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Abstract.  

The aim of this paper is to establish the existence and uniqueness of solutions of well-posedness for 𝐸𝑝(β1, β2)in 

connection with βh-monotone trifunction. To this aim, we deal with a subset A of Banach space V. A useful 

characterization of metric projection and sufficient conditions for these types of well-posedness are derived. Finally, 

the discussion provided by this paper can be used to prove that the concept of well-posedness for 𝐸𝑝(β1, β2)is 

equivalent to the existence and uniqueness of its solution. 
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1. INTRODUCTION 

 

The existence and uniqueness of the solution of well-posed problem have undoubtedly shown to be very 

useful in optimization theory and nonlinear operator equations which constitute relevant particular cases 

of (EP). It is well known that the mathematical term well-posedness was first coined and popularized by 

the 20th century French mathematician Jacques Hadamard (for further details, see [1] and the references 

therein). The basic idea of well-posedness is meant to satisfy, according to Hadamard, three fundamental 

conditions, and the applications of these conditions inspired much of the work for the next decades. These 

conditions are the existence, the uniqueness and the stability of the solution. A problem within the 

boundary of the preceding definition is said to be well-posed.  

In the mathematical literature, several methods have been proposed to discuss different well-posedness in 

connection with optimization problems and variational inequalities (see, for instance, [2], [3], [4], [5]). 

Mathematicians like Levitin and Polyak [6] as well as Tykhonov [7] and others have worked to develop 

and study well-posed problems. They were able to give a precise mathematical definition of approximate 

solutions of well-posedness for optimization problems and variational inequalities. Today, these problems 

provide a very rich framework for research. Several cases of well-posedness coming from problems (i.e., 

optimization and variational inequality), have later been extended to scalar problems, saddle point 

problems, fixed-point problems, Nash equilibrium problems and others. For more details on dealing with 

the family of problems that surround well-posedness (for further details, see [8, 9, 10, 11, 12, 13, 14]).   

One kind of well-posedness has originated in Bianchi et al. [15] who introduced and formulated two 

classes of well-posedness for vector equilibrium problems. Another case of well-posedness has been 

given in terms of a parametric form of equilibrium problem with a new well-posedness concept. This 

approach, proposed by Salamon has been already exploited by many authors (see, for instance, [16], [17]. 

Yet another concept of well-posedness has been extended to vector equilibrium problems of which 

Kimura et al.[18] provided us with an entering wedge into a new problem of well-posedness. 

Furthermore, Peng et al. [19] took the case further into several types of Levitin-Polyak well-posedness in 

generalized vector equilibrium problems. There are also cases for Levitin-Polyak well-posedness for 

explicit constrained EPs and generic well-posedness for EPs, provided by Long et al. [20] and Zaslavski 

[21], respectively. 

Inspired and motivated by the comprehensive literature in the field where different kinds of well-

posedness for equilibrium problems have been introduced and the relationship between them has been 

explored, this paper is an attempt to make a contribution to this glut of literature. By such an attempt, we 

introduce a newconcept of relaxed monotone trifunctions. The results on the existence of solutions 
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forgeneralized equilibrium problems withtrifunction in such a class are obtained. Ourresults in this paper 

extend and improve the solutions of many survey of well-posedness in the current literature. 

Aiming to obtain these results, the current study is made up of the following sections. Section 2 starts 

with recalling the necessary definitions and refers to some results in the field. Section 3 establishes and 

extends the concept of well-posedness to generalized equilibrium problems 𝐸𝑝(𝛽1, 𝛽2).  

. Additionally, we derive some metric characterizations of well-posedness. In Section 4, we present a new 

concept of well-posedness for optimization problems with constraints defined by a parametric form of 

generalized equilibrium problem and a relevant well-posedness. We also give a sufficient condition that 

enables us to prove that the well-posedness of generalized equilibrium problems is equivalent to the 

existence and uniqueness of its solution. 

 

2.  PRELIMINARIES 

 

Unless otherwise specified, we assume that V and W are two Banach spaces and A is a nonempty, convex 

and closed subset of Banach space V and K subset of W. 

For the convenience of the reader, we recall some definitions and results that need to to be imposed in 

order to prove our main results. 

We recall the following generalized equilibrium problem 𝐸𝑝(β1, β2) [22]. In fact to find b ∈ A such that 

β1(b, e) + β2(a, b, e) ≥ 0           ∀ a, e ∈ A  
In which  β1: A × A → ℝ , β2: A × A × A → ℝ  with β2(a, b, b) = 0 ∀ a, b ∈ A. 

In what follows, we introduce the formulation of optimization problems with equilibrium constraint. 

