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Absract: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden 

changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for 

competition. Forecasting can help decision maker to manage these problems by identifying which technologies are 

appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component 

individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real 

components are estimatedto predict the future behaviour of electricity peak load. Accordingly, the optimal model 

obtained to fit the periodic component is estimated using spectrum analysis and Fourier model, and the expected 

trend is obtained using simple linear regression models. Actual and generation data were used for the performance 

evaluation of the proposed model. The results of the current model, with improvement, showed higher accuracy as 

compared to ARIMA model performance. 

Keywords: forecasting,Spectrum Analysis, Hodrick-Prescott Filter 

 

1. Introduction 

The forecasting performance needs to improve through studying the characteristics of the system in order to 

identify the effective forecasting variables and then develop a suitable approach to compute an accurate output. A 

big variation of forecasting procedures has been planned in the application for different fields. 

Spectral density is one of the techniques that is used to progress models to predict the future behaviour of 

dynamic systems. It is also used to diagnose hidden periodicities in time series, which show the periodic 

behaviour signal by its spectral density. This is an important statistical method, which is used to explore and 

characterize cyclical patterns with sequenced data when fitting seasonal ARIMA models, and also to understand 

the fundamental dynamics of a given system (Jmp & Proust, 2013).  

Several fields can be applied for the spectral analysis, such as their use in production companies to forecast 

future sales (Fumi et al., 2013). It is also used in the Geophysics field to predict the occurrence of physical 

developments on Earth (Buttkus, 2012), in astronomy to study stars(Chattopadhyay & Chattopadhyay, 2014), in 

meteorology to predict weather (Ehrendorfer, 2011), in the field of transportation for  predicting concurrent traffic 

flow (Tchrakian et al., 2011), or in little time traffic run prediction as a component of a cross process (Zhang et al., 

2014). Dariusz and Paul in 2016 developed estimation and prediction methods and made a comparison between 

classical and advanced forecasting tools, where the influence of the spectral analysis will be the assessment of the 

prediction model parameters(Grzesica & Więcek, 2016). In 2015, Kovach presented a new method, the 

Demodulated Band Transform (DBT), for a spectral estimation that is minimally susceptible to spectral loss with a 

suitable approach. Their conclusion was that the DBT estimates efficiently both stationary and non-stationary 

spectral and cross-spectral statics (Kovach & Gander, 2016). 

In the last decades, many studies proposed the Hodrick–Prescott (HP) filter in direction to optimize the 

prediction of time series, specifically in financial and economic issues. The HP method is a very popular method, 

which is used by economic researchers because its methodology is detailed in relation of the stationary situation. 

They thus want to relate it to observe nonstationary data without modelling the nonstationary, commonly 

interpreted as decomposing the observed variable into the trend and cycle (Hamilton, 2018). Furthermore, the HP 

method was used for a business cycle analysis to decompose the time series into trend and cyclical activities; in 

repetition some decomposition procedures added care above the latter dated. In addition, the decomposition of 

Beveridge-Nelson (1981)(Beveridge & Nelson, 1981) is a popular method, asRavn and Uhlig (2002) (Ravn & 

Uhlig, 2002)discussed that “it is likely that the HP filter will remain one of the standard methods for detrending”, 

while Harvey and Jager(Harvey & Jaeger, 1993; King & Rebelo, 1993)showed  some problems in the submission 
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of the HP filter. One of the difficulties is the low performance at an unfamiliar extent of limit unlike trend and 

cycle estimation (Grzesica & Więcek, 2016). 

