∈  Σ  near 

(𝑧0, 𝛽0), Φ(𝑡, 𝑧, 𝛽) will cross hyperplane perpendicular again at a point P(𝑧, 𝛽) near (𝑧0, 𝛽0)[11] . The 

mapping  𝑃 ∶  (𝑧, 𝛽) → P(𝑧, 𝛽) is called the Poincare map[2], and can be defined by : 

𝑧𝑛+1 = 𝑃(𝑧𝑛)                                                                                 (2.4)  

where 𝑧𝑘 maps to 𝑧𝑘+1 by the map 𝑃 [8]. Because 𝑧 is a fixed point in the map we can write the 

Poincare map 𝑃 ∶  Σ → Σ by [5, 7] : 

 

𝑃: 𝑧 → 𝑃(𝑧, 𝛽) = Φ(𝑡, 𝑧, 𝛽)                                                         (2.5)  

 This means that 

𝑃(𝑧, 𝛽) = Φ(𝑡, 𝑧, 𝛽)                                                                      (2.6)  
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If we differentiate both sides for z, we have: 

𝑃′(𝑧, 𝛽) =
𝜕Φ

∂z
(𝑡, 𝑧, 𝛽)                                                                     (2.7)  

About equation (2.2), it is clear that: 

 

𝑃′(𝑧, 𝛽) =
𝜕Φ

∂z
(𝑡, 𝑧, 𝛽)  = 𝑒𝐴−1(𝜖) ∫

𝜕F

𝜕𝑧
 Φ(𝑡,𝑧,𝛽)𝑑𝑡

𝑇

0                                                   (2.8)  

Let  

 Λ = 𝐴−1(𝜖) ∫
𝜕F

𝜕𝑧
 Φ(𝑡, 𝑧, 𝛽)𝑑𝑡

𝑇

0
 ,                                                       (2.9)  

then we get : 

𝑃′(𝑧, 𝛽) = 𝑒  Λ                                                                        (2.10) 

Equation (2.10) is useful to study the stability of the periodic solution according to the following 

theorem :  
 

Theorem 2.2.[4]. Given 𝑧(𝑡) =  Φt(𝑧0, 𝛽0) is a 𝑇- periodic solution of (2.3) satisfying (2.10). Then : 

(i) If Λ < 0, then 𝑧(𝑡) is asymptotically stable. 

(i) If Λ > 0, then 𝑧(𝑡) is unstable. 

Proof: see reference [4]. 

 

     The following theorem shows the existence and continuity of the Poincare map. 

Theorem 2.3.[11] Let the equation (2.3) has a periodic solution given by 𝑧(𝑡) =  Φt(𝑧0, 𝛽0) with 

period 𝑇 and that periodic orbits are given by: Γ = { 𝑧 ∈ 𝑅𝑛 × 𝑅𝑚 ∶  𝑧(𝑡) =  Φt(𝑧0, 𝛽0)  , 0 ≤ 𝑇 ≤ 𝑡} 

such that  Σ ⊥ Γ.  Then  there exists a 𝛿 > 0 and 𝜏(𝑧, 𝛽), defined and differentiable, continuous for 

(𝑧, 𝛽) ∈ 𝑁𝛿(𝑧0, 𝛽0),  such that 𝜏(𝑧0, 𝛽0) = 𝑇, and  

 

𝜙𝑧,𝛽(𝑧, 𝛽) ∈  Σ, ∀(𝑧, 𝛽) ∈ 𝑁𝛿(𝑧0, 𝛽0) 

 

Proof: see reference [11]. 

 

Definition 2.2.[11] Assume Γ, Σ, δ, and 𝜏(𝑧, 𝛽) are defined in theorem (2.3). So, ∀(𝑧, 𝛽) ∈ 𝑁𝛿(𝑧0, 𝛽0) ∩
Σ. The function  𝑃(𝑧, 𝛽) =  𝜙𝜏(𝑧,𝛽)(𝑧, 𝛽) ∈  Σ  is called the Poincare map for Γ at (𝑧0, 𝛽0). 