 

Let H: K × A ⟶ ℝ  and β1: K × A × A → ℝ be  two function and the optimization problem with 

generalized equilibrium constraint (denoted by (OPGETC)) is formulated as follows: 

 

min H(s, b) ∈ K × A such that b ∈ I(s) 

Where I(s) is the solution set of the parametric generalized equilibrium problem 𝐸𝑝𝑆(β1, β2) defined by 

b ∈ I(s) if 
 

β1(s, b, e) + β2(a, b, e) ≥ 0  ∀a, e ∈ A                                                               (1) 

 

Instead of writing {𝐸𝑝𝑆(β1, β2), s ∈ k} family of generalized equilibrium problems (parametric Problem).  

In particular cases, one can obtain the following: 

i.If  β2 ≡ 0 and β1(s, b, e) = −h(s, b, b − e) then the problem is reduced to parametric quasivariational 

inequality QVI(s) [24]. 

ii.If  β2 ≡ 0, then the problem is reduces to the Parametric equilibrium problem EP(s) (See [29,30]).  
iii.If  β2(a, b, e) = β(b) − β(e) andβ1(s, b, e) = ⟨β(b), e − b⟩, then the problem is reduced to the mixed 

variational inequalities (MVI) see [25].  

iv.If β2(a, b, e) = β(b, e) then the problem is reduced to the optimization problem with generalized 

equilibrium constraint (OPGPEC) (see [23]). 

 

In recent years, some of authors have proposed many essential generalizations of monotonicity. We will 

use a kind of generalized monotonicity, So called βh-monotone trifunction. 

 

Definition 2.1.[22] Let h: A × A → ℝ be a real-valued function then a trifunction β: A × A × A → ℝ is 

called βh-monotone if : 

 

β(a, b, e) + β(a, e, b) + h(b, e) ⩽ 0       ∀a, b, e ∈ A                                                 (2) 

Definition 2.2.[26] A real-valued functionβ, defined on a convex subset A of V, is soid to be 

hemicontiauous if : 
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lim
r→0

 β[ra + (1 − r)b] = β(b) ∀a, b ∈ A 

Definition 2.3.[27] Let V be a Banach space and A be anon-empty convex and subset of V. 

h, β: A × A → ℝ ⋃{+∞}  two real bifunction and ar = rb + (1 − r)a and a, b ∈ A, r ∈ [0,1] .  Then 

 

lim
r→0

h(a, ar)

r
= 0; 

h(a, b) ≤ lim
r→0

 
r − 1

r
[β(a, a) + h(a, a)]. 

 

Definition 𝟐. 𝟒. [𝟐𝟖] Let A, B be a nonempty subset of V. The Hausdorff metric L(. , . ) between A and B is 

defined by 

 

L(A, B) = max{e(A, B), e(B, A)} 

 

where  e(A, B) = supa∈A  d(a, B) with d(a, B) = inf b∈B‖a − b‖ 

 

Definition 𝟐. 𝟓. [𝟐𝟖] Assume that A is a nonempty subset of V. Then the measure of noncompactnessμ of 

the Set A is defined by 

μ(A) = inf {δ > 0: 𝐴 ⊂ ⋃  

n

i=1

 Ai, diam Ai < 𝛿𝑖 = 1,2 … 𝑛}
 

Where diam means the diameter of a set. 

 

Theorem 𝟐. 𝟔.[22] Suppose that β2: A × A × A → ℝ is βh − monotone trifunction, hemicontinuouse in 

the second argument, convex in third argument and h, β1: A × A ⟶ ℝ be convex in the second argument, 

then the problem Ep(β1, β2) is equivalent to the following problem find b ∈ A such that: 

 

β2(a, e, b) + h(b, e) ≤ β1(b, e)           ∀a, e ∈ A                                                         (3) 

 

3. WELL - POSEDNESS OF 𝐄𝐩(𝛃𝟏, 𝛃𝟐) WITH METRIC CHARACTERIZATIONS 

 

In this section we establish some concepts of well-posed for generalized  equilibrium problem Ep(β1, β2). 

To start our analysis.through the results of the section, we will give some conditions under which the 

equilibrium problem is strongly well-posed in the generalized sense. 