In the „90s, the HP filter became popular in an econometricians article that was published in 1997. Harvey and 

Trimbular (2003) provided the main application in their work and the software was designed to yield cycle 

estimates by depending on trend-cycle output of the program (Harvey & Trimbur, 2003; Kaiser & Maravall, 

2005). Marlon et al. in 2007 introduced the Hodrick-Prescott (HP) filter.They suggested the estimation of a topical 

lined trend, which will define the bandwidth endogenously that is mechanically corrected at the boundary points 

for a short-range reliance (Fritz et al.). In 2007, Agustin and Ana introduced several criteria, such as the HP 

decomposition for different levels of aggregation which gives the same result. They used the standard method for 

the preservation of the frequency period with a gain filter of 1/2; this method is conjectural and simple to apply 

(Maravall & Del Rio, 2007). Due to the importance of forecasting of electricity, it demands several studies about 

the techniques and methods used that have been reviewed by Hahn et al. (Hahn et al., 2009). Moreover,  Singh et 

al. (Singh et al., 2013) reviewed the most common approaches and categorization used for these forecasting 

techniques. 

Thus, it can be concluded from these presented studies that the one important property of the spectral analysis 

technique is to identify the hidden cyclical, in order to construct a model for any stationary time series, through 

the analysis of the frequency domain more precisely. Therefore, the spectral analysis is especially useful for 

working in physical and natural science phenomena, such as acoustics, communications engineering, as well as 

geophysical and biomedical sciences. In contrast, the Hodrick–Prescott filter is an important procedure which is 

applied in the macroeconomics field. It is widely used for processing the cyclical of a time series, by extrication 

the long-run trend in this sequenced data from short-run instabilities. In some of these previous studies, different 

types of criticism were found to separate the trend from a time series, by solving the standard penalty program. 

However, the development of an accurate forecasting model, based on these two combination analysis techniques, 

has not been previously addressed and the comparison between the output of forecasting for the short and long 

term for these approaches has not been investigated, and this is therefore the aim of our work. 

In this paper, a simple improvement in the forecasting performance is proposed, based on using an HP filter 

analysis and verifying the outcome of works in comparison with the ARIMA optimized models. The effectiveness 

of the two approaches will be examined, by making a standard simulation in order to get normal data, and also by 

using actual data: the monthly electricity load demand in Iraq (1993-2013).The results for the forecasting horizon 

of the two models were identified as significant. Model 1 is obtained by using a spectral analysis to formulate and 

fit the ARIMA models, whereas the suggestion for model 2 is built mainly depending on the combination of the 

HP filter and the spectrum analysis. The comparison of results showed that the second model is better than the 

ARIMA, because it provides accurate and perfect forecasting for short and long term. The contents of this study 

are presented as follows: in Section 2, two methodologies for the analysis of the time series and forecasting are 

presented. While in Section 3, a model fittingand results comparison is discussed. Section 4 presented simulation 

data that are generated and forecasting analyses, followed by the conclusionin the final Section, we used Statistica 

software (version 5) to analyse time series and result. 

 2. Methodology of Time Series Analysis and Forecasting Development  

In this study, two combination methodologies are used as a tool to develop simple model forecasting. A 

spectral analysis is one of many statistical procedures that is important tools for describing and analysing a time 

series. It is used to show the fluctuations of different ranges or scales by decomposing the time series into 

different components. Therefore, the spectral technique is suitable model to present the analysis of time series that 

is made up by combinations of sine and cosine waves at static frequencies hidden in noise. The second tool, the 

HP filter, is the customary procedure in macroeconomics for extrication the long run trend in a data series from 

short run vacillations.  

Seasonal Model (ARIMA) : 

Let xtis  a monthly  observed time series which is called ARIMA model . The  seasonal periodic component 

replicate itself after every s = 12 observations , so  that  xt to depend on terms like  xt-12 and x t-24 as well as xt-1 , 

xt-2 , ..... Box and Jenkins in  1976 generlize the ARIMA model to deal with seasonality, which is known as 

SARIMA seasonal autoregressive integrated moving average as  

φp(B) Φp( wt = θq(B) ΘQ ( B
s
)et                                           

where φp , Φp, θq , ΘQ represent polynomials of order p, P, q , Q  

∇d ∇d
sxt. ∇d  is the d order  simple differencing operator , ∇Dis the D order seasonal differencing , the 

backward shift operator is  DBixt = x t-I and s represent the seasonal operator. 
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2.1Spectral Analysis 