 

3. Bifurcations at non-hyperbolic periodic solution 

      The periodic solution bifurcates at a non-hyperbolic periodic orbit. Types of bifurcations which can 

be occurred  are (saddle-node, transcritical, pitchfork) bifurcations .These bifurcations occur when 

𝐷𝑃(𝑧0, 𝛽0) has one eigenvalue with modulus equal to 1, (𝑧0, 𝛽0)  ∈  𝛤 [11] . Rewrite equation (2.3) in 

the form : 

 

�̇� = 𝐴−1(𝜖) 𝐹(𝑧, 𝛽)                                                                                     (3.1) 

 

     Now we are going to show the basic kinds of bifurcations of periodic solutions that can be occurred 

in the singularly perturbed parameterized ODE. 

3.1. Saddle-node bifurcation 

      When 𝐷𝑃(𝑧0, 𝛽0) has one eigenvalue equal to one, then the periodic orbit can bifurcate into several 

branches. In the saddle-node bifurcation diagram, there is a single continuous curve of fixed points near 

the point (𝑧, 𝛽) = (0,0). 
Theorem 3.1. Assume that singular perturbed ODEs (3.1) has 𝛤0 (periodic orbit) with the Poincare map 

𝑃(𝑧, 𝛽) 
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who is defined in a neighborhood 𝑁𝛿(0, 𝛽0). If 𝑃(0, 𝛽0) = 0, 𝐷𝑃(0, 𝛽0) =  1, and 𝑃 satisfying the 

conditions : 

1. 𝐷2𝑃(0, 𝛽0) ≠  0 
2. 𝑃𝛽(0, 𝛽0) ≠  0 

Then equation (3.1) expresses a saddle-node bifurcation at a non-hyperbolic periodic orbit 𝛤0. 
Proof Define the function 

𝐺(𝑧, 𝛽)  =  𝑃(𝑧, 𝛽)  −  𝑧 
and differentiate the equation for 𝛽, then by condition 1 we have : 

𝐺𝛽(0, 𝛽)  =  𝑃𝛽(0, 𝛽) ≠  0  

and by implicit function theorem, there is a function  𝛽 ∶  𝑅𝑛+𝑚  →  𝑅, such that 

𝐺(𝑧, 𝛽(𝑧)) =  0, 𝛽(0) =  0                                                                     (3.2) 
So we have : 

𝐺(0, 𝛽0) =  𝑃(0, 𝛽0) =  0    &   𝐷𝐺(0, 𝛽0)  =  𝐷𝑃(0, 𝛽0)  −  1 =  0. 
By condition 1 and 2  we get : 

𝐷2𝐺(0, 𝛽0)  =  𝐷2𝑃(0, 𝛽0) ≠ 0     &     𝐺𝛽(0, 𝛽0)  =  𝑃𝛽(0, 𝛽0) ≠ 0. 

We want to prove properties : 

𝜕𝛽

𝜕𝑧
(0) = 0,   

𝜕2𝛽

𝜕𝑧2
  (0) ≠  0 

Now, differentiate the equation (3.2) for 𝑧 we get : 
𝜕𝐺

𝜕𝑧
(𝑧, 𝛽(𝑧)) +

𝜕𝐺

𝜕𝛽
(𝑧, 𝛽(𝑧))

𝜕𝛽

𝜕𝑧
(𝑧) = 0.                                                 (3.3)  

Setting  (𝑧 , 𝛽) = (0 , 𝛽0) in the above equation :  
𝜕𝐺

𝜕𝑧
(0, 𝛽0) +

𝜕𝐺

𝜕𝛽
(0, 𝛽0)

𝜕𝛽

𝜕𝑧
(0) = 0.                                                        (3.4)  

By condition 𝐷𝐺(0, 𝛽0)  =  0, and  𝐺𝛽(0, 𝛽0) ≠  0, then we get : 
𝜕𝛽

𝜕𝑧
(0) = 0.  

Now to prove that    
𝜕2𝛽

𝜕𝑧2
(0) ≠  0, differentiate equation (3.4) twice to 𝑧, then we get: 

𝜕2𝐺

𝜕𝑧2 (𝑧, 𝛽(𝑧)) +
𝜕𝐺

𝜕𝛽
(𝑧, 𝛽(𝑧))

𝜕2𝛽

𝜕𝑧2
(𝑧) + 2

𝜕2𝐺

𝜕𝑧𝜕𝛽
(𝑧, 𝛽(𝑧))

𝜕𝛽

𝜕𝑧
(𝑧) +

𝜕2𝐺

𝜕𝛽2 (𝑧, 𝛽(𝑧)) (
𝜕𝛽

𝜕𝑧
(𝑧))

2

= 0.    