Definition  𝟑. 𝟏.A sequence {(sn, bn)} ⊂ K × A is said to be approximating sequence for Ep(β1, β2) if 

there exists a nonnegative sequence {cn} with cn → 0 as n ⟶ ∞ such that 

β1
(s, bn, e) + β2

(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0 ∀n ∈ N, a, e ∈ A                                           (4) 

Definition 3.2.The problem Ep(β1, β2) is said to be strongly (resp, weakly) well-posed in the generalized 

if  Ep(β1, β2)  has aunique solution b, and for every sequence {bn} with bn → b, every approximating 

sequence for Ep(β1, β2) converge strongly (resp, weakly) to the unique solution, if Ep(β1, β2) has 

anonempty solution set I(s), and every approximate solution sequence has a subsequence which strongly 

(resp, weakly) converge to some Point I(s). 
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In what follows, we shall establish some characterizations of well-posedness for Ep(β1, β2) for any c > 0 

we define two sets: 

Γ(c) = {(s, b) ∈ K × A; β1
(s, b, e) + β2

(a, b, e) + c ∥ b − e ∥∥ a ∥ ≥ 0   ∀a, e ∈ A} 

N(c) = {(s, b) ∈ K × A; β2
(a, e, b) + h(b, e) ≤ β1

(s, b, e) + c ∥ b − e ∥∥ a ∥        ∀a, e ∈ A} 

 

Lemma 3.3. Let A be a nonempty convex, closed subset of Banach space V,and suppose β1: K × A × A →

ℝ, B2: A × A × A → ℝ and h: A × A → ℝ be three function, Let the following conditions hold: 

i.β1
(s, b, b) = 0  ∀ s ∈ K,   ∀b ∈ A 

ii.β2
(a, b, e) is βh -monotone trifunction and hemicontinuous in second argument. 

iii.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A. 

 

Then Γ(c) = N(c) for all c > 0. 

 
Proof. Suppose that (s, b) ∈ Γ(c), then (s, b) ∈ K × A such that: 

β1
(s, b, e) + β2

(a, b, e) + c ∥ b − e ∥∥ a ∥ ≥ 0      ∀a, e ∈ A 

Since β2 is βh -monotone trifunction 

                                              β2
(a, b, e) + β2

(a, e, b) +  h (b, e) ≤ 0      ∀ a, b, e ∈ A. 

Then                                                           β2
(a, e, b) +  h (b, e) ≤ − β2

(a, b, e) 

                                                                       ≤ β1
(s, b, e) + c ∥ b − e ∥∥ a ∥ 

Therefore (s, b) ∈ N(c) 

 

Conversely, assume that (s, b) ∈ N(c) and let e ∈ A such that br = b − r(b − e),      r ∈ (0,1) thenbr ∈ A, 

because A convex we get 

β2(a, br, b) +  h (b, br) ≤ β1(s, b, br) + c∥∥b − br∥∥ ∥ a ∥ 
β2(a, br, b) +  h (b, br) − β1(s, b, br) ≤ c∥∥b − br∥∥ ∥ a ∥ 

                                                                                                                          = rc ∥ b − e ∥∥ a ∥
                                             (5) 

0 = β2(a, br, br) ≤ β2(a, br, b) − r[β2(a, br, b) − β2(a, br, e)] 
                                                0 ≤ β2(a, br, b) − r[β2(a, br, b)−β2(a, br, e)]; 
 

r[β2(a, br, b) − β2(a, br, e)] ⩽ β2(a, br, b)                                                           (6) 
 
Since β1(s, b, . ) convex 

β1
(s, b, br) ≤ β1

(s, b, b) − r[β1
(s, b, b) − β1

(s, b, e)]                                                   (7) 

From (6) and (7) 

r[β2
(a, br, b) − β2

(a, br, e) + β1(s, b, b) −β1(s, b, e)] ≤ β2(a, br, b) + β1(s, b, b) 

                         −β1
(s, b, br) 

From (5) 

r[β2
(a, br, b) − β2

(a, br, e) + β1(s, b, b) − β1(s, b, e)] ≤ rc ∥ b − e ∥∥ a ∥  −h(b, br) 

                       +β1(s, b, b) 

Divided by (−r) 

−β2
(a, br, b) + β2

(a, br, e) − β1(s, b, b) + β1(s, b, e) ≥ −c ∥ b − e ∥∥ a ∥  +
h(b, br)

r
 

                                                                                 −
β1(s, b, b)

r
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Since β2(a,⋅, e) is hemicontinuouse 

β2(a, b, e) + β1(s, b, e) ≥ −c ∥ b − e ∥∥ a ∥  

Hence(s, b) ∈ Γ(c) 

Therefore Γ(c) = N(c) for all c > 0. 