The spectral analysis is activated with the pursuit for “hidden periodicities” in the time series data. Therefore, 

the essential purpose of spectral analysis is to identify the cyclical procedures which allow us to analyse the time 

series in the regularity area over the usage of trigonometric functions, such as sine and cosine, which are called 

harmonics, where each function is defined in the interval from 0 to π. The first harmonic has a period equivalent 

to n, the second is equivalent to n/2, the third is equivalent to n/3, etc.(Grzesica & Więcek, 2016).  The fitting 

cosine trends lies at different identified frequencies to the data series with resilient cyclical trends. Therefore, the 

frequency domain analysis has been found to be particularly suitable in audibility, in command to show the 

periodic behaviour in the time series.  In spectral analysis, the adopted assumption for the time series is that it is 

made up of sine and cosine waves (periodic functions) with variant frequencies. Any deterministic, or stochastic 

(with or without any real periodicities) series of any length n can be fitted perfectly using the model as follows: 

𝑌𝑡  = 𝑎0 +  [𝑎𝑗  𝑐𝑜𝑠 (2𝜋𝑓𝑗 𝑡)  +  𝑏𝑗  𝑠𝑖𝑛(2𝜋𝑓𝑗 𝑡)]

𝑚

𝑗=1

                                          (1) 

by choosing 𝑚 =  𝑛/2, if 𝑛 is even, and 𝑚 =  (𝑛 −  1)/2, if 𝑛 is odd. There are then 𝑚 parameters to 

estimate in order to fit the series of length 𝑛. Ordinary least squares regression can be used to fit the parameters 

𝑎 and 𝑏 , but when the frequencies of attention are of a specific formula, the regressions are simply 

applied.Suppose that n is odd and defined by 𝑛 =  2𝑘 +  1. Then the frequencies of the formula 1/𝑛, 2/
𝑛,… ,𝑘/𝑛 (=  1/2 −  1/(2𝑛)) are denominated the Fourier frequencies.The predictor variables cosine and 

sine at these frequencies (and at 𝑓 =  0) are known to be orthogonal, and the least squares estimates are simply 

𝑎 0 =  𝑌                                                                                           (2) 

𝑎 𝑗 =  
2

𝑛
 𝑌𝑡𝑐𝑜𝑠  

2𝜋𝑗𝑡

𝑛
 𝑛

𝑡=1 and𝑏 𝑗 =  
2

𝑛
 𝑌𝑡𝑠𝑖𝑛  

2𝜋𝑗𝑡

𝑛
  3 𝑛

𝑡=1  

If the sample size is even, say 𝑛 =  2𝑘, Equations (2) and (3) still apply for 𝑗 =  1, 2,… , 𝑘 −  1, but 

𝑎 𝑘 =  
1

𝑛
  −1 𝑡
𝑛

𝑡=1

𝑌𝑡        𝑎𝑛𝑑      𝑏 𝑘 = 0                                                                         (4) 

 

Note that here 𝑓𝑘  =  𝑘/𝑛 =  ½.  

Furthermore, the periodogram is fundamentally used to detect and estimate the presence of periodicities in a 

time series, In addition, the sample spectral is the Fourier cosine transform of the estimate of the Autocorrelation 

function. The periodogram quantification is dependent on half of the rise in the sum of squared residuals in the 

analysis model, if a particular frequency is omitted. The periodogram is comparable to the sum squares of the 

estimation regression model related with frequency 𝑓 =  𝑗/𝑛 . The height of the periodogram displays the 

comparative strength of cosine-sine pairs at different frequencies in the whole behaviour of the series. A further 

explanation is in terms of an analysis of variance. The periodogram 𝐼(𝑗/𝑛) is the sum of squares with two 

degrees of freedom related with the coefficient pair (𝑎𝑗 , 𝑏𝑗 ) at frequency 𝑗/𝑛, as it is clear in equation 5: 

  𝑌𝑗 − 𝑌  
2

𝑛

𝑗=1

=  𝐼 
𝑗

𝑛
 

𝑘

𝑗=1

                                                                      (5) 

When𝑛 =  2𝑘 +  1 is odd. The same outcome holds when 𝑛 is even but there is another term in the sum, 

𝐼(½), for one degree of freedom(Cryer & Chan, 2008). For a stationary procedure, it is possible to seem very 

much like a deterministic cosine wave. It might be able to model approximately any cyclical process after 

extracting it from the series by representing a cosine wave with sufficient frequencies with sufficient amplitudes 

(and phases). This important feature allows improving the forecasting model in this research. 