Setting (𝑧, 𝛽)  =  (0, 𝛽0), then will be: 

 

𝜕2𝐺

𝜕𝑧2
(0, 𝛽0) +

𝜕𝐺

𝜕𝛽
(0, 𝛽0)

𝜕2𝛽

𝜕𝑧2
(0) + 2

𝜕2𝐺

𝜕𝑧𝜕𝛽
(0, 𝛽0)

𝜕𝛽

𝜕𝑧
(0) +

𝜕2𝐺

𝜕𝛽2
(0, 𝛽0) (

𝜕𝛽

𝜕𝑧
(0))

2

= 0.     

 

By condition 
𝜕2𝛽

𝜕𝑧2
(0) ≠  0, and from 

𝜕𝛽

𝜕𝑧
(0) = 0, we have :  

 
𝜕2𝐺

𝜕𝑧2
(0, 𝛽0) +

𝜕𝐺

𝜕𝛽
(0, 𝛽0)

𝜕2𝛽

𝜕𝑧2
(0) = 0  

And the condition  𝐺𝛽(0, 𝛽0) ≠  0, yields : 

𝜕2𝛽

𝜕𝑧2
(0) = −

𝜕2𝐺

𝜕𝑧2
(0, 𝛽0) (

𝜕𝐺

𝜕𝛽
(0, 𝛽0))

−1

≠ 0  

 Then equation (3.1) expresses a saddle-node bifurcation at non-hyperbolic periodic orbit 𝛤0. 
Example 3.1. Consider the Poincare map for  ODE is given by : 

𝑃(𝑧, 𝛽)  =  𝛽 +  𝑧 −  2𝑧2 
The Jacobian matrix at (0,0)given by: 

𝐷𝑃(0, 0)  =  1 −  4𝑧 =  1. 
Hence , (0,0) is non-hyperbolic, and there is a bifurcation at 𝛽 =  0 .We see that 

𝑃(0, 0)  =  0, 𝐷𝑃(0, 0)  =  1 
then the conditions : 

𝐷2𝑃(0, 0)  =  −4 ≠  0 
𝑃𝛽(0, 0)  =  1 ≠  0. 

Then the ODE has a saddle node bifurcation at 𝑃(0,0). 
3.2. Transcritical bifurcation 
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     In this kind of bifurcation, we have two fixed points, where they exchange stability one for the other. 

And there are two curves of fixed points near the point (0,0) and they meet at the origin. 

Theorem 3.2. Consider the singular perturbed ODEs (3.1) has 𝛤0 (periodic orbit) with the Poincare 

map 𝑃(𝑧, 𝛽) 
who is defined in a neighborhood 𝑁𝛿(0, 𝛽0). If 𝑃(0, 𝛽0) = 0, 𝐷𝑃(0, 𝛽0) =  1, and 𝑃 satisfying the 

conditions : 

1. 𝑃𝛽(0, 𝛽0) ≠  0 

2. 𝐷𝑃𝛽(0, 𝛽0) ≠  0 

3. 𝐷2𝑃(0, 𝛽0) ≠  0 
Then equation (3.1) expresses a transtritical bifurcation at non-hyperbolic periodic orbit at 𝛤0. 
Proof Define the function 

𝐺(𝑧, 𝛽)  =  𝑃(𝑧, 𝛽) –  𝑧 

Since 𝑧 =  0 is a curve of fixed points so the function 𝐺 can be written as follows : 

 

𝐺(𝑧, 𝛽) = 𝐴−1(𝜖)𝑧 𝑉(𝑧, 𝛽).                                                                  (3.5) 

Where 

𝑉(𝑧, 𝛽) =  {

𝐺(𝑧,𝛽)𝐴(𝜖)

𝑧
 , 𝑖𝑓  𝑧 ≠ 0 ;

𝜕𝐺

𝜕𝑧
(0, 𝛽),    𝑖𝑓 𝑧 = 0.