 

Lemma (𝟑. 𝟒). Let A be a nonempty, Convex, closed, subset of Banach space V, suppose that β1 =

K × A × A → ℝ , β2: A × A × A ⟶ ℝ and h: A × A → ℝ    satisfy in the following conditions: 

i.β1(. , . , e) is usc    ∀e ∈ A, 

ii.β2(a, e, . ) and h(. , e) are lsc    ∀a, e ∈ A, 

Then N(c) is closed in K × A for every c > 0 

 

Proof . Assume that {(Sn, bn)} ⊆ N(c) is a sequence such that (Sn , bn) ⟶ (s, b). Then 

 

β2
(a, e, bn) + h(bn, e) ≤ β1

(Sn, bn, e) + c∥∥bn − e∥∥ ∥ a ∥            ∀a, e ∈ A 

 

Since β2(a, b, . ) and h(. , e) are lsc and β1(. , . , e) is usc, then 

 

β2
(a, e, b) + h(b, e) ≤ lim

n→∞
 inf[β2

(a, e, bn)+h(bn, e)] ≤ lim
n→∞

  sup[β1
(Sn , bn , e) 

+c∥∥bn − e∥∥ ∥ a ∥ ] ≤ B1(s, b, e) + c||b − e ∥∥ a ∥  
Then 

β2
(a, e, b) + h(b, e) ≤ β1

(s, b, e) + c∥b − e∥ ∥ a ∥           ∀a, e ∈ A 

 

which implies that (s, b) ∈ N(c) 

Therefore N(c) is closed in K × A for all C > 0. 

 

Theorem 𝟑. 𝟓. Assume that A is a nonempty convex, closed subset of Banach space V . Let β1: K × A ×

A → ℝ , β2: A × A × A → ℝ and h: A × A → ℝ   be three function, Ep(β1 , β1) is well posed then: 

 

Γ(c) ≠ φ , lim 
c→0

 diam [Γ(c)] = 0                                                                     (8) 

Moreover, if the following assumptions hold: 

i.β1(. , . , e ) is usc  ∀e ∈ A; 

ii.β1(s, b, b) = 0   ∀(s, b) ∈ K × A; 

iii.β2(a, b, e) is βh-monotone trifunction and hemicontinuous in second argument;  

iv.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A. 

v.β2
(a, e, . ), h (. , e) are lsc   ∀a, e ∈ A. 

Then the converse  holds. 

 

Proof . Assume that Ep(β1, β2)  is well - posed, then Ep(β1, β2)  admit a unique solution  (s, b) ∈

K × A such that  

 

β1
(s, b, e) + β2

(a, b, e) ≥ 0    ∀a, e ∈ A 

 

Clearly Γ(c) ≠ φ  for any c > 0, by contradiction, assume that  lim 
n→∞

 diam [Γ(Cn)] > 𝑝 > 0   for some 

sequence {cn} > 0. We could find two sequence{(sn, bn)}and {(sn, en)} ∈ Γ(cn). 

 

∥∥(sn, bn) − (Sn , en)∥∥ > 𝑝   ∀n ∈ N                                                                (9) 
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Since {(sn, bn)} , {(sn, en)}  are approximating sequence for Ep(β1, β2)  . By well - posedness of 

Ep(β1, β2), they have to converge to unique solution of  Ep(β1, β2) a contradiction to (9). 

Conversely,suppose that Condition (8) holds. 

 

Let {(sn, bn)} be an approximating sequence for Ep(β1, β2). Then there exists a nonnegative sequence 

{cn} with cn → 0 as n → ∞ such that 

 

β1
(sn, bn, e) + β2

(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0  ∀n ∈ N, a, b ∈ A                                     (10) 

 

Then {(sn, bn)} ⊆ Γ(cn). 

 

From (8), {(sn, bn)} is a cauchy sequence and so it converges to a point (s, b). 

It follows from (10) and β2 is βh − monotone, β2(a, e, . ), h(. , e) are lse and β1
(. , . , e) usc 

 

0 = lim
n→∞

inf cn∥∥bn − e∥∥ ∥ a ∥ ≥ lim
n→∞

inf[−β1
(sn, bn, e)−β2

(a, bn, e)] 

                                                                 ≥ lim
n→∞

inf[−β1
(Sn, bn, e)+β2

(a, bn, e) + h(bn, e)] 

0 ≥ lim
n→∞

inf[−β1
(Sn, bn, e)+β2

(a, bn, e) + h(bn, e)] 

lim
n→∞

inf β1
(sn, bn, e) ≥ lim

n→∞
inf[β2

(a, e, bn) + h(bn, e)] 

β1
(s, b, e) ≥ β2

(a, e, b) + h(b, e) 

From the above, together with theorem (2.6), we establish (s, b) as a solution to Ep(β1, β2). 

 

As for the uniqueness follow immediately from (8). 

 

Remark 𝟑. 𝟔. Note that the diameter of Γ(c) does not tend to Zero, if Ep(β1, β2) has more that one 

solution. In the next result we consider the Kuratowski non compactness measure of approximating 

Solution set instead of the diameter. 