2.1.1The Spectral Density Function and the Continuous Spectrum 

A continuous spectrum or spectral density is common in a time series process. An infinite linear combination 

of harmonic oscillations can describe any stationary process, which supports the aforementioned statement. The 
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spectrum of any process of a time series is a continuous function showing the presence of particular frequencies in 

the variation of the series.The spectral density function is an alternative complementary function of an 

autocorrelation function for characterising a stationary random process.In summary, this function is the same as 

the Fourier transform of the autocorrelation function, with the aim that the two functions are mathematically 

equivalent, but the information used in the analysis based on the spectral density function is processing in 

completely different ways, therefore it is referred as spectral analysis or an analysis in the frequency domain.It 

focuses on describing a periodic behaviour and is often further significant to the researcher than the estimation of 

short-term correlation effects, by using time-domain representations, such as the ARMA. The main goal is to 

decompose the variance of the process into components ascribable to various frequencies (Esmaili, 2005). The 

spectral density for any model can display a variation of behaviours, reliant on the real values of parameters for 

the ARMA model. An example of spectral densities of AR (2) that gives very different behaviours, depending on 

the value of two parameters, is shown in the following equation: 

 1 − 𝜙𝐵  1 − 𝛷𝐵12 𝑌𝑡 = 𝑒𝑡                                                       (6) 

 𝜙1 1 − 𝜙2  <  4𝜙2                                                          (7)            

In Figure.1The dotted curve is the boundary among the areas of real roots and complex roots of the 

AR (2) equation in (6). The characteristic of equation (7) is represented by the solid curves.  

 

Figure.1 Illustrates the parameter values for various spectral density shapes 

Data source of Fig 1: (Cryer & Chan, 2013)(Cryer & Chan, 2008) 

 

2.2The Hodrick-Prescott (HP) Filter 

The HP filter is a mathematical approach that is used in analysing economic data to extract the cyclical 

component and trend from a time series. This approach considers that a time series can be divided into a nonlinear 

growth or trend component. The series 𝑌𝑡  denotes the interest time series variable that is made up of a trend 

component 𝜏𝑡 , a cyclical component𝑐𝑡  and an error component𝑒𝑡 , such that: 

𝑌𝑡 =  𝜏𝑡 + 𝑐𝑡 + 𝑒𝑡                                                                                                              (8) 

However, any decomposition is ought to be based on a conceptual artefact, as there is no guaranteed 

observation of the trend and cycle parts. Before these elements can be estimated from the data, there must be a 

definition of what is a trend and a cycle. Therefore, the solution of the following standard penalty program derives 

the trend from a time series by using the HP filter method: 

𝑚𝑖𝑛𝜏    𝑌𝑡 − 𝜏𝑡 
2

𝑇

𝑡=1

+ 𝜆   𝜏𝑡+1 − 𝜏𝑡 −  𝜏𝑡 − 𝜏𝑡−1  
2

𝑇−1

𝑡=2

                                         (9) 

Where𝜆 is the positive smoothing parameter as a penalization of the trend component variability. The series to 

be filtered will be called the input sequence𝜏𝑡  and the output sequence 𝑌𝑡 . In order to solve this problem, it is 

important to identify some related information; any economic time series will be described as a sequence of real 

numbers, where each observation is an element of the sequence process. The above equation has an intuitive 

explanation. The HP filter decomposes two components for a time series: a stationary cycle and a long-term trend, 

which needs the previous description of the parameter 𝜆,which setting the smoothness of the trend and determines 
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the major period of the cycle that will produce the filter. However, when it uses the similar𝜆 for a series at various 

periodicity, the associated frequency with the cycle spectral peak will be acquired. As a result, cycles that are 

conflicting under the collecting of time will be created (Tchrakian et al., 2011). 