  

and 𝑉(𝑧, 𝛽)  satisfies the following conditions : 

 

𝑉(0, 𝛽0) =
𝜕𝐺

𝜕𝑧
 (0, 𝛽0) = 𝐷𝑃(0, 𝛽0) −  1 = 0  

𝜕𝑉

𝜕𝑧
(0, 𝛽0) =

𝜕2𝐺

𝜕𝑧2  (0, 𝛽0) =  𝐷2𝑃(0, 𝛽0) ≠ 0  

𝜕𝑉

𝜕𝛽
(0, 𝛽0) =

𝜕2𝐺

𝜕𝑧𝜕𝛽
 (0, 𝛽0)  =  𝐷𝑃𝛽(0, 𝛽0)  ≠ 0  

We want to prove that   
𝜕𝛽

𝜕𝑧
(0) ≠ 0 

then, by implicit function theorem, there is a function  𝛽 ∶  𝑅(𝑛+𝑚) →  𝑅 such that  : 

𝑉(𝑧, 𝛽(𝑧)) =  0, 𝛽(0) =  0                                                                                (3.6) 

Differentiate  equation (3.6) for  z, we get : 

 
𝜕𝑉

𝜕𝑧
(𝑧, 𝛽(𝑧)) +

𝜕𝑉

𝜕𝛽
(𝑧, 𝛽(𝑧))

𝜕𝛽

𝜕𝑧
(𝑧) = 0.  

By conditions : 
𝜕𝑉

𝜕𝑧
(0, 𝛽0) ≠ 0     &   

𝜕𝑉

𝜕𝛽
(0, 𝛽0) ≠ 0           

we have : 

𝜕𝛽

𝜕𝑧
(0) = −

𝜕𝑉

𝜕𝑧
(0, 𝛽0) (

𝜕𝑉

𝜕𝛽
(0, 𝛽0))

−1

≠ 0.  

Then equation (3.1) undergoes trans critical bifurcation from non- hyperbolic periodic orbit 𝛤0 at (0, 𝛽). 
3.3. Pitchfork bifurcation 

      In this kind of bifurcation, there are two curves of fixed points passing through the point(0,0), one 

of which 𝑧 = 0 on either side of 𝛽 =  0 and the second 𝑧2 = 𝛽 on one side of the curve 𝛽 = 0  [12]. 

Theorem3.3.Consider the singular perturbed ODEs(3.1). Assume 𝛤0 is the periodic orbit, and 𝑃(0, 𝛽0) 

is Poincare map who defined in a neighbourhood 𝑁𝛿(0, 𝛽0) . Suppose that 

𝑃(0, 𝛽0)  =  0, 𝐷𝑃(0, 𝛽0)  =  1 
and the following conditions hold: 

1. 𝑃𝛽(0, 𝛽0)  =  0 

2. 𝐷2𝑃(0, 𝛽0)  =  0 
3. 𝐷3𝑃(0, 𝛽0) ≠ 0 
4. 𝐷𝑃𝛽(0, 𝛽) ≠ 0 

Then the ODE (3.1) expresses a pitchfork bifurcation at a non-hyperbolic periodic orbit 𝛤0. 
Proof Define the function 
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𝐺(𝑧, 𝛽)  =  𝑃(𝑧, 𝛽) –  𝑧 

Since 𝑧 =  0 is a curve of fixed points so the function 𝐺 can be written as follows : 

 

𝐺(𝑧, 𝛽) = 𝐴−1(𝜖)𝑧 𝑉(𝑧, 𝛽).                                                                  (3.7) 

Where 

𝑉(𝑧, 𝛽) =  {

𝐴(𝜖)𝐺(𝑧,𝛽)

𝑧
 , 𝑖𝑓  𝑧 ≠ 0 ;

𝜕𝐺

𝜕𝑧
(0, 𝛽),    𝑖𝑓 𝑧 = 0.

  

and 𝑉(𝑧, 𝛽) satisfies the following conditions : 

𝑉(0, 𝛽0) =
𝜕𝐺

𝜕𝑧
 (0, 𝛽0) =  𝐷𝑃(0, 𝛽0) −  1 = 0  

𝜕𝑉

𝜕𝑧
(0, 𝛽0) =

𝜕2𝐺

𝜕𝑧2  (0, 𝛽0) =  𝐷2𝑃(0, 𝛽0) ≠ 0  

𝜕𝑉

𝜕𝛽
(0, 𝛽0) =

𝜕2𝐺

𝜕𝑧𝜕𝛽
 (0, 𝛽0)  =  𝐷𝑃𝛽(0, 𝛽0)  ≠ 0  

𝜕2𝑉

𝜕𝑧2
(0, 𝛽0) =

𝜕3𝐺

𝜕𝑧3  (0, 𝛽0)  =  𝐷3𝑃(0, 𝛽0)  ≠ 0  

We want to prove that  
𝜕𝛽

𝜕𝑧
 (𝛽(0))  =  0. 