 

Theorem  3.7.Assume that K  and A  are anonempty, closed subsets of real Banach space W  and V 

respectivel. If Ep(β1, β2) is strongly well-posed in the generalization sense, then: 

 

Γ(c) ≠ φ    ∀c, lim
c→0

 μ[Γ(c)] = 0                                                                   (11) 

Moreover, if the following hold 

 

i.β1
(s, b, b) = 0 ∀s ∈ K, b ∈ A ,  

ii.β1(. , . , e) is usc ∈ e ∈ A, 

iii.β2(a, b, e) is βh-monotone trifunction and hemicontinuouse in second argument, 

iv.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A , 

v.β2(a, e,⋅) and h(⋅, e) are lsc ∀a, e ∈ A. 

 

Then the converse holds. 

 

Proof. Let Ep(β1, β2) be strongly well-posed in a generalized sense. Then the solution set I of Ep(β1, β2) 

is a nonempty. This indicates that for any c > 0, 𝛤(𝑐) ≠ 𝜑, since I ⊂ Γ(c). Moreover, we claim here that 

the solution set of Ep(β1, β2)  is compact. Indeed, for any sequence {(sn, bn)}  in I, {(sn, bn)}  is an 

approximating sequence  forEp(β1, β2). 
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Thus there exists a converging subsequence to some point of  I. This implies that I is compact, Now we 

show that limc→0  μ[(Γ(c)] → 0.It follows from I ⊆ Γ(c) that 

 

H(Γ(c), I) = max{e(r(c), I), e(I, Γ(c))} 

Since the solution set I is compact, one can have 

 

μ(Γ(c)) ≤ 2H(Γ(c), I) + μ(I) = 2e(Γ(c), I) 

 

where μ(I) = 0 , since I  is compact. To prove Limc→0 μ(Γ(c)) = 0 . It is sufficient to show 

thate(Γ(c), I) → 0as c → 0. If not, there existconstant c > 0and cn → 0, and {(sn, bn)} ⊂ Γ(cn) in which 

 
(sn, bn) ∉ I + Bc

2

(0) ∀n ∈ N                                                                         (12) 

 

Where Bc

2
(0)  is an open ball with center 0 and radius 

c

2
.  However {(sn, bn)} ⊆ Γ(cn) , is an 

approximating sequence for Ep(β1, β2). It  Follows the generalized well-posed of Ep(β1, β2) that there 

exists asubsequence converges to some Point of (s, b) ∈ I, which contradicts (12). 

 

Conversely, suppose that (11). By Lemma (3,3) and Lemma (3,4), Γ(c) is anonempty and closed for all 

c > 0. By the Kuratowski theorem [28] we Can obtain 

 

H(Γ(c), I) → 0 as c → 0                                                                        (13) 

 

Where I = ⋂ Γ(c)c>0  is a nonempty and compact. 

 

Let {(sn, bn)} ⊂ K × A be any approximate Solution sequence for Ep(β1, β2). Then there exists 

anonnegative sequence {cn} with cn → 0as n → ∞, such that 

 

β1
(sn , bn, e) + β2

(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0      ∀n ∈ N, a, b ∈ A. 

 

This mean that (sn, bn) ∈ Γ(cn). This together with ( 11 ) indicate that 

 

d[(sn, bn), I] ≤ e(Γ(c), I) → 0 

 

Since I compact, it follows that there exists (s̅n, b‾n) ∈ I in which 

 

∥∥(sn, bn) − (s‾n, b‾n)∥∥ = d[(sn, bn), I] → 0 

 

Again, by the Compactness of the solution set I, the sequence (s̅n, b‾n) has a supsequence {(s̅nk
, b‾nk

)} 

converge strongly to {s‾n, b‾n)} ∈ I. There for the corresponding {(snk
, bnk

)}  subsequence of{(sn, bn)} 

converge strongly to {s‾n, b‾n)}. 

Hence Ep(β1, β2) is well-posed in generalized sense 

 
4. WELL-POSEDNESS FOR OPTIMIZATION PROBLEMS  

WITH GENERALIZED PARAMETRIC EQUILIBRIUM CONSTRAINTS 

 
In this section, let us introduce the formulation of optimization problems with equilibrium constraint. The 

optimization problem with generalized equilibrium constraint denoted by (OPGETC) is formulated as 

follows: 
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min H(s, b)  such that  (s, b) ∈ K × A, 
 
where b ∈ I(s), K  is anonempty closed subset of aparametric space, H: K × A ⟶ ℝ, β1: K × A × A →

ℝ  β2: A × A × A → ℝ, and I(s) is the solution set of the parametric generalized equilibrium Eps(β1, β2). 

definedby, b ∈ I(s) if and only if: 

β1
(s, b, e) + β2

(a, b, e) ≥ 0      ∀a, e ∈ A. 