Hodrick and Prescott (1997) proposed the value of  λ=1600 for using quarterly data, and pointed out it needs to 

be adjusted in accordance with the frequency of the underlying observations(Hodrick & Prescott, 1997). However, 

there should be no determination of a present value of 𝜆that may be used for yearly data. Thus, it is selected 

randomly, important to identify the interval values of the smoothing parameter of 𝜆∈[6.25;1600]. Baxter and King 

(1999) (Baxter & King, 1999)used a value of about 10, while Backus and Kehoe (1992)(Backus & Kehoe, 1992) 

given that 100 works well for their target. On the other hand, Correia et al. (1992) (Correia & Gouveia, 

2013)argued for a different value of 𝜆=400 for data on a yearly frequency. Based on assumption of the filter 

representation for quarterly data has to be equal to the filter representation of an alternative frequency, Ravn and 

Uhlig (2002) (Ravn & Uhlig, 2002)have proposed to use a value of 𝜆=6.25. That is, the smoothing parameter is 

adapted in following the fourth power of the frequency variation but, Kauermann et al. (2011), it does not use 

details available from the data set (Kauermann et al., 2011). Moreover, the modification of Ravn and Uhlig is 

depends on the initial cycle definition of Hodrick and Prescott (Maravall & Del Rio, 2007).  There is an implicit 

agreement in using the value of λ = 1600 for quarterly data which was primarily suggested  byHodrick and 

Prescott (“ a 5% cyclical component reasonably a big, as an 1/8  of a 1% change in the growth rate in a 

quarter...”). The analysts have found the agreement around determine this value is an important (Maravall & Del 

Rio, 2007): 

𝜆𝐷 =  𝐾𝑛 𝜆𝑄                                                                               (10) 

Where an alternative frequency value represents by 𝜆𝐷 , and 𝐾 is represented the percentage of the number of 

observations per year for the alternative and quarterly frequencies, respectively. Finally, the target of the first part 

of the minimization function is to find the minimum deviation of the trend component from the real time series 𝑌𝑡 . 

The other part of the equation rectification us for having an irregular long-term growth component. This is 

weighed by the parameter 𝜆, which the user should identify. Due to the high accuracy of the filter quantities, 

easier software application and quicker calculation time and mathematical insight, the exact HP filter formula is 

adopted in this research, in order to extract the trend and cyclical component. 

 

3. Peak load demand in Iraq 

In the efficient electricity system, the peak load demand (MW) necessities a balance with the supply, but in 

Iraq situation the electricity supply has fallen short of demand since early 1991 and the gap has expanded since 

then. It is clear from the Iraq circumstance the reasons which were getting the shortage in electricity supply before 

war 2003 related tosanctions ; war and lack investment in power system, but after this time, there are different 

reasons causes new issues that appeared and created disequilibrium and a big gap in electricity supply. These are a 

result of three fluctuation factors: the economic development,the demographic development andthe security 

situation. 

The load demand equals the actual load supply through 1980-1990 years, but after that, the load demand is 

equal the actual load supply plus the load shedding, Figure.2 illustrated the trend of load demand through the 

period 1980-2013.  

 
Figure.2 Load demand of electricity with unsuppressed demand. 
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In the experiment, the monthly data were used for the peak load, in order to evaluate the performance of the 

proposed forecast model. 

 

4. Results and Discussion (Real Data) 

In this analysis we used Statistica software (Version 5) to evaluate data , the Iraq electricity demand series is 

selected, in order to clarify the development prediction, by the application of a spectral density function and HP 

filter to develop an accurate forecasting model of this time series. Figure.3 shows the actual electricity peak load 

that consists of a cycle component and trend. 