Since 
𝜕𝑉

𝜕𝛽
 (0, 𝛽) ≠  0, then by implicit function theorem, there is a function  𝛽 ∶  𝑅(𝑛+𝑚) →  𝑅 such that  

: 

𝑉(𝑧, 𝛽(𝑧)) =  0, 𝛽(0) =  0                                                                                (3.8) 

Differentiate the equation (3.8) w.r.t z, we get : 
𝜕𝑉

𝜕𝑧
(𝑧, 𝛽(𝑧)) +

𝜕𝑉

𝜕𝛽
(𝑧, 𝛽(𝑧))

𝜕𝛽

𝜕𝑧
(𝑧) = 0.  

By conditions : 
𝜕𝑉

𝜕𝑧
(0, 𝛽0) = 0, then we get:  

𝜕𝛽

𝜕𝑧
(0) = −

𝜕𝑉

𝜕𝑧
(0, 𝛽0) (

𝜕𝑉

𝜕𝛽
(0, 𝛽0))

−1

= 0.  

Now we want to prove the property 
𝜕2𝛽

𝜕𝑧2   (0) ≠ 0 of the pitchfork bifurcation. Differentiate (3.8) twice 

for z and evaluate at (0, 𝛽0) ∶ 

𝜕2𝑉

𝜕𝑧2
(0, 𝛽0) +

𝜕𝑉

𝜕𝛽
(0, 𝛽0)

𝜕2𝛽

𝜕𝑧2
(0) + 2

𝜕2𝑉

𝜕𝑧𝜕𝛽
(0, 𝛽0)

𝜕𝛽

𝜕𝑧
(0) +

𝜕2𝑉

𝜕𝛽2
(0, 𝛽0) (

𝜕𝛽

𝜕𝑧
(0))

2

= 0  

And apply the property  
𝜕2𝑉

𝜕𝑧2  (0) ≠  0 , we get : 
𝜕2𝛽

𝜕𝑧2  (0) = − (
𝜕𝑉

𝜕𝛽
 (0, 𝛽0))

−1
𝜕2𝑉

𝜕𝑧2  (0, 𝛽0) ≠ 0. 

Then, we conclude that (3.1) undergoes a pitchfork bifurcation at a non-hyperbolic periodic orbit 𝛤0. 

 

3.4. Hopf bifurcation in singular perturbed parameterized ODE 

     In this section, we study the Hopf bifurcation of solution of singular perturbation parameterized 

differential equation. Consider the system of singular perturbed parameterized ODEs given by : 

                      
�̇� = 𝛽𝑥 − 𝑦 + 𝑆(𝑥, 𝑦),

𝜖�̇� = 𝑥 + 𝛽𝑦 + 𝑄(𝑥, 𝑦)
                                                                                             (3.9) 

 

where 𝑥 ∈  𝑅𝑛, 𝑦 ∈  𝑅𝑚, 0 <  𝜖 ≪ 1 is perturbed parameter and 𝛽 is bifurcation parameter, and the 

analytic functions 𝑆(𝑥, 𝑦), 𝑂(𝑥, 𝑦), in the form : 

 

𝑆(𝑥, 𝑦) =  ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗

𝑖+𝑗≥2

= (𝑎20𝑥2 +  𝑎11𝑥𝑦 + 𝑎02𝑦2) +  (𝑎30𝑥3 + 𝑎21𝑥2𝑦 +  𝑎12𝑥𝑦2  + 𝑎03𝑦3) + ⋯ 

𝑂(𝑥, 𝑦) =  ∑ 𝑏𝑖𝑗𝑥𝑖𝑦𝑗

𝑖+𝑗≥2

= (𝑏20𝑥2 + 𝑏11𝑥𝑦 +  𝑏02𝑦2) +  (𝑏30𝑥3 + 𝑏21𝑥2𝑦 + 𝑏12𝑥𝑦2  +  𝑏03𝑦3) + ⋯ 

 

The fixed point of the system (3.9) is (0,0), and the linearization of (3.9) at (0,0) is given by: 
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𝐷𝐹(0, 0, 𝛽) = (
𝛽 −1
1

𝜖

𝛽

𝜖

) ,   𝐹(𝑥, 𝑦) =  (
𝑓

𝜖𝑔
 )  

 

For  𝛽 =  0, the Jacobian matrix at (0,0) for equation (3.9) has a pair of purely complex eigenvalues, 

𝜆, �̅� = ±
𝑖

√ϵ
 , and (0,0) is called a weak focus.  