Definition 4.1. A sequence {(sn, bn)} ⊂ K × A is said to be approximating sequence for (OPGETC) if :  

i.there exists a nonnegative sequence {cn} with cn → 0 as n → ∞ such that: 

 

β1(Sn, bn,, e) + β2
(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ⩾ 0

∀n ∈ N, a, e ∈ A
 

ii.limn→∞  supH(sn, bn) ≤ inf
m∈k,e∈I(m)

H(m, e) 

 

Definition 𝟒. 𝟐.  (OPGETC) is said to be strongly (resp., weakly) well-posed (resp., strongly (resp, 

weakly) well - posed in the generalized sense ) if (OPGETC) has a unique Solution and for every 

approximating sequence for (OPGETC) converges strongly (resp, weakly) to the unique solution (resp., if 

I ≠ φ  and every approximating solution sequence has a subsequence which strongly (resp., weakly) 

converge to some point of I ). 
The set of approximating solution of (OPGETC) is defined  by: 

 

                                       ψ(c, ϵ) = {
(s, b) ∈ K × A; H(s, b) ≤ inf

m∈k,e∈I(m)
H(m, e) + ϵ   and       

β1
(s, b, e) + β2

(a, b, e) + cn‖b − e‖ ∥ a ∥ ≥ 0            ∀a, e ∈ A
 

 

Theorem 𝟒. 𝟑. Assume that A is a nonempty convex, closed subset of a Banach space V. Let β1: K × A ×

A → ℝ, β2: A × A × A → ℝ ,   H: K × A → ℝ and h: A × A → ℝ be four function.  If (OPGETC) is strongly 

well-posed. Then 

 

ψ(c, ϵ) ≠ φ  ∀ c, ϵ > 0 , diam ψ(c, ϵ) → 0                                                     (14) 

 

where(c, ϵ) → (0,0). 

  

Moreover, if the following assumptions hold: 

i.β1(⋅,⋅, e) is usc ∀e ∈ A; 

ii.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A ; 

iii.β2(a, b, e) is βh -monotone trifunction and hemicontinuous in second argument; 

iv.β2(a, e, . ), h(∙, e) are lsc ∀a, e ∈ A; 

  

v.H is lsc. 
 

Proof . Assume that (OPGETC ) is strongly well-posed. Then (OPGETC) admits a unique solution ( 

s, b) ∈ K × A such that 

 

{
H(s, b) = inf

m∈k,e∈I(m)
H(m, e)  and

β1
(s, b, e) + β2

(a, b, e) ≥ 0                     ∀ a, e ∈ A
 

 

Obviously, ψ(c, ϵ) ≠ φ for any  c, ϵ > 0, since(s, b) ∈ ψ(c, ϵ) for any c, ϵ > 0. If diam ψ(c, ϵ) ↛ 0 as c →
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0, ϵ → 0 then there exists a constrantp > 0 and a nonnegative sequences {cn} and {ϵn}with cn → 0, ϵn →
0 as n → 0 and (sn, bn), (sn, en) ∈ ψ(c, ϵ) in which 

 

∥∥(sn, bn) − (sn, en)∥∥ > 𝑝 ∀n ∈ N                                                               (15) 

 

since (sn, bn), (sn, en) ∈ ψ(c, ϵ)  ∀n ∈ N,  so both {(sn, bn)} and {(sn, en)} are approximating sequence 

for (OPGETC). By the well - posedness of (OPGETC),  they have to converge strongly to the unique 

solution of (OPGETC) a contradiction to (15). 

Conversely, suppose that Condition (14) holds. Let {(Sn, bn)}  be an approximating sequence for 

(OPGETC). Then there exists a nonnegative sequence {cn} with Cn → 0 as n → ∞ in which 

 

{
lim
n→∞

sup H(sn, bn) ≤ inf
m∈K,e∈I(m)

 H(m, e) and                                                                

β1
(sn, bn, e) + β2

(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0 ∀ n ∈ N , a, e ∈ A                       (16)
 

 

This yields that (sn, bn) ∈ ψ(cn, ϵn).   

It follows from (14), that {(sn, bn)} is a cauchy sequence and so it converge strongly to a point (s, b) ∈
K × A . 

It follows from (16) and assumptions (i), (iii), and (v) that 

 
0  = lim

n→∞
 inf cn∥∥bn − e∥∥ ∥ a ∥ 

 ≥ lim
n→∞

 inf[−β1
(sn , bn, e) − β2

(a, bn, e)]
 

                             ≥ lim
n→∞

 inf[−β1
(sn, bn, e) + β2

(a, e, bn) + h(bn, e)] 

lim
n→∞

  inf β1
(sn, bn, e) ≥ lim

n→∞
 inf [β2

(a, e, bn) + h(bn, e)] 

β1
(s, b, e) ≥ β2

(a, e, b) + h(b, e) 

 

Also, one can note from (16) and assumption(vii) that 

 
inf

m∈K,e∈I(m)
 H(m, e) ≥ lim  

n→∞
 sup H(Sn, bn)

≥ lim
n→∞

  inf H(Sn, bn)

≥ H(s, b)

 

 

So by Theorem (2.6), (s, b) solves (OPGETC). The uniqueness follows immediately from (14) .  