Figure.3The monthly load demand in Iraq (1993-2001) 

 

4.1 Forecasting Results of the ARIMA Model Based on Spectral Analysis 

The estimate of a spectral function is a non-structural approach and just a first step in the analysis of a time 

series. It can provide by the histogram of data analysis the way to some parametric model on which subsequent 

analysis will be based. The spectral density of the ARMA process can be computed directly from the parameters 

of the exponential model, in order to contrast this technique with the ARIMA. The diagram of the spectrum of a 

particular random process is a useful guide to its properties for many processes, such as all the stationary ARMA 

processes. In Figure.4 the many spikes of the decreasing magnitude at the frequencies of 0.5/12, 1/12, and 2/12 

represent the seasonality in the time series.  
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Figure.4 Spectral density of actual load demand series 
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It is clear that the high frequencies between 0.25 and 0.50 are limited by a small density, while the higher 

density corresponds to the strongest periodic components. 

This means that the time series of the load demand process can be defined by the seasonal AR model, after 

making the series stationarity by taking the first differencing. ARIMA (1,1,0) (1,1,0) is the suitable model and the 

optimal forecasting estimation can be obtained from the forecast function in equation (11), by using the estimation 

parameters in Table 1.  

𝜙 𝐵 𝛷 𝐵s ∇𝑑∇𝐷𝑌 𝑡 𝐿 = 0                                         (11) 

𝑌 𝑡 is the forecasting value at time 𝑡 for model 1, 𝑠 = 12,𝑑 = 1,𝐷 = 1 and 𝐿 is the lead time of forecasting. The 

fit of this equation is shown in Figure.5 Table 1 shows the significant statistical test of the parameters‟ estimation 

of model 1. 

Table.1. The statistical attributes of estimationparameters 

Param. Value Std.Err. t(105) p 

𝝋 -0.29836 0.094942 -3.14256 0.002177 

𝜱 -0.33769 0.103249 -3.27065 0.001452 

 

 

Figure.5Fitted forecasting model 1plot with actual data 

It is clear from Fig 5 that the forecasting of model 1 is close to real data.  

4.2 Forecasting Result Based on HP Filter Analysis 

In order to decompose the time series of the monthly electricity demand in Iraq into two components, we can 

tackle it directly via built-in Excel functions. Then the HP filter function is used with 𝜆 = 1600 to estimate the 

trend. The result is plotted in Figure.6. The HP filter is applied to the time series 𝑌𝑡  in Figure.2, Where the 

monthly electricity demand in Iraq for the period 1993-2000 is shown.  

 

Figure.6 Illustrates the HP filter trend component 𝜏𝑡  of the actual time series 
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It is clear that the demand dropped through the period 1998 – 1999 as a result of a shortage in energy supply in 

those years. After that, the growth of electricity demand has taken a linear trend.  

In order to check the HP cyclical component 𝑐𝑡 , the trend component is simply subtracted from the 

observed𝑌𝑡 . This is done, because of the trend component 𝜏𝑡  and the cyclical component 𝑐𝑡  are both weighted 

averages of 𝑌𝑡 .  

 

 

 

Figure.7Shows the HP filter cycle component pattern in this time series with different frequencies 

 

The optimal model is estimated to fit the weight of the seasonality cycle component and trend individual, in 

order to forecast for both the weighted averages of 𝑌𝑡 . 

 Projection Trend Component 

The electricity demand curve in Fig 6 has taken an increasing linear trend after 1998. Then, in order to 

determine the fit model of this extracted trend component, the information of trend for the period (1997-2001) is 

used to obtain the trend prediction of the time series. Equation (12) presents the results from the fitting of a linear 

model to project future values.The fitting of this equation is shown in Figure.8.  

 

𝜏 𝑡  = ∝ + 𝛽 ∗ 𝑡                                                         (12) 

where𝜏 𝑡  is the projection of the trend component, which is extracted by HP, ∝= 2858.51,𝛽 = 18.5769, 𝑡 =
1,2,…𝑛.  