     The Liapunov number (𝜐)for (3.9) given by [1]: 

 

𝜐 =
3𝜋

2
 [3 (𝑎30 + 

1

𝜖
 𝑏03 ) +  (𝑎12 +  

1

𝜖
 𝑏21 −

2

𝜖
(𝑎20𝑏20) − 𝑎02𝑏02)

−
1

𝜖
 𝑏11(𝑏0,2𝑏20)]               (3.10) 

 

     In particular, if 𝜐 >  0 then the origin is a stable weak focus, and if 𝜐 < 0  then the origin is unstable 

a weak focus, and a Hopf bifurcation occurs at β = 0. 

For 𝛽 ≠  0 then 𝐷𝐹(0, 0, 𝛽) has a pair of complex eigenvalues (𝜆, �̅�  ≃
1

𝜖
(𝛽 ±  𝑖)). So (0,0) is unstable 

focus when 𝛽 >  0 and (0,0) is stable when 𝛽 <  0. 
 

Theorem 3.4. (The Hopf Bifurcation)[11]. If 𝜐 ≠ 0, then Hopf bifurcation it arises in the origin of the 

system(3.9) at 𝛽 =  0, if 𝜐 < 0 there is a unique stable periodic orbit when 𝛽 >  0, and no periodic 

orbit when 𝛽 ≤  0, and if 𝜐 > 0  there is a unique unstable periodic orbit when 𝛽 <  0, and no periodic 

orbit when 𝛽 ≥  0. 

 

Example 3.4. Consider the singular perturbed ODEs given by : 

 

�̇� = 𝛽𝑥 − 𝑦 + 𝑥(−𝑥2 − 𝑦2),

𝜖�̇� = 𝑥 + 𝛽𝑦 + 𝑦(−𝑥2 − 𝑦2)
 

the only fixed point in this system is the origin and  

 

𝐷𝐹(0, 0, 𝛽) = (
𝛽 −1
1

𝜖

𝛽

𝜖

)  

 

For 𝛽 ≠ 0 then 𝐷𝐹(0, 0, 𝛽) has a pair of  complex eigenvalues (𝜆, �̅�  ≃
1

𝜖
(𝛽 ±  𝑖)).  So (0,0) is 

unstable focus if 𝛽 >  0 and (0,0) is stable if 𝛽 <  0. For 𝛽 =  0, Jacobin at (0,0) has a pair of purely 

complex eigenvalues are 𝜆, λ =  ±𝑖
1

√𝜖
, then (0,0) is called the center. We write this system in polar 

coordinates : 

 

�̇�  =
𝑟

𝜖
(𝛽 −  𝑟2) ,    𝜃 ̇ =

1

𝜖
. 

 

When 𝛽 =  0, then (0,0) becomes a stable focus,  while if 𝛽 >  0 that means there is a stable limit 

cycle (periodic orbit 𝛤𝛽) in the form : 

 

𝛤𝛽 ∶  𝛾𝛽  = √𝛽(𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡)𝑇 . 

 

Now we recognize the type of Hopf bifurcation at the bifurcation point β = 0 by finding the Liaponov 

number 𝜈  in (3.10) we get 𝜐 =  −6𝜋
 𝜖 + 1

𝜖
 < 0. This means the critical point generates a periodic 

orbit(limit cycle) through the bifurcation value 𝛽 =  0 and the type of Hopf bifurcation here is a 

supercritical Hopf bifurcation. 
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5. Conclusion 

      In this paper, we have investigate the bifurcation such as (saddle-node, transcritical, pitchfork)  that 

occurred in the periodic solution of singularly perturbed parameterized ordinary differential equation. 

The conditions on the  Poincare map have been given. These conditions are necessary for bifurcation to 

have occurred in such ODE. Also, the Hopf bifurcation has been studied. 
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