Therefore, we complete the proof. 

 

By a similar proof as that of theorem (3.7), we can obtain the following result for the well-posedness of 

(OPGETC). 

 

Theorem 𝟒. 𝟒. Assume that K and A are a nonempty, closed and convex subset of real Banach spaces W 

and V respectively. If (OPGETC) is strongly well - posed in the generalized sense, then: 

 

ψ(c, ϵ) ≠ φ   ∀c, ϵ > 0, lim
(c,ϵ)

 μ[ψ(c, ϵ)] = 0                                                      (17) 

 

Moreover, if the following assumptions hold : 

i.β1(. , . , e) is usc, ∀e ∈ A, 

ii.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A,  

iii.β2(a, b, e) is βh -monotone trifunction and hemicontinuous in second argument, 
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iv.β1
(s, b, b) = 0  ∀s ∈ K, b ∈ A, 

v.β2(a, e, . ) and h(. , e) are lsc ∀a, e ∈ A, 

vi.H is lsc 

 

Then the converse holds. 

 

To investigate the uniqueness of solutions to (OPGETC) we show that under suitable Conditions, in the 

next result the well-posedness of (OPGETC)is equivalent to the existence and uniqueness of solution. 

 

Theorem  4.5. Let K and A be a nouempty, closed and Convex subsets of finte dimensional Banach, 

space W and V respectively. Let β1 = K × A × A → ℝ, B2: A × A × A → ℝ, 

h: A × A → ℝ and H: K × A ⟶ ℝ be four functions. 

Suppose that: 

i.β1
(. , . , e) is usc    ∀e ∈ A, covex, 

ii.β1
(s, b, b) = 0   ∀ s ∈ K, b ∈ A, 

iii.β2
(a, b, e) is βh -monotone and hemicontinuous in second argument,   

iv.β2(a, e, . ), h(e, . )are  lsc  , ∀a, e ∈ A, 

v.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A,  

vi.H is convex and lsc. 

 

Then, (OPGPEC) is a strongly well-posed if and only if it has a unique solution. 

 

Proof .The necessity is obvious. For the sufficiency, Suppose that (OPGETC) has a unique solution 

(S∗, b∗). It follow that: 

 

{
H(s∗, b∗) = inf

m∈K ,e∈I(m)
H(m, e)  

β1
(s∗, b∗, e) + β2

(a, b∗, e) ≥ 0    ∀ a, e ∈ A
                                                        (18) 

 

Let {(sn, bn)} ⊂ K × A be approximating sequence for (OPGETC). Then there exists cn > 0 with cn → 0 

as n → ∞ such that: 

 

{
H(sn, bn) = inf

m∈K,e∈I(m)
 H(m, e) 

β1
(sn, bn, e) + β2

(a, bn, e) + Cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0      ∀n ∈ N, a, e ∈ A
                           (19) 

 

we claim that {(sn, bn)} is bounded. If not without loss of generality, one can assume  that ∥∥(sn, bn)∥∥ →

+∞ . Let rn =
1

∥∥(sn,bn)−(s∗,b∗)∥∥
 

and 

 
(tn, zn)  = rn(sn, bn) + (1 − rn)(s∗, b∗)

 = [rnsn + (1 − rn)s∗, rnbn + (1 − rn)b∗].
 

 

without loss of generality, one can assume that rn ∈ (0,1)  and (tn, zn) → (t, z)  with 

(t, z) ≠ (s∗, b∗) since W × V is finite -dimensional, Taking into account the closedness and Convex of K 

and A, one has (tn, zn) ∈ K × A, Thus, by assumption (vi) and (18), (19)for any (t, z) ∈ K × A, we have 

 

H(s∗, b∗) = lim
n→∞

sup rnH(Sn, bn) + lim
n→∞

sup(1 − rn)H(s∗, b∗) 

     ≥ lim
n→∞

sup[rnH(sn, bn)+(1 − rn)H(s∗, b∗)] 
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                                                                     ≥ lim
n→∞

sup H(tn, zn) 

                                                             ≥ lim
n→∞

inf H(tn, zn) 

                                                             ≥
H(t, z)                                                                                                                     (20) 

 

Moreover, following from conditions (i), (ii), (19) and (18), we have 

 

0 = lim
n→∞

inf rncn‖bn − e‖ ∥ a ∥  

≥ lim
n→∞

inf −rn[β1
(Sn, bn, e) + β2

(a, bn, e)] − (1 − rn)[β1
(s∗, b∗, e) + β2

(a, b∗, e)] 