 

Figure.8 The fitting trend model with extracted trend 
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Projection Cycle Component 

The model projection is developed to simulate a periodic function in equation (1) and is used to fit perfectly 

the component cycle in Figure.7 as follows: 

𝐶 𝑡  = 𝑎0 ∗ (𝐿/2)𝑐𝑜𝑠 (2𝜋4𝑡/𝑛)                                                                        (13) 

where𝐶 𝑡   is the prediction of the cycle component, which is extracted by the HP filter, 𝐿 is the lead time of 

forecasting, the parameter estimation is𝑎0 = 390 and 𝑡 = 1,2,… 12, 𝑛 is the number of observation. Then, 

this estimation equation is used to project the values of the component cycle. 

In Fig 9, the extraction cycle component 𝑐𝑡  from the observed𝑌𝑡 is compared to the projection results of the 

component cycle 𝑐 𝑡 in equation (13) that has estimated a minimum MAPE (4.04) and MSE (29603). 

 

Figure.9 Comparison between the fitting of the model projection and the extracted cycle component 

The two projected variables, a trend component𝜏 𝑡  and a cyclical component𝑐 𝑡are used to derive the proposal 

forecasting formulas as follows: 

𝑌𝑡 =  𝜏 𝑡 + 𝑐 𝑡                                                                                        14 

The prediction value 𝑌 𝑡 in time t represents model 2, which is the new suggestion-forecasting model. The result 

of fitting model 2 in Figure.10 shows that the actual time series 𝑌𝑡  is more identical to the estimation forecasting 

𝑌 𝑡 . 

 

 

Figure.10 Forecasting fitting values plot with real data 

 

4.3   Comparison of Validation Forecasting for Two Models  

In the previous section, the results were identified as significant for the forecasting horizon for two models. 

Model 1 is obtained by using a spectral analysis for the formulation and fitting ARIMA model, whereas model 2 
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is developed and built based on the HP filter and a spectrum analysis. Figure 11 shows the results of load 

electrical forecasting for short-run 12 months. 

 

Figure.11Forecasting test of two models for the short term 

However, the statistical indicators illustrated that the suggested model gives a smaller MSE and MAPE than 

model 1, as is shown in Table 2. Subsequently, the long-term forecasting test compared the results of both 

forecasting models, as is illustrated in the Figure.12. 

 

Figure.12 Forecasting test of two models for the long term 

In Figure.12 the actual data represents the monthly load demand for two years (2012-2013) in long term 

forecasting. It is clear the proposed forecasting model (2) is more accurate to capture the actual time series 

behaviour. 

Table 2. Comparison of statistical indicators 

Model MAPE MSE 

Model 1-short-term 0.103 203798 

Model 2-short-term 0.069 120276 

Model 1-long-term 0.11 2741933 

Model 2-long-term 0.05 599892 

 

5. Results & Discussion (Simulated Data)  

A stander simulation method is a useful tool to introduce smooth and specific data, in order to investigate our 

accurate assumptions by comparing forecasting results of an actual time series and simulation data. In the current 

section, the generating time series 𝑋𝑡 , as is shown in Figure.13, is obtained by applying the Fourier process in the 

following formulas: 
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𝑋𝑡 =  𝑎0 𝐶𝑜𝑠(2𝜋𝑡 (𝑓/ 𝑛)) + 𝑏0𝑆𝑖𝑛(2𝜋𝑡 (𝑓/𝑛)) + 𝑇𝑟(𝑡) +  𝑒𝑡                                  (15) 

where there are cosine and sine curves with 𝑛 =  124  and 𝑓 = 4  frequency,𝑎0 = 100, 𝑏0 = 10 , 

 𝑇𝑟 = 10.6 ∗ 𝑡 + 𝜀𝑡 , 𝑡 = 1,2. .𝑛 and 𝜀𝑡  represents the unit-variance normal white noise. These simulation 

data are clear, including the trend 𝑇𝑟 with a normal white noise  𝑒𝑡 , as in a real process of a time series. 

 

 

 

Figure.13. Simulation time series. The same steps of using the spectral density analysis would be to consider 

fitting an ARIMA model and using the HP filter as in the previous section. These analyses are applied to the 

simulation data for the formulation of forecasting models, in order to confirm the perfect proposal model, by the 

comparison between two types of data; an actual time series that has seasonality with inflection in the trend level, 

and simulation data that have regular properties.  

Starting with the first model of the ARIMA, the testing of the spectral and the periodogram for this generating 

time series is illustrated in Figure.14.  

 

Figure.14 Spectral density of a simulated time series 

The spectral density in Fig 14 shows that this simulation time series has a strong frequency. This means that 

the AR(2) model is more fitting to represent these simulation data. It is clear that there is one maximum 

coefficient of cosine with a frequency of 0.15. Therefore, the shape of the spectrum is a helping guide to identify a 

suitable model of the ARIMA. The statistical test of the significance of the estimation parameters of the AR(2) 

model, after taking the first differencing, is presented in Table 3. The forecasting equation is shown below and the 

fitting model is plotted in Fig 14. 

𝑋 𝑡 = 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2                                                              (16) 
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Table 3. The statistical attributes of the ARIMA model 

 Param. Std.Err. t(121) p Lower 95% Conf. Upper 95% Conf. 

𝜙(1) 0.448491 0.084996 5.276626 5.86E-07 0.28022 0.616762794 

𝜙(2) -0.36929 0.085181 -4.33531 3.03E-05 -0.53793 -0.200649095 

 

The second proposal forecasting model based on an HP analysis is used to extract and estimate the projected 

trend component𝜏 𝑡  and the cyclical component𝑐 𝑡 . Then, the forecasting equation is calculated in equation (17) 

and Figure.14 illustrates the fitting result: 

𝑋 𝑡 = 𝐶𝑡 + 𝑇𝑟 𝑡(17) 

The estimation of two components for the simulation data is represented by Fourier fitted formulas: 

𝐶𝑡 = 𝑎0𝐶𝑂𝑆  2𝜋𝑡
4

𝑛
 ,    𝑇𝑟 𝑡 = 378.13 + 10.57 ∗ 𝑡                                    (18) 

where 𝑡 = 1,2,… ,𝑛, 𝑛 = 124𝑎𝑛𝑑 𝑎0 = 65. 

The interpretation of the comparison between these two forecasting models is made by means of the important 

statistical measures of accuracy, MAPE and MSE, which are illustrated in Table 4.  

Table.4. Comparison of statistical accuracy measures 

Model MAPE MSE 

Model 1-fitting 0.06 4200 

Model 2-Fitting 0.034 1222 

Model 1-forecasting test 0.043 8492 

Model 2-Forecasting test 0.019 1496 

 

The suggestion forecasting model 2 has better MSE and MAPE than those of the ARIMA model 1 for both the 

stages of fitting and testing. This means that the proposal model is more accurate to predict the simulation time 

series. 

 

Figure.15 Fitted two models plot with simulation data 
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Figure.16 Forecasting test of two models plot with simulation data 

 

It is clear that the result of the second forecasting model that is based on the HP analysis has a more 

similar behaviour to simulation data. 

6. Conclusion 

This paper presents the structure of a proposed forecasting model to be considered as an efficient improvement 

for the prediction of a time series in the short and long term, by using two advanced and popular analysis 

techniques, the spectral and the HP filter. The precise comparison of forecasting is made by using two types of 

data: real data, which is the monthly load demand in Iraq (1993-2013), and simulated data, which is in standard 

and regular behaviour. The results show the effectiveness and accurate forecasting by using a combination 

analysis of two procedures, HP and spectral. The perfect results were identified as significant for the forecasting 

horizon of the two models. Model 1 is obtained by using a spectral analysis for the formulation and fitting ARMA 

model, and model 2 is built depending on the HP analysis, in order to detect the figure of the cyclical component, 

and presents it by Fourier formulas. Fewer statistical indicators of the ARMA model are found compared to the 

second model, in both real and simulation data.  
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