≥ lim
n→∞

inf[−rnβ1
(sn, bn, e) − (1 − rn)β1

(s∗, b∗, e)]−rnβ2
(a, bn, e) − (1 − rn)β2

(a, b∗, e)] 

≥ lim
n→∞

inf  [−β1
(tn, zn, e) − β2

(a, zn, e)] 

≥ lim
n→∞

inf  [−β1
(tn, zn, e) + β2

(a, e, zn) + h(zn, e)] 

lim
n→∞

inf  β1
(tn, zn, e) ≥ lim

n→∞
inf  [β2

(a, e, zn) + h(zn, e)] 

β1
(t, z, e) ≥ β2

(a, e, z) + h(z, e)                                                                    (21) 

 

Applying Theorem (2. 6 ) implies that 

β1(t, z, e) + β2(a, z, e) ≥ 0 

 

Hence, from (20), (21), that (t, z) solves (OPGETC), which is a contradiction. So 

{(sn, bn)}  is bounded. Let {(sni
, bni

)}  be anysubsequence of {(sn, bn)}  in which (sni
, bni

) ⟶

(s0, b0) as i ⟶ ∞  It follows  that:  
0 ≥ lim

n→∞
inf cni∥

∥bni
− e∥∥ ∥ a ∥  

≥ lim
n→∞

inf[−β1(sni
, bni

, e) − β2(a, bni
, e] 

≥ lim
n→∞

inf[−β1(sni
, bni

, e) + β2(a, e, bni
) + h(bni

, e) 

≥ −βi
(s0, b0, e) + β2

(a, e, b0) + h(b0, e)                                                         (22) 

 

∀a, e ∈ A. Applying Theorem (2.6) implies that 

 

β1
(s0, b0, e) + β2

(a, b0, e) ≥ 0     ∀a, e ∈ A                                                       (23) 

 

It follows from (19) and lower semicontinuity of H that 

 

lim
m∈K,e∈I(m)

inf H(m, e) ≥ lim
i→∞

sup H(sni
, bni

) 

                                        ≥ lim
i→∞

ing H(sni
, bni

) 

                                                                                                           
≥ H(s0, b0)                                                                         (24) 

 

From (23) and (24), (s0, b0) solves ( OPGETC).  Taking into account the uniqueness of the solution, we 

have (s0, b0) = (s∗, b∗) and hence (sn, bn) converges to (s∗, b∗). 

Therefore, (OPGPEC) is strong well-posed. 

 

Theorem 𝟒. 𝟔. Let K and A be a nonempty, closed and convex subsets of finite dimensional Banach 

space W and V respectively. Let β
1
: K × A × A → ℝ, β

2
= A × A × A → ℝ, h: A × A → ℝ and H: K ×
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A → ℝ be four functions. If there exists some ϵ > 0 such that ψ(ϵ, ϵ) is a nonempty and bounded and 

suppose that the following assumptions holds: 

i.β
1
(. , . , e) is usc  ∀ e ∈ A, 

ii.β
1
(s, b, b) = 0  ∀ s ∈ K, b ∈ A, 

iii.β
2
(a, b, e) is βh − monotone and hemicontinuous in second argument, 

iv.β1
(s, b, . ), β2

(a, b, . ) and h (b, . ) are convex ∀ s ∈ K, a, b ∈ A, 

v.β
2
(a, e, . ), h(e, . ) are lsc ∀a, e ∈ A, 

vi.H is convex and lsc. 

 

Then (OPGPEC) is strongly well-posed in the generalized sense. 

 
Proof. Let {(sn, bn)} ⊆ K × A  be an approximating sequence for ( OPGETC  ).  Then there exists a 

nonnegative sequence {cn} with cn → 0 as n → ∞ such that 

 

{
H(sn, bn) = inf

m∈K,e∈I(m)
 H(m, e) 

β1
(sn, bn, e) + β2

(a, bn, e) + cn∥∥bn − e∥∥ ∥ a ∥ ≥ 0      ∀n ∈ N, a, e ∈ A
                     (25) 

 

Since ψ(ϵ, ϵ) is anonempty and bounded. Then there exists n0 such that (sn, bn) ∈ ψ(ϵ, ϵ) for all n ≥ n0. 

Taking into account the boundedness of ψ(ϵ, ϵ) , there exists subsequence  {(sni
, bni

)} of {(sn, bn)}  in 

which (sni
, bni

) → (s0, b0) as i → ∞. 

 

Consequently, as proved in theorem (4.5), (s0, b0) solves (OPGETC). Then (OPGETC) is strongly well-

posed in the generalized sense. 